Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Rose

  • Chapter
  • First Online:

Part of the book series:Handbook of Plant Breeding ((HBPB,volume 11))

Abstract

Since ancient times, roses have graced homes and gardens as an ornamental plant. Roses are used for many different ornamental purposes as cut flower, garden plant, and pot plant, as well as industrial (perfume), medicinal, and culinary applications. Roses have the largest economic value of all the ornamental plants and have a long and well-documented tradition in selection and breeding. With more than 30,000 cultivars, roses have the largest breeding output among all crops, yet the demand for new cultivars continues unabated. The search for novel ornamental traits is still the main breeding goal. Besides, for cut roses differentiation in the product, increase in production, and better adaptation to (new) production areas are sought. In garden roses, breeders select for better adaptation to diseases including new and important diseases such as rose rosette disease (RRD). Rose breeding is challenging because of the very narrow genetic background in cultivated roses, polyploidy and/or differences in ploidy levels, reproductive barriers including limited fertility and germination challenges, etc. Tools for the breeder include knowledge on the background of traits, (new) molecular techniques, and genome information. This chapter gives an overview of the challenges in rose breeding, breeding objectives, the hybridization process, and conventional and molecular breeding tools. Several breeders were contacted to share an applied and practical viewpoint on cut rose and garden rose breeding with an eye toward trends and evolutions in modern rose breeding.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 37751
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 47189
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 47189
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Abdolmohammadi M, Kermani MJ, Zakizadeh H, Hamidoghli Y (2014) An vitro embryo germination and interploidy hybridization of rose (Rosa sp). Euphytica 198:255–264

    Article CAS  Google Scholar 

  • AIPH (2015) International statistics flowers and plants. Vol 63 International Association of Horticultural Producers

    Google Scholar 

  • AIPH (2016) International statistics flowers and plants. Vol 64 International Association of Horticultural Producers

    Google Scholar 

  • Akasaka M, Ueda Y, Koba T (2002) Karyotype analysis of five wild rose species belonging to septet a by fluorescence in situ hybridization. Chromosom Sci 6:17–26

    CAS  Google Scholar 

  • Akasaka M, Ueda Y, Koba T (2003) Karyotype analysis of wild rose species belonging to septet B, C, and D by molecular cytogenetic method. Breed Sci 53:177–182

    Article  Google Scholar 

  • Allum JF, Bringloe DH, Roberts AV (2007) Chromosome doubling in a Rosa rugosa Thunb. Hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984

    Article PubMed CAS  Google Scholar 

  • Alp S, Çelik F, Türkoglu N, Karagöz S (2009) The effects of different warm stratification periods on the seed germination of someRosa taxa. Afr J Biotechnol 8:5838–5841

    Article  Google Scholar 

  • Anderson N, Byrne DH (2007) Methods forRosa germination. Acta Hortic 751:503–507

    Article  Google Scholar 

  • Arene L, Pellegrino C, Gudin S (1993) A comparison of the somaclonal variation level ofRosa hybrida cv. Meirutral plants regenerated from callus or direct induction from different vegetative and embryonic tissues. Euphytica 71:83–92

    Article  Google Scholar 

  • Arnold NP, Barthakur NN, Tanguay M (1998) Mutagenic effects of acuteγ-irradiation on miniature roses. Target theory approach. Hortic Sci 33:127–129

    Google Scholar 

  • Badaeva ED, Ruban AS, Zoshchuk SA, Surzhikov SA, Knüpffer H, Kilian B (2016) Molecular cytogenetic characterization ofTriticum timopheevii chromosomes provides new insight on genome evolution of T. zhukovskyi. Plant Syst Evol 302:943–956

    Article  Google Scholar 

  • Bala M, Singh KP (2015) In vitro mutagenesis in rose (Rosa hybrida L.) cv. Raktima for novel traits. Indian J Biotechnol 14:525–531

    CAS  Google Scholar 

  • Ballard RE, Rajapakse S, Abbott AG, Byrne D (1995) DNA markers in rose and their use for cultivar identification and genome mapping. Acta Hortic 424:265–268

    Google Scholar 

  • Barton LV (1961) Experimental seed physiology at the Boyce Thompson Institute. Proc Int Seed Test Assoc 26:561

    Google Scholar 

  • Bhanuprakash K, Tejaswini Y, Yogeesha HS, Naik LB (2004) Effect of scarification and gibberellic acid on breaking dormancy of rose seeds. Seed Res 32:105–107

    Google Scholar 

  • Blechert O, Debener T (2005) Morphological characterisation of the interaction betweenDiplocarpon rosae and various rose species. Plant Pathol 54:82–90

    Article  Google Scholar 

  • Blundell JB (1965) Studies of flower development, fruit development, and germination inRosa. PhD Dissertation, University of Wales

    Google Scholar 

  • Bo J, Huiru D, Xiaohan Y (1995) Shortening hybridization breeding cycle of rose - a study on mechanisms controlling achene dormancy. Acta Hortic 404:40–47

    Article  Google Scholar 

  • Bosco R, Caser M, Ghione GG, Mansuino A, Giovannini A, Scariot V (2015) Dynamics of abscisic acid and indole-3-acetic acid during the early-middle stage of seed development in rosa, hybrida. Plant Growth Regul 75:265–270

    Article CAS  Google Scholar 

  • Bourke PM, Arens P, Voorrips RE, Esselink GD, Koning-Boucoiran CFS, van’t Westende WPC, Santos Leonardo T, Wissink P, Zheng C, van Geest G, Visser RGF, Krens FA, Smulders MJM, Maliepaard C (2017) Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant J 90:330–343

    Article CAS PubMed  Google Scholar 

  • Burger DW, Liu L, Zary KW, Lee CI (1990) Organogenesis and plant regeneration from immature embryos ofRosa hybrida L. Plant Cell Tissue Organ Cult 21:147152

    Article  Google Scholar 

  • Burrell AM, Lineberger RD, Rathore KS, Byrne DH (2006) Genetic variation in somatic embryogenesis of rose. HortSci 41:1165–1168

    Google Scholar 

  • Byrne DH, Crane YM (2003) Biotechnologies for breeding / Amphidiploidy. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Oxford

    Google Scholar 

  • Byrne DH, Black W, Ma Y, Pemberton HB (1996) The use of amphidiploidy in the development of blackspot resistant rose germplasm. Acta Hortic 424:269–272

    Article  Google Scholar 

  • Cabrera RI, Solis-Perez AR, Sloan JJ (2009) Greenhouse rose yield and ion accumulation responces to salt stress as modulated by rootstock selection. HortSci 44:2000–2008

    Google Scholar 

  • Cai X, Sun Y, Starman T, Hall C, Niu G (2014) Response of 18 earth-kind® rose cultivars to salt stress. HortSci 49:544–549

    Google Scholar 

  • Caser M (2017) Pollen grains and tubes. Reference Module in Life Sciences, Elsevier.https://doi.org/10.1016/B978-0-12-809633-8.05077-9

    Google Scholar 

  • Caser M, Dente F, Ghione GG, Mansuino A, Giovannini A, Scariot V (2014) Shortening of selection time ofRosa hybrida by in vitro culture of isolated embryos and immature seeds. Propag Ornamen Plant 14:139–144

    Google Scholar 

  • Chaanin A (2003) Breeding / selection strategies for cut roses. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • Chan AP (1966) Chrysanthemum and rose mutations induced by X-rays. Proc Am Soc Hortic Sci 88:613–620

    Google Scholar 

  • Chen JR, Lü JJ, Liu R, Xiong XY, Wang TX, Chen SY, Guo LB, Wang HF (2010) DREB1C fromMedicago truncatula enhances freezing tolerance in transgenicM. truncatula and China rose (Rosa chinensis Jacq.). Plant Growth Regul 60:199–211

    Article CAS  Google Scholar 

  • Chimonidou-Pavlidou D (2004) Malfunction of roses due to drought stress. Sci Hortic 99:79–87

    Article  Google Scholar 

  • Condliffe PC, Davey MR, Power JB, Koehorst-van Putten H, Visser PB (2003) An optimized protocol for rose transformation applicable to different cultivars. Acta Hortic 612:115–120

    Article CAS  Google Scholar 

  • CPVO (2018) Variety databasehttp://cpvo.europa.eu/en/applications-and-examinations/cpvo-varieties-database Accessed 4 March 2018

  • Crépin F (1889) Sketch of a new classification of roses. J Roy Hortic Soc Lond 11:217–228

    Google Scholar 

  • Crespel L, Gudin S (2003) Evidence for the production of unreduced gametes by tetraploidRosa hybrida L. Euphytica 133:65–69

    Article CAS  Google Scholar 

  • Crespel L, Mouchotte J (2003) Methods of cross-breeding. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Oxford

    Google Scholar 

  • Crespel L, Gudin S, Meynet J, Zhang D (2002) AFLP-based estimation of 2n gametophytic heterozygosity in two parthenogenetically derived dihaploids ofRosa hybrida L. Theor Appl Genet 104:451–456

    Article PubMed CAS  Google Scholar 

  • Crespel L, Ricci S, Gudin S (2006) The production of 2n pollen in rose. Euphytica 151:155–164

    Article  Google Scholar 

  • Cubero JI, Millan T, Osuna F, Torres AM, Cobos S (1995) Varietal identification inRosa by using isozym and RAPD markers. Acta Hortic 424:261–264

    Google Scholar 

  • Datta SK (2012) Success story of induced mutagenesis for development of new ornamental varieties. In: Kozgar K (ed) Induced mutagenesis in crop plants: bioremediation, biodiversity and bioavailability. Global Science Books Ltd., UK, Ikenobe, Japan pp 15–26

    Google Scholar 

  • De Cock K, Scariot V, Leus L, De Riek J, Van Huylenbroeck J (2007) Understanding genetic relationships of wild and cultivated roses and the use of species in breeding. CAB Rev 52:2

    Google Scholar 

  • De Dauw K, Van Labeke MC, Leus L, Van Huylenbroeck J (2013) Drought tolerance screening of aRosa population. Acta Hortic 990:121–127

    Article  Google Scholar 

  • De Riek J, Dendauw J, Mertens M, Van Bockstaele E, De Loose M (1997) Use of AFLP for variety protection: some case studies on ornamentals. Medded Fac Landbouwww Univ Gent 62:1459–1466

    Google Scholar 

  • De Riek J, Dendauw J, Leus L, De Loose M, Van Bockstaele E (2001) Variety protection by use of molecular markers: some case studies on ornamentals. Plant Biosyst 135:107–113

    Article  Google Scholar 

  • de Vries DP (2003) Breeding / Selection strategies for pot roses. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • de Vries DP, Dubois LAM (1980) Inheritance of pigments. Am Rose Annu 65:145–148

    Google Scholar 

  • de Vries DP, Dubois LAM (1983) Pollen and pollination experiments. X. The effect of repeated pollination on fruit- and seed set in crosses between the hybrid tea-rose cvs. Sonia and Ilona. Euphytica 32:685–689

    Article  Google Scholar 

  • de Vries DP, Dubois LAM (1987) The effect of temperature on fruit-set, seed set and seed-germination in Sonia X Hadley hybrid tea-rose crosses. Euphytica 36:117–120

    Article  Google Scholar 

  • de Vries DP, Dubois LAM (1996) Rose breeding: past, present, prospects. Acta Hortic 424:241–248

    Article  Google Scholar 

  • de Vries DP, Dubois LAM (2001) Developments in breeding for horizontal and vertical fungus resistance in roses. Acta Hortic 552:103–112

    Article  Google Scholar 

  • de Vries DP, Dubois LAM (2015) Factors affection the germination of hybrid rose achenes: a review. Acta Hortic 1064:151–164

    Article  Google Scholar 

  • de Wit JC, Esendam HF, Honkanen JJ, Tuominen U (1990) Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep 9:456–458

    Article PubMed  Google Scholar 

  • Debener T (1999) Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. Gartenbauwissenschaft 64:14–20

    Google Scholar 

  • Debener T (2017) Inheritance of characteristics. Reference Module in Life Sciences, Elsevier.https://doi.org/10.1016/B978-0-12-809633-8.05047-0

    Google Scholar 

  • Debener T, Byrne DH (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117

    Article CAS PubMed  Google Scholar 

  • Debener T, Linde M (2009) Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci 28:267–280

    Article CAS  Google Scholar 

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article CAS  Google Scholar 

  • Debener T, Drewes-Alvarez R, Rockstroh K (1998) Identification of five physiological races of black spot,Diplocarpon rosae, wolf on roses. Plant Breed 117:267–270

    Article  Google Scholar 

  • Densmore RA, Zasada JC (1977) Germination requirements of AlaskanRosa acicularis. Can Field Nat 91:58–62

    Google Scholar 

  • Derks FHM, van Dijk AJ, Hänisch ten Cate CH, Florack DEA, Dubois LAM, de Vries DP (1995) Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity. Somatic embryogenesis andAgrobacterium-mediated transformation. Acta Hortic 405:205–209

    Article  Google Scholar 

  • Dewitte A, Leus L, Van Huylenbroeck J, Van Bockstaele E, Höfte M (2007) Characterization of reactions to powdery mildew (Podosphaera pannosa) in resistant and susceptible rose genotypes. J Phytopathol 155:264–272

    Article  Google Scholar 

  • Di Bello PL, Ho T, Tzanetakis IE (2015) The evolution of emaraviruses is becoming more complex: seven segments identified in the causal agent of rose rosette disease. Virus Res 210:241–244

    Article PubMed CAS  Google Scholar 

  • Di Bello PL, Thekke-Veetil T, Druciarek T, Tzanetakis IE (2018) Transmission attributes and resistance to rose rosette virus. Plant Pathol 67:499–504

    Article  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Hortic 572:105–111

    Article CAS  Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    Article PubMed CAS  Google Scholar 

  • Drewes-Alavarez R (2017) Early embryo rescue. Reference Module in Life Sciences, Elsevier.https://doi.org/10.1016/B978-0-12-809633-8.05002-0

  • Drewes-Alvarez R (2003) Disease / black spot. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • Dubois LAM (2003) Intellectual property/plant patents and trademarks. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Oxford

    Google Scholar 

  • Dubois LAM, de Vries DP (1987) On the inheritance of the dwarf character in polyantha xRosa chinensis minima (Sims) Voss F1-populations. Euphytica 36:535–539

    Article  Google Scholar 

  • Dubois LAM, de Vries DP (1995) Preliminary report on direct regeneration of adventitious buds on leaf explants of in vivo grown glass house rose cultivars. Gartenbauwissenschaft 60:249–253

    CAS  Google Scholar 

  • Dubois LAM, de Vries DP, Koot A (2000) Direct shoot regeneration in the rose: genetic variation of cultivars. Gartenbauwissenschaft 65:45–49

    Google Scholar 

  • El Mokadem H, Crespel L, Meynet J, Gudin S (2002a) The occurrence of 2n-pollen and the origin of sexual polyploids in dihaploid roses (Rosa hybrida L.). Euphytica 125:169–177

    Article  Google Scholar 

  • El Mokadem H, Meynet J, Crespel L (2002b) The occurrence of 2n eggs in the dihaploids derived fromRosa hybrida L. Euphytica 124:327–332

    Article  Google Scholar 

  • Esselink D, Smulders MJM, Vosman B (2003) Identification of cut-rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite markers. Theor Appl Genet 106:277–286

    Article PubMed CAS  Google Scholar 

  • Estabrooks T, Browne R, Dong Z (2007) 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ easy’ (Rosa sp.). Plant Cell Rep 26:153–160

    Article PubMed CAS  Google Scholar 

  • Fagerlind F (1958) Hip and seed formation in newly formedRosa polyploids. Acta Hortic Berg 17:229–256

    Google Scholar 

  • Feng H, Wang ML, Cong RC, Dai SL (2016) Colchicine- and trifluralin-mediated polyploidization ofRosa multiflora Thunb. Var. inermis andRosa roxburghii f. Normalis. J Hortic Sci Biotechnol 92:279–287

    Article CAS  Google Scholar 

  • Fernandez-Romero MD, Torres AM, Millan T, Curero JL, Cabrera A (2001) Physical mapping of ribosomal DNA on several species of the subgenus Rosa. Theor Appl Genet 103:835–838

    Article CAS  Google Scholar 

  • Firoozabady E, Moy Y, Courtneygutterson N, Robinson K (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Biotechnology 12:609–613

    CAS  Google Scholar 

  • Fougère-Danezan M, Joly S, Bruneau A, Gao XF, Zhang LB (2015) Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann Bot 115:275–291

    Article PubMed CAS  Google Scholar 

  • Gallego FJ, Martinez I (1996) Molecular typing of rose cultivars using RAPDs. J Hortic Sci 71:901–908

    Article CAS  Google Scholar 

  • Gar O, Sargent DJ, Tsai CJ, Pleban T, Shalev G, Byrne DH, Zamir D (2011) An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence. PLoS One 6:e20463

    Article PubMed PubMed Central CAS  Google Scholar 

  • Geike J, Kaufmann H, Schürmann F, Debener T (2015) Targeted mutagenesis ofMLO homologous genes in the rose genome. Acta Hortic 1087:507–513

    Article  Google Scholar 

  • Giovannini A, Macovei A, Donà M, Valassi A, Caser M, Mansuino A, Ghione GG, Carbonera D, Scariot V, Balestrazzi A (2015) Pollen grain preservation at low temperatures in valuable commercial rose cultivars. Acta Hortic 1064:63–66

    Article  Google Scholar 

  • Grossi C, Jay M (2002) Chromosome studies of rose cultivars: application into selection process. Acta Bot Gallica 149:405–413

    Article  Google Scholar 

  • Gudin S (1995) Rose improvement, a breeders experience. Acta Hortic 420:125–128

    Article  Google Scholar 

  • Gudin S (1999) Improvement of rose varietal creation in the world. Acta Hortic 495:283–291

    Article  Google Scholar 

  • Gudin S (2000) Rose: genetics and breeding. In: Plant breeding reviews, vol 17, pp 159–189

    Google Scholar 

  • Gudin S (2001) Rose breeding technologies. Acta Hortic 547:23–33

    Article  Google Scholar 

  • Gudin S (2003) Breeding / Overview. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • Gudin S (2017) Seed propagation. Reference Module in Life Sciences, Elsevier.https://doi.org/10.1016/B978-0-12-809633-8.05093-7

    Google Scholar 

  • Gudin S, Mouchotte J (1996) Integrated research in rose improvement – a breeders experience. Acta Hortic 424:285–291

    Article  Google Scholar 

  • Gudin S, Arene L, Chavagnat A, Bulart C (1990) Influence of endocarp thickness on rose achene germination: genetic and environmental factors. HortSci 25:786–788

    Google Scholar 

  • Hakam N, DeEll JR, Khanizadeh S, Richer C (2000) Assessing chilling tolerance in roses using chlorophyll fluorescence. HortSci 35:184–186

    Google Scholar 

  • Haring PA (1986) Modern Roses 9. American Rose Society, Shreveport

    Google Scholar 

  • Harp DA, Kay K, Zlesak DC, George S (2015) The effect of rose root size on drought stress tolerance and landscape plant performance. Texas J Agric Nat Resour 28:82–88

    Google Scholar 

  • Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347

    Article  Google Scholar 

  • Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke P, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm T, Arens P, Voorrips R, Maliepaard C, Neu E, Linde M, Le Paslier MC, Berard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders R, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F (2018) A high-quality genome sequence ofRosa chinensis to elucidate ornamental traits. Nature Plants.https://doi:10.1038/s41477-018-0166-1

    Article CAS PubMed PubMed Central  Google Scholar 

  • Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits Tree Genetics & Genomes 4:11

    Article  Google Scholar 

  • Himi E, Taketa S (2015) Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol Gen Genomics 290:1287–1298

    Article CAS  Google Scholar 

  • Horst RK (1983) Compedium of rose diseases. APS Press, St. Paul

    Google Scholar 

  • Hosseini Moghaddam H, Leus L, De Riek J, Van Huylenbroeck J, Van Bockstaele E (2012) Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses. Euphytica 184:413–427

    Article CAS  Google Scholar 

  • Hsia CN, Korban SS (1996) Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tissue Organ Cult 44:1–6

    Article CAS  Google Scholar 

  • Hubbard M, Kelly J, Rajapakse S, Abbott AG, Ballard RE (1992) Restriction fragment polymorphism in rose and their use for cultivar identification. HortSci 27:172–173

    Google Scholar 

  • IAEA (2018) databasehttps://mvd.iaea.org/. Accessed 04 Mar 2018

  • Ibrahim R (1999) In vitro mutagenesis in rose. PhD Dissertation, Ghent University

    Google Scholar 

  • Ibrahim R, Debergh P (2001) Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Sci Hortic 88:41–57

    Article  Google Scholar 

  • Ishioka N, Tanimoto S (1990) Plant regeneration from Bulgarian rose callus. Plant Cell Tissue Organ Cult 22:197–199

    Article  Google Scholar 

  • Iwata H, Kato T, Ohno S (2000) Triparental origin of damask roses. Gene 259:53–59

    Article PubMed CAS  Google Scholar 

  • Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Hibrand-Saint Oyant L, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125

    Article PubMed CAS  Google Scholar 

  • Jackson GAD (1968) Hormonal control of fruit development, seed development and germination with particular reference toRosa. SCI monogr 31:157–156

    Google Scholar 

  • Jackson GAD, Blundell JB (1963) Germination inRosa. J Hortic Sci 38:310–320

    Article  Google Scholar 

  • Jacob Y, Ferrero F (2003) Pollen grains and tubes. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • Jang HR, Lee HJ, Park BJ, Pee OJ, Paek KY, Park SY (2016) Establishment of embryogenic cultures and determination of their bioactive properties inRosa rugosa. Hortic Environ Biotechnol 57:291–298

    Article CAS  Google Scholar 

  • Jian HY, Zhang H, Tang KX, Li SF, Wang QG et al (2010a) Decaploidy inRosa praelucens Byhouwer (Rosaceae) endemic to Zhongdian plateau, Yunnan, China. Caryology 63:162–167

    Article  Google Scholar 

  • Jian HY, Zhang H, Zhang T, Li SF, Wang QG et al (2010b) Karyotype analysis of different varieties ofRosa odorata sweet. J Plant Genet Res 11:457–461

    Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article PubMed CAS  Google Scholar 

  • Joly S, Starr JR, Lewis WH, Bruneau A (2006) Polyploid and hybrid evolution in roses east of the Rocky Mountains. Am J Bot 93:412–425

    Article PubMed  Google Scholar 

  • Kahrizi ZA, Kermani MJ, Amiri M, Vedadi S, Hosseini Z (2015) In vitro radio-sensitivity of different genotypes and explants of rose (Rosa hybrida). J Hortic Sci Biotechnol 88:47–52

    Article  Google Scholar 

  • Kamo K, Jones B, Bolar J, Smith F (2005) Regeneration from long-term embryogenic callus of theRosa hybrida cultivar cardinal. In Vitro Cell Dev Biol Plant 41:32–36

    Article  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:589–1600

    Article CAS  Google Scholar 

  • Kaufmann H, Qiu X, Wehmeyer J, Debener T (2012) Isolation, molecular characterization, and mapping of four roseMLO orthologs. Front Plant Sci 3:244

    Article PubMed PubMed Central  Google Scholar 

  • Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling inRosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200

    Article PubMed CAS  Google Scholar 

  • Khosravi P, Kermani MJ, Nematzadeh GA, Bihamta MR, Yokoya K (2008) Role of mitotic inhibitors and genotype on chromosome doubling ofRosa. Euphytica 160:267–275

    Article CAS  Google Scholar 

  • Kim CK, Chung J, Jee S, Oh J (2003a) Somatic embryogenesis from in vitro grown leaf explants ofRosa hybrida L. J Plant Biotech 5:169–172

    Google Scholar 

  • Kim SW, Oh SC, Liu JR (2003b) Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell Tissue Organ Cult 74:61–66

    Article CAS  Google Scholar 

  • Kim CK, Chung JD, Park SH, Burrell AM, Kamo KK, Byrne DH (2004)Agrobacterium tumefaciens-mediated transformation ofRosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tissue Organ Cult 78:107–111

    Article CAS  Google Scholar 

  • Kim SW, Oh MJ, Liu JR (2009) Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of rugosa rose. Plant Biotechnol Rep 3:199–203

    Article  Google Scholar 

  • Kintzios S, Manos C, Makri O (1999) Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep 18:467–472

    Article CAS  Google Scholar 

  • Kintzios S, Drossopoulos JB, Lymperopoulos C (2000) Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from young mature leaves of rose. J Plant Nutr 23:1407–1420

    Article CAS  Google Scholar 

  • Kirov I (2017) Physical mapping of genes on plant chromosomes. PhD Dissertation, Ghent University

    Google Scholar 

  • Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L (2014a) Anchoring linkage groups of theRosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PlosONE 9:e95793

    Article CAS  Google Scholar 

  • Kirov I, Divashuk M, Van Laere K, Soloviev A, Khrustaleva L (2014b) An easy “SteamDrop” method for high quality plant chromosome preparation. Mol Cytogenet 7:1–10

    Article  Google Scholar 

  • Kirov I, Van Laere K, Khrustaleva L (2015) High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa. BMC Genet 16:1–10

    Article CAS  Google Scholar 

  • Kirov I, Van Laere K, Van Roy N, Khrustaleva L (2016) Towards a FISh-based karyotype ofRosa L. Comp Cytogenet 10:543

    Article PubMed PubMed Central  Google Scholar 

  • Koning-Boucoiran CFS, Gitonga VW, Yan Z, Dolstra O, van der Linden CG, van der Schoot J, Uenk GE, Verlinden K, Smulders MJM, Krens FA, Maliepaard C (2012) The mode of inheritance in tetraploid cut roses. Theor Appl Genet 125:591–607

    Article PubMed PubMed Central CAS  Google Scholar 

  • Koning-Boucoiran CFS, Esselink GD, Vukosavljev M, van ‘t Westende WP, Gitonga VW, Krens FA, Voorrips RE, van de Weg WE, Schulz D, Debener T, Maliepaard C, Arens P, Smulders MJ (2014) Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k axiom SNP array for rose (Rosa L.). Front Plant Sci 6:249

    Google Scholar 

  • Koopman WJM, Wissemann V, De Cock K, Van Huylenbroeck J, De Riek J, Sabatino GJH, Visser D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study inRosa (Rosaceae). Am J Bot 95:353–366

    Article PubMed CAS  Google Scholar 

  • Kunitake H, Imamizo H, Mii M (1993) Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Sci 90:187–194

    Article CAS  Google Scholar 

  • Lammerts WE (1945) The scientific basis of rose breeding. Am Rose Ann 30:71–79

    Google Scholar 

  • Lee SY, Han BH, Kim YS (2010a) Somatic embryogenesis and shoot development inRosa hybrida L. Acta Hortic 870:219–225

    CAS  Google Scholar 

  • Lee SY, Jung JH, Kim WH, Kim ST, Lee EK (2010b) Acquirement of transgenic rose plants from embryogenic calluses viaAgrobacterium tumefaciens. J Plant Biotechnol 37:511–516

    Article  Google Scholar 

  • Leus L (2005) Resistance breeding for powdery mildew (Podosphaera pannosa) and black spot (Diplocarpon rosae) in roses. PhD Dissertation, Ghent University

    Google Scholar 

  • Leus L (2017) Selection strategies for disease resistance in roses. Reference Module in Life Sciences, Elsevier.https://doi.org/10.1016/B978-0-12-809633-8.05008-1

    Google Scholar 

  • Leus L, Van Huylenbroeck J (2009) Developing resistance to powdery mildew (Podosphaera pannosa (Wallr.: Fr.) de Bary): a challenge for rose breeders. In: Zlesak. (ed) RosesFloriculture and ornamental biotechnology. Global Science Books Ltd., UK, Ikenobe, Japan pp 131–138

    Google Scholar 

  • Leus L, Jeanneteau F, Van Huylenbroeck J, Van Bockstaele E, De Riek J (2004) Molecular evaluation of a collection of rose species and cultivars by AFLP, ITS, rbc L, and mat K. Acta Hortic 651:141–147

    Article CAS  Google Scholar 

  • Leus L, Dewitte A, Van Huylenbroeck J, Vanhoutte N, Van Bockstaele E, Höfte M (2006)Podosphaera pannosa (syn.Sphaerotheca pannosa) onRosa andPrunus spp.: characterization of pathotypes by differential plant reactions and ITS-sequences. J Phytopathol 154:23–28

    Article CAS  Google Scholar 

  • Li XQ, Krasnyanski SF, Korban SS (2002a) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis inRosa. J Plant Physiol 159:313–319

    Article CAS  Google Scholar 

  • Li XQ, Krasnyanski SF, Korban SS (2002b) Optimization of the uidA gene transfer into somatic embryos of rose viaAgrobacterium tumefaciens. Plant Physiol Biochem 40:453–459

    Article CAS  Google Scholar 

  • Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial gene, ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232

    Article CAS PubMed  Google Scholar 

  • Liang S, Wu X, Byrne D (2017) Flower-size heritability and floral heat-shock tolerance in diploid roses. HortSci 52:682–685

    Article  Google Scholar 

  • Lim KY, Werlemark G, Matyasek R, Bringloe JB, Sieber V, El Mokadem H, Roberts AV (2005) Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid ofRosa canina L. Heredity 94:501–506

    Article PubMed CAS  Google Scholar 

  • Li-Marchetti C, Le Bras C, Relion D, Citerne S, Huché-Thélier L, Sakr S, Morel P, Crespel L (2015) Genotypic differences in architectural and physiological responses to water restriction in rose bush. Front Plant Sci 6:355

    Article PubMed PubMed Central  Google Scholar 

  • Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr:Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107:256–262

    Article PubMed CAS  Google Scholar 

  • Linde M, Shishkoff N (2003) Disease / powdery mildew. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • Liorzou M, Pernet A, Li S, Chastellier A, Thouroude T, Michel G, Malécot V, Gaillard S, Brieé C, Foucher F, Oghina-Pavie C, Clotault J, Grapin A (2016) Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background. J Exp Bot 67:4711–4725

    Article PubMed PubMed Central CAS  Google Scholar 

  • Liu CY, Wang GL, Xie QL, Jin J, Liu GN (2008) A study on the chromosome karyomorphology of 6 species inRosa. J Jiangsu For Sci Technol 35:5–8

    CAS  Google Scholar 

  • Lloyd D, Roberts AV, Short KC (1988) The induction in vitro of adventitious shoots inRosa. Euphytica 37:31–36

    Article  Google Scholar 

  • Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ (2014) Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. Hortic Res 1:1

    Article PubMed PubMed Central CAS  Google Scholar 

  • Ma Y, Chen JY (1991) Chromosome studies of seven roses. J Fujian Coll For 11:215–218

    CAS  Google Scholar 

  • Ma Y, Chen JY (1992) Chromosome studies of six species ofRosa in China. Guihaia 12:333–336

    Google Scholar 

  • Ma Y, Islam-Faridl MN, Crane CF, Stelly DM, Price HJ, Byrne DH (1996) A new procedure to prepare slides of metaphase chromosomes of roses. HortSci 31:855–857

    Google Scholar 

  • Ma Y, Crana CF, Byrne DH (1997a) Karyotypic relationships among someRosa species. Caryologia 50:317–326

    Article  Google Scholar 

  • Ma Y, Islam-Faridi MN, Crana CF, Ji Y, Stelly DM, Price HJ, Byrne DH (1997b) In situ hybridization of ribosomal DNA to rose chromosomes. J Hered 88:158–161

    Article  Google Scholar 

  • Macovei A, Caser M, Donà M, Valassi A, Giovannini A, Carbonera D, Scariot V, Balestrazzi A (2016) Prolonged cold storage affects pollen viability and germination along with hydrogen peroxide and nitric oxide content inRosa hybrida. Not Bot Hortic Agrobo 44:6–10

    Google Scholar 

  • MacPhail VJ, Kevan PG (2009) Review of the breeding systems of wild roses (Rosa spp.). In: Zlesak. (ed) RosesFloriculture and ornamental biotechnology. Global Science Books Ltd., UK, Ikenobe, Japan pp 1–13

    Google Scholar 

  • Magnard JL, Roccia A, Caissard JC, Vergne Pn Sun P, Hecquet R, Dubois A, Hibrand-Saint Oyant L, Julien F, Nicolè F, Raymond O, Huguet S, Baltenweck R, Meyer S, Claudel P, Jeauffre Jn Rohmer M, Foucher F, Hugueney P, Bendahmane M, Baudino S (2015) Biosynthesis of monoterpene scent compounds in roses. Science 349:81–83

    Article PubMed CAS  Google Scholar 

  • Mandakova T, Singh V, Krämer U, Lysak MA (2015) Genome structure of the heavy metal hyperaccumulatorNoccaea caerulescens and its stability on metalliferous and nonmetalliferous soils. Plant Physiol 169:674–689

    Article PubMed PubMed Central CAS  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998a) Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosa wolf). Mol Breed 4:187–194

    Article CAS  Google Scholar 

  • Marchant R, Power JB, Lucas JA, Davey MR (1998b) Biolistic transformation of rose (Rosa hybrida L.). Ann Bot 81:109–114

    Article  Google Scholar 

  • Marriott M (2017) Modern (Post-1800). Reference Module in Life Sciences, Elsevier.https://doi.org/10.1016/B978-0-12-809633-8.05063-9

    Google Scholar 

  • Matsumoto S, Fukui H (1996) Identification of rose cultivars and clonal plants by random amplified polymorphic DNA. Sci Hortic 67:49–54

    Article CAS  Google Scholar 

  • Matsumoto S, Kouchi M, Yabuki J, Kusunoki M, Ueda Y, Fukui H (1998) Phylogenetic analysis of the genusRosa using MatK sequence: molecular evidence for the narrow genetic background of modern roses. Sci Hortic 77:73–82

    Article CAS  Google Scholar 

  • Matsumoto S, Kouchi M, Fukui H (2000) Phylogenetic analysis of the subgenusEurosa using the ITS nrDNA sequence. Acta Hortic 521:193–202

    Article CAS  Google Scholar 

  • Matthews D, Mottley J, Horan I, Roberts AV (1991) A protoplast to plant system in rose. Plant Cell Tissue Organ Cult 24:173–180

    Article  Google Scholar 

  • Meneve I (1995) Breeding for disease resistance in roses by means ofRosa rugosa andRosa fedtschenkoana. Can Rose Annu 1995:55–57

    Google Scholar 

  • Meynet J, Barrade R, Duclos A, Siadous R (1994) Dihaploid plants of roses (Rosa xhybrida, cv. ‘Sonia’) obtained by parthenogenesis induced using irradiated pollen and in vitro culture of immature seeds. Agronomie 2:169–175

    Article  Google Scholar 

  • Morpeth DR, Hall AM (2000) Microbial enhancement of seed germination inRosa corymbifera „Laxa‟. Seed Sci Res 10:489–494

    Article  Google Scholar 

  • Mottley J, Yokoya K, Matthews D, Squirrel J, Wentworth JE (1996) Protoplast fusion and its potential role in the genetic improvement of roses. Acta Hortic 424:393–397

    Article  Google Scholar 

  • Murali S, Sreedhar D, Lokeswari TS (1996) Regeneration through somatic embryogenesis from petal-derived calli ofRosa hybrida L. cv Arizona (hybrid tea). Euphytica 91:271–275

    Article  Google Scholar 

  • Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, Tabata S, Tanaka Y (2017) Genome structure ofRosa multiflora, a wild ancestor of cultivated roses, DNA Research, dsx042,https://doi.org/10.1093/dnares/dsx042

  • Nguyen HN, Schulz D, Winkelmann T, Debener T (2017) Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. Plant Cell Rep 36:1493–1505

    Article CAS PubMed  Google Scholar 

  • Noriega C, Sondahl MR (1991) Somatic embryogenesis in hybrid tea roses. Biotechnology 9:991–993

    Article  Google Scholar 

  • Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792

    Article PubMed CAS  Google Scholar 

  • Nybom H (2017) DNA fingerprinting. Reference Module in Life Sciences, Elsevier.https://doi.org/10.1016/B978-0-12-809633-8.05044-5

    Google Scholar 

  • Nybom H, Esselink GD, Werlemark G, Vosman B (2004) Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses,Rosa L. sect. Caninae DC. Heredity 92:139–150

    Article PubMed CAS  Google Scholar 

  • O’neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome ofBrassica oleracea var. alboglabra that are homoeologous to resequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article PubMed  Google Scholar 

  • Ogilvie I, Cloutier D, Arnold N, Jui PY (1991) The effect of gibberellic acid on fruit and seed set in crosses of garden and winter hardyRosa accessions. Euphytica 52:119–123

    CAS  Google Scholar 

  • Ouyang L, Leus L, Van Labeke MC (2017) Seasonal changes in cold hardiness of garden roses. Paper presented at the 7th international symposium on rose research and cultivation, Angers, France, 2–7 July 2017

    Google Scholar 

  • Pati PK, Sharma M, Sood A, Sood A, Ahuja PS (2004) Direct shoot regeneration from leaf explants ofRosa damascena mill. In Vitro Cell Dev Biol Plant 40:192–195

    Article  Google Scholar 

  • Pati PK, Rath SP, Sharma M, Sood A, Ahuja PS (2006) In vitro propagation of rose - a review. Biotechnol Adv 24:94–114

    Article PubMed CAS  Google Scholar 

  • Pécrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M (2011) Polyploidization mechanisms: temperature environment can induce diploid gamete formation inRosa sp. J Exp Bot 62:3587–3597

    Article CAS PubMed  Google Scholar 

  • Peng T, Chen W, Moens M (2003) Resistance ofRosa species and cultivars toPratylenchus penetrans. HortSci 38:560–564

    Google Scholar 

  • Pertwee J (1995) The production and marketing of roses. Pathfast Publishing, Essex

    Google Scholar 

  • Pipino L (2011) Improving seed production efficiency for hybrid rose breeding. PhD Dissertation, Ghent University

    Google Scholar 

  • Pipino L, Van Labeke MC, Mansuino A, Scariot V, Giovannini A, Leus L (2011) Pollen morphology as fertility predictor in hybrid tea roses. Euphytica 178:203–214

    Article  Google Scholar 

  • Pipino L, Leus L, Scariot V, Van Labeke MC (2013) Embryo and hip development in hybrid roses. Plant Growth Reg 69:107–116

    Article CAS  Google Scholar 

  • Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes ofRosa hybrida. Plant Cell Tissue Organ Cult 112:101–108

    Article CAS  Google Scholar 

  • Rajapakse S, Hubbard M, Kelly JW, Abbott AG, Ballard RE (1992) Identification of rose cultivars by restriction fragment polymorphism. Sci Hortic 52:237–245

    Article CAS  Google Scholar 

  • Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrère S, Caissard J, Couloux A, Cottret L, Aury J, Szécsi J, Latrasse D, Madoui M, François L, Fu X, Yang S, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Winckler P, Bendahmane M (2018) The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics.https://doi.org/10.1038/s41588-018-0110-3

  • Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America. Collier Macmillan Ltd., New York

    Google Scholar 

  • Reitsma TJ (1966) Pollen morphology of some European Rosaceae. Acta Botanica Neerlandica 15:290–307

    Article  Google Scholar 

  • Reynders-Aloisi S, Bollereau P (1996) Characterization of genetic diversity in genusRosa by random amplified length polymorphic DNA. Acta Hortic 424:253–259

    Article CAS  Google Scholar 

  • Ritz CM, Wissemann V (2011) Microsatellite analyses of artificial and apontaneous dogrose hybrids reveal the hybridogenic origin ofRosa micrantha by the contribution of unreduced gametes. J Hered 102:217–227

    Article PubMed CAS  Google Scholar 

  • Roberts AV (2007) The use of bead beating to prepare suspensions of nuclei for flow cytometry from fresh leaves, herbarium leaves, petals and pollen. Cytometry A 71A:1039–1044

    Article  Google Scholar 

  • Roberts AV, Debener T, Gudin S (2003) Introduction. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • Roberts AV, Gladis T, Brumme H (2009) DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Rep 28:61–71

    Article PubMed CAS  Google Scholar 

  • Roundey E, Anderson N, Bedard C, Scheiber M, Zlesak D, Byrne D (2017)Rosa palustris andRosa setigera: Breeding Challenges. Paper presented at the 7th international symposium on rose research and cultivation, Angers, France, 2–7 July 2017

    Google Scholar 

  • Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus cultures ofRosa hybrida L. cv. Landora. Plant Cell Tissue Organ Cult 27:65–69

    Article CAS  Google Scholar 

  • Rout GR, Samantaray S, Mottley J, Das P (1999) Biotechnology of the rose: a review of recent progress. Sci Hortic 81:201–228

    Article CAS  Google Scholar 

  • Rowley GD (1956) Germination inRosa canina. Am Rose Ann 41:70–73

    Google Scholar 

  • Royal FloraHolland (2016)https://www-sys.royalfloraholland.com/en/speciale-paginas/search-in-news/v42149/roses-remain-very-popular. Accessed 4 March 2018

  • Sarasan V, Roberts AV, Rout GR (2001) Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep 20:183–186

    Article CAS  Google Scholar 

  • Scariot V, Akkak A, Botta R (2006) Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis. J Am Soc Hortic Sci 131:66–73

    CAS  Google Scholar 

  • Schum A, Hofman K, Ghalib N, Tawfik A (2001) Factors affecting protoplast isolation and plant regeneration inRosa spp. Gartenbauwissenschaft 66:115–122

    CAS  Google Scholar 

  • Semeniuk P (1971a) Inheritance of recurrent blooming inRosa wichuraiana. J Hered 62:203–204

    Article  Google Scholar 

  • Semeniuk P (1971b) Inheritance of recurrent and non-recurrent blooming in ‘goldilocks’ xRosa wichuraiana progeny. J Hered 62:319–320

    Article  Google Scholar 

  • Semeniuk P, Arisumi T (1968) Colchicine-induced tetraploid and cytomerical roses. Bot Gaz 129:190–193

    Article  Google Scholar 

  • Semeniuk P, Stewart RN (1962) Temperature reversal of after-ripening of rose seeds. Proc Amer Soc Hortic Sci 80:615–621

    Google Scholar 

  • Senapathi SK, Rout GR (2008) In vitro mutagenesis of rose with ethylmethanesulphonate (EMS) and early selection using RAPD markers. Adv Hortic Sci 3:218–222

    Google Scholar 

  • Smulders MJM, Arens P, Koning-Boucoiran CFS, Gitonga VW, Krens FA, Atanassov A, Atanassov I, Rusanov KE, Bendahmane M, Dubois A, Raymond O, Caissard JC, Baudino S, Crespel L, Gudin S, Ricci SC, Kovatcheva N, Van Huylenbroeck J, Leus L, Wisseman V, Zimmermann H, Hensen I, Werlemark G, Nybom H (2011) Rosa. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 243–275

    Chapter  Google Scholar 

  • Solo K, Collins S, Cheng Q, England B, Hale F, Windham AS, Byrne D, Anderson N, Windham MT (2017)Rosa species resistance to Eriophyid mite populations. Conference abstract APS. Phytopathology 107:139

    Google Scholar 

  • Souq F, Coutos-Thevenot P, Yean H, Delbard G, Maziere Y, Barbe JP, Boulay M (1996) Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Acta Hortic 424:381–388

    Article  Google Scholar 

  • Spethmann W, Feuerhahn B (2003) Genetics / species crosses. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford

    Google Scholar 

  • Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai C-J, Byrne DH, Smulders MJ, Foucher F, Debener T (2011) Towards a unified genetic map for diploid roses. Theor Appl Genet 122:489–500

    Article PubMed  Google Scholar 

  • Squirrell J, Mandegaran Z, Yokoya K, Robets AV, Mottley J (2005) Cell lines and plants obtained after protoplast fusions of Rosa+Rosa, Rosa+Prunus and Rosa+Rubus. Euphytica 146:223–231

    Article  Google Scholar 

  • Stewart RN, Semeniuk P (1965) The effect of the interaction of temperature with after-ripening requirements and compensating temperature on germination of seeds of 5 species of Rosa. Am J Bot 52:755–760

    Article  Google Scholar 

  • Svejda (1968) Effect of temperature and seed coat treatment on the germination of rose seeds. Hortscience 3:184–185

    Google Scholar 

  • Svejda F (1977) Breeding for improvement of flowering attributes of winterhardyRosa kordesii Wuiff hybrids. Euphytica 26:703–708

    Article  Google Scholar 

  • Svejda F (1979) Inheritance of winterhardiness in roses. Euphytica 28:309–314

    Article  Google Scholar 

  • Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129:199–210

    Article PubMed CAS  Google Scholar 

  • Tanaka Y, Katsumoto Y, Demelis L, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Togami T, Nakamura N, Tsuda S, Mason J (2007) Flower colour modification of roses by expression of a torenian anthocyanin methyltransferase gene. Plant Cell Physiol 48:S221–S221

    Article CAS  Google Scholar 

  • Torres AM, Milan T, Cubero JI (1993) Identifying rose cultivars using random amplified polymorphic DNA markers. HortSci 28:333–334

    CAS  Google Scholar 

  • Ueda Y (2003) Seed maturation and germination. In: Roberts, Debener, Gudin (eds) Encyclopedia of rose science. Elsevier Academic Press, Oxford

    Google Scholar 

  • UPOV (2018) website on: Essentially Derived Varieties legihttp://www.upov.int/meetings/en/doc_details.jsp?meeting_id=24135&doc_id=186123. Accessed 04 Mar 2018

  • van der Salm TPM, van der Toorn CJG, Hänisch ten Cate CHH, Dons HJM (1996) Somatic embryogenesis and shoot regeneration from excised adventious roots of the rootstockRosa hybrida L. ‘Moneyway’. Plant Cell Rep 15:522–526

    Article PubMed  Google Scholar 

  • van der Salm TPM, van der Toorn CJG, Bouwer R, Hanish ten Cate CH, Don HJM (1997) Production of ROL gene transformed plants ofRosa hybrida L. and characterisation of their rooting ability. Mol Breed 3:39–47

    Article  Google Scholar 

  • van der Salm TPM, Bouwer R, van Dijk AJ, Keizer LCP, Hänisch ten Cate CH, van der Plas LWH, Dons JJM (1998) Stimulation of scion bud release by rol gene transformed rootstocks ofRosa hybrida L. J Exp Bot 49:847–852

    Article  Google Scholar 

  • Van Huylenbroeck J, Leus L, Van Bockstaele E (2005) Interploidy crosses in roses: use of triploids. Acta Hortic 690:109–112

    Article  Google Scholar 

  • Van Huylenbroeck J, Eeckhaut T, Leus L, Werlemark G, De Riek J (2007) Introduction of wild germplasm in modern roses. Acta Hortic 751:285–290

    Article  Google Scholar 

  • Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploidRosa chinensis cv old blush. Plant Cell Tissue Organ Cult 100:73

    Article  Google Scholar 

  • Visessuwan R, Kawai T, Mii M (1997) Plant regeneration systems from leaf segment culture through embryogenic callus formation ofRosa hybrida andR. canina. Breed Sci 47:217–222

    CAS  Google Scholar 

  • von Malek B, Debener T (1998) Genetic analysis of resistance to black spot (Diplocarpon rosae) in tetraploid roses. Theor Appl Genet 96:228–231

    Article  Google Scholar 

  • Vosman B, Visser D, van der Voort JR, Smulders MJM, van Eeuwijk F (2004) The establishment of ‘essential derivation’ among rose varieties, using AFLP. Theor Appl Genet 109:1718–1725

    Article PubMed CAS  Google Scholar 

  • Vukosavljev M (2014) Towards marker assisted breeding in garden roses: from marker development to QTL detection. PhD Dissertation, Wageningen University

    Google Scholar 

  • Vukosavljev M, Arens P, Voorrips RE, Westende v ‘t, WP EG, Bourke PM, Cox P, van de Weg WE, Visser RGF, Maliepaard C, Smulders MJ (2016) High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. Hortic Res 3:16052

    Article PubMed PubMed Central CAS  Google Scholar 

  • Walther F, Sauer A (1986) In vitro mutagenesis in roses. Acta Hortic 189:37–46

    Article  Google Scholar 

  • Wang X, Jacob Y, Mastrantuono S, Bazzano J, Voisin R, Esmenjaud D (2004) Spectrum and inheritance of resistance to the root-knot nematodeMeloidogyne hapla inRosa multiflora andR. indica. Plant Breed 123:79–83

    Article  Google Scholar 

  • Werlemark G, Carlson-Nilsson U, Uggla M, Nybom H (1995) Effects of temperature treatments on seedling emergence in dogroses,Rosa sect. Caninae (L). Acta Agric Scand 45:278–282

    Google Scholar 

  • Werlemark G, Carlson-Nilsson U, Esselink GD, Nybom H (2009) Studies of intersectional crosses between pentaploid dogrose species (Rosa sect. Caninae L.) as seed parents and tetraploid garden roses as pollen donors. In: Zlesak. (ed) RosesFloriculture and ornamental biotechnology. Global Science Books Ltd., UK, Ikenobe, Japan pp 131–138

    Google Scholar 

  • Whitaker VM, Zuzek K, Hokanson SC (2007) Resistance of 12 rose genotypes to14 isolates ofDiplocarpon rosae wolf (rose blackspot) collected from eastern North America. Plant Breed 126:83–88

    Article  Google Scholar 

  • Whitaker VM, Debener T, Roberts AV, Hokanson SC (2010) A standard set ofhost differentials and unified nomenclature for an international collection ofDiplocarpon rosae races. Plant Pathol 59:745–752

    Article  Google Scholar 

  • Wissemann V (2003) Conventional taxonomy of wild roses. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier, Academic Press, Oxford, pp 111–117

    Chapter  Google Scholar 

  • Wissemann V, Ritz CM (2005) The genusRosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 andatpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot J Linn Soc 147:275–290

    Article  Google Scholar 

  • Wylie AP (1954) The history of garden roses – part I. J R Hortic Soc 79:555–571

    Google Scholar 

  • Yambe Y, Takeno K (1992) Improvement of rose achene germination by treatment with macerating enzymes. HortSci 27:1018–1020

    CAS  Google Scholar 

  • Yambe Y, Hori Y, Takeno K (1992) Levels of endogenous abscisic acid in rose achenes and leaching with activated charcoal to improve seed germination. J Japan Soc Hortic Sci 61:383–387

    Article CAS  Google Scholar 

  • Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777

    Article PubMed CAS  Google Scholar 

  • Yokoya K, Walker S, Sarasan V (1996) Regeneration of rose plants from cell and tissue culture. Acta Hortic 424:333–337

    Article  Google Scholar 

  • Yokoya K, Kandasamy KI, Walker S, Mandegaran Z, Roberts AV (2000) Resistance of roses to pathotypes ofDiplocarpon rosae. Ann Appl Biol 136:15–20

    Article  Google Scholar 

  • Young MA, Schorr P, Baer R (2007) Modern roses 12. American Rose Society, Shreveport

    Google Scholar 

  • Zakizadeh H, Lutken H, Sriskandarajah S, Serek M, Muller R (2013) Transformation of miniature potted rose (Rosa hybrida cv. Linda) with PSAG12-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Plant Cell Rep 32:195–205

    Article CAS PubMed  Google Scholar 

  • Zhang D, Germain E, Reynders-Aloisi S, Gandelin MH (2000) Development of amplified fragment length polymorphism markers for variety identification in rose. Acta Hortic 508:113–120

    Article CAS  Google Scholar 

  • Zhang LH, Byrne DH, Ballard RE, Rajapakse S (2006) Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hortic Sci 131:380–387

    Article CAS  Google Scholar 

  • Zhang X, Zhang J, Zhang W, Yang T, Xiong Y, Che D (2016) Transcriptome sequencing and de novo analysis of Rosa multiflora under cold stress. Acta Physiol Plant 38:164

    Article CAS  Google Scholar 

  • Zhou Z, Bao W, Wu N (2009) Effects of scarification, stratification and chemical treatments on the germination ofRosa soulieana Crépin achenes. In: da Silva T (ed) Floriculture and ornamental biotechnology. Global Science Books, London, pp 75–80

    Google Scholar 

  • Zieslin N (1996) Influence of climatic and socio economical factors on mode of cultivation and research of rose plants. Acta Hortic 424:21–22

    Article  Google Scholar 

  • Zlesak DC (2005) The effects of short-term drying on seed germination inRosa. HortSci 40:1931–1932

    Google Scholar 

  • Zlesak DC (2006) Rose –Rosa xhybrida. In: Anderson NO (ed) Flower breeding and genetics: issue, challenges and opportunities for the 21st century. Springer, Dordrecht

    Google Scholar 

  • Zlesak DC (2008) Warm stratification enhances germination ofRosa section Caninae species. HortSci 43:1268

    Google Scholar 

  • Zlesak DC (2009) Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species and breeding lines. In: da Silva T (ed) Floriculture and ornamental biotechnology. Global Science Books, London, pp 53–70

    Google Scholar 

  • Zlesak DC (2010) The effect of gibberellins (GA3 and GA4+7) and ethanol on seed germination ofRosa eglanteria andR. glauca. Suppl Rose Hybrid Assoc Newslett 41:1–10

    Google Scholar 

  • Zlesak DC, Thill CA, Anderson NO (2005) Trifluralin-mediated polyploidization ofRosa chinensis minima (Sims) Voss seedlings. Euphytica 141:281–290

    Article  Google Scholar 

  • Zlesak DC, Nelson R, Harp D, Villarreal B, Howell N, Griffin J, Hammond G, George S (2017) Performance of landscape roses grown with minimal input in the north-central, central, and south-Central United States. HortTechnology 27:718–730

    Article  Google Scholar 

  • Zvi MMB, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195:335–345

    Article PubMed CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the breeders for sharing their experience and viewpoint on current cut rose breeding. The author also thanks Miriam Levenson, English-language editor at ILVO, for the useful remarks about the structure of the manuscript, fair questions that needed an answer, and helpful English corrections.

Author information

Authors and Affiliations

  1. Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium

    Leen Leus, Katrijn Van Laere, Jan De Riek & Johan Van Huylenbroeck

Authors
  1. Leen Leus
  2. Katrijn Van Laere
  3. Jan De Riek
  4. Johan Van Huylenbroeck

Corresponding author

Correspondence toLeen Leus.

Editor information

Editors and Affiliations

  1. Plant Sciences Unit, Applied Genetics and Breeding, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium

    Johan Van Huylenbroeck

Rights and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leus, L., Van Laere, K., De Riek, J., Van Huylenbroeck, J. (2018). Rose. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_27

Download citation

Keywords

Publish with us

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 37751
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 47189
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 47189
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp