Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Historical Note on Brownian Motion

  • Chapter
  • First Online:

Part of the book series:Universitext ((UTX))

  • 5162Accesses

Abstract

Historically, the mathematical roots of Brownian motion lie in the central limit theorem (CLT).

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Notes

  1. 1.

    DeMoivre (1718).

  2. 2.

    Laplace, P.-S. (1878–1912).

  3. 3.

    Lyapunov, A.M. (1901). Nouvelle forme du théorème sur la limite de probabilités.Mem. Acad. Imp. Sci. St.-Petersberg12 (5), 1–24.

  4. 4.

    Lindeberg, J.W. (1922). Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung.Math. Zeitschr.15, 211–225.

  5. 5.

    Feller, W. (1935). Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung.Math. Zeitschr.40, 521–559. Also, ibid (1937),42, 301–312.

  6. 6.

    Lévy, P. (1925).

  7. 7.

    Bachelier, L. (1900). Théorie de la spéculation.Ann. Sci. École Norm. Sup.17, 21–86; also see M. Davis & A. Etheridge (2006) for an English translation with a forward by Paul Samuelson.

  8. 8.

    Brown, R. (1828). A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies.Philos. Magazine N.S.14, 161–173.

  9. 9.

    Einstein, A. (1905): Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen,Ann. der Physik,322 (8), 549560. Similar discoveries of Brownian motion were being made in Poland by the physicist Marian Smoluchoski who published his basic results in the paper von Smoluchowski, M. (1906): Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen,Ann. der Physik,326 (14), 756–780.

  10. 10.

    We have generally adapted a convention in whichD is referred to as the diffusion coefficient, however this may not be universally held.

  11. 11.

    Einstein, A. (1906). On the theory of the Brownian movement.Ann. der Physik19, 371–381. An English translation appears in F\(\ddot{r}\)uth (1954).

  12. 12.

    Jean Perrin (1990),  (French original, 1913).

  13. 13.

    Wiener, N. (1923). Differential space.J. Math. Phys.2, 131–174.

  14. 14.

    Paley, R.E.A.C., Wiener, N. and Zygmund, A. (1933). Notes on random functions.Math. Zietschr.37, 647–668.

  15. 15.

    Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory of Brownian motion.Phys. Rev.36, 823–841; reprinted in Wax (1954). Also see Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy.Rev. Modern Physics15, 2–91; reprinted in Wax (1954).

  16. 16.

    Langevin, P. (1908). Sur La théorie du movement brownien.C.R. Acad. Sci. Paris146, 530–533.

  17. 17.

    For a complete dynamical description see Nelson, E. (1967).

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Arizona, Tucson, AZ, USA

    Rabi Bhattacharya

  2. Department of Mathematics, Oregon State Univeristy, Corvallis, OR, USA

    Edward C. Waymire

Authors
  1. Rabi Bhattacharya
  2. Edward C. Waymire

Corresponding author

Correspondence toRabi Bhattacharya.

Rights and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bhattacharya, R., Waymire, E.C. (2016). A Historical Note on Brownian Motion. In: A Basic Course in Probability Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-47974-3_12

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp