Abstract
Historically, the mathematical roots of Brownian motion lie in the central limit theorem (CLT).
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 8007
- Price includes VAT (Japan)
- Softcover Book
- JPY 10009
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
DeMoivre (1718).
- 2.
Laplace, P.-S. (1878–1912).
- 3.
Lyapunov, A.M. (1901). Nouvelle forme du théorème sur la limite de probabilités.Mem. Acad. Imp. Sci. St.-Petersberg12 (5), 1–24.
- 4.
Lindeberg, J.W. (1922). Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung.Math. Zeitschr.15, 211–225.
- 5.
Feller, W. (1935). Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung.Math. Zeitschr.40, 521–559. Also, ibid (1937),42, 301–312.
- 6.
Lévy, P. (1925).
- 7.
Bachelier, L. (1900). Théorie de la spéculation.Ann. Sci. École Norm. Sup.17, 21–86; also see M. Davis & A. Etheridge (2006) for an English translation with a forward by Paul Samuelson.
- 8.
Brown, R. (1828). A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies.Philos. Magazine N.S.14, 161–173.
- 9.
Einstein, A. (1905): Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen,Ann. der Physik,322 (8), 549560. Similar discoveries of Brownian motion were being made in Poland by the physicist Marian Smoluchoski who published his basic results in the paper von Smoluchowski, M. (1906): Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen,Ann. der Physik,326 (14), 756–780.
- 10.
We have generally adapted a convention in whichD is referred to as the diffusion coefficient, however this may not be universally held.
- 11.
Einstein, A. (1906). On the theory of the Brownian movement.Ann. der Physik19, 371–381. An English translation appears in F\(\ddot{r}\)uth (1954).
- 12.
Jean Perrin (1990), (French original, 1913).
- 13.
Wiener, N. (1923). Differential space.J. Math. Phys.2, 131–174.
- 14.
Paley, R.E.A.C., Wiener, N. and Zygmund, A. (1933). Notes on random functions.Math. Zietschr.37, 647–668.
- 15.
Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory of Brownian motion.Phys. Rev.36, 823–841; reprinted in Wax (1954). Also see Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy.Rev. Modern Physics15, 2–91; reprinted in Wax (1954).
- 16.
Langevin, P. (1908). Sur La théorie du movement brownien.C.R. Acad. Sci. Paris146, 530–533.
- 17.
For a complete dynamical description see Nelson, E. (1967).
Author information
Authors and Affiliations
Department of Mathematics, University of Arizona, Tucson, AZ, USA
Rabi Bhattacharya
Department of Mathematics, Oregon State Univeristy, Corvallis, OR, USA
Edward C. Waymire
- Rabi Bhattacharya
Search author on:PubMed Google Scholar
- Edward C. Waymire
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toRabi Bhattacharya.
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Bhattacharya, R., Waymire, E.C. (2016). A Historical Note on Brownian Motion. In: A Basic Course in Probability Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-47974-3_12
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-319-47972-9
Online ISBN:978-3-319-47974-3
eBook Packages:Mathematics and StatisticsMathematics and Statistics (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative