Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

The Sacro-Iliac Joint of the Felidae and Canidae and Their Large Ungulate Prey: An Example of Divergence and Convergence

  • Chapter
  • First Online:

Part of the book series:Fascinating Life Sciences ((FLS))

  • 1886Accesses

  • 1Citation

Abstract

The aim of this chapter is to discuss the evolution of the shape of the sacroiliac joint in two carnivoran lineages (Felidae and Canidae) and their large prey (Ungulata) in the context of divergent and convergent evolution. The significant difference in the angle between the iliac wings of the pelvic girdle in the transverse plane (the interiliac angle) between the Ungulata (>100°) and both carnivoran lineages (30–40°) suggests a divergence in form that relates to the evolution of their feeding behavior over at least 75 Myrs. In the Canidae, the interiliac angle of around 40° and the inner C-shape of the iliac auricular surface congruent with the sacral auricular surface are not influenced either by locomotor nor predatory behavior. Hunting on small or large prey has had no impact on the sacroiliac joint of canids, even though solitary hunting of small prey switches to pack hunting of big prey. A hunting strategy based upon the harassment of large prey individuals could explain why the locking properties of the sacroiliac joint, determined by the interiliac angle, and the inner shape of the articular surface have not been influenced by prey selection. These joint properties are similar to those of felids that select prey with body-mass lower than their own. We suggest that the similarities recorded in canids and these felids result from convergent evolution due to prey selection even though their hunting strategies are different. In contrast, the interiliac angle is significantly smaller, and the locking properties of the joint are increased through a strong congruency of the W-shaped inner surface and the outer ridge in solitary big cats that are able to exploit prey with body mass greater than their own, These traits, resulting in a stiff sacroiliac joint, especially during recoil, are probably explained by attributes of the feeding behavior that require a sustained bite during the killing of prey. In lions, the interiliac angle is similar to that of canids, suggesting a relaxation of functional constraints relating to feeding behavior in a species in which individuals organize into social groups for pack-hunting of large prey. This chapter considers the role of divergent and convergent functional evolution of feeding strategies on the morphological traits of the sacroiliac joint that permit us to discuss the “form-function” relationship of this key articulation of the pelvic girdle in the Carnivora.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Abitbol, M. M. (1987). Evolution of the sacrum in hominoids.American Journal of Physical Anthropology, 74(1), 65–81.

    Article CAS PubMed  Google Scholar 

  • Anderson, T. M., White, S., Davis, B., Erhardt, R., Palmer, M., Swanson, A., Kosmala, M., & Packer, C. (2016). The spatial distribution of African savannah herbivores: Species associations and habitat occupancy in a landscape context.Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), 20150314.

    Article  Google Scholar 

  • Aranda, M., & Sánchez-Cordero, V. (1996). Prey spectra of jaguar (Panthera onca) and puma (Puma concolor) in tropical forests of Mexico.Studies on Neotropical Fauna and Environment, 31(2), 65–67.

    Article  Google Scholar 

  • Arnold, S. J. (1983). Morphology, performance and fitness.American Zoologist, 23(2), 347–361.

    Article  Google Scholar 

  • Ávila-Nájera, D. M., Palomares, F., Chávez, C., Tigar, B., & Mendoza, G. D. (2018). Jaguar (Panthera onca) and puma (Puma concolor) diets in Quintana Roo, Mexico.Animal Biodiversity and Conservation, 41(2), 257–266.

    Article  Google Scholar 

  • Azevedo, F. C. C., & Verdade, L. M. (2012). Predator–prey interactions: jaguar predation on caiman in a floodplain forest.Journal of Zoology, 286(3), 200–207.

    Article  Google Scholar 

  • Bagatharia, S. B., Joshi, M. N., Pandya, R. V., Pandit, A. S., Patel, R. P., Desai, S. M., Sharma, A., Panchal, O., Jasmani, F. P., & Saxena, A. K. (2013). Complete mitogenome of asiatic lion resolves phylogenetic status withinPanthera.BMC Genomics, 14(1), 1–9.

    Article  Google Scholar 

  • Bailey, I., Myatt, J. P., & Wilson, A. M. (2013). Group hunting within the Carnivora: physiological, cognitive and environmental influences on strategy and cooperation.Behavioral Ecology and Sociobiology, 67(1), 1–17.

    Article  Google Scholar 

  • Barone, R. (1986).Anatomie comparée des Mammifères domestiques, tome 2, Arthrologie et myologie (p. 1986). Vigot Freres.

    Google Scholar 

  • Beisiegel, B. d. M., & Ades, C. (2002). The behavior of the bush dog (Speothos venaticus Lund, 1842) in the field: A review.Revista de Etologia, 4(1), 17–23.

    Google Scholar 

  • Bichat, X. (1855).Traité d’anatomie descriptive Delahays.

    Google Scholar 

  • Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory.PLoS Biology, 5(2), e22.

    Article PubMed PubMed Central  Google Scholar 

  • Caro, T. (1994a).Cheetahs of the Serengeti Plains: Group living in an asocial species. University of Chicago Press.

    Google Scholar 

  • Caro, T. M. (1994b). Ungulate antipredator behaviour: Preliminary and comparative data from African bovids.Behaviour, 128(3–4), 189–228.

    Article  Google Scholar 

  • Caro, T. (2005).Antipredator defenses in birds and mammals. University of Chicago Press.

    Google Scholar 

  • Carter, R. N., Romanow, C. A., Pellis, S. M., & Lingle, S. (2019). Play for prey: Do deer fawns play to develop species-typical antipredator tactics or to prepare for the unexpected?Animal Behaviour, 156, 31–40.

    Article  Google Scholar 

  • Chinery, M., & Lambiotte, A.-F. (1983).Les prédateurs et leurs proies. Delachaux et Niestlé.

    Google Scholar 

  • Chizzola, M., Belton, L., Ganswindt, A., Greco, I., Hall, G., Swanepoel, L., & Dalerum, F. (2018). Landscape level effects of lion presence (Panthera leo) on two contrasting prey species.Frontiers in Ecology and Evolution, 6, 191.

    Article  Google Scholar 

  • Christiansen, P., & Adolfssen, J. S. (2005). Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora).Journal of Zoology, 266(2), 133–151.

    Article  Google Scholar 

  • Creel, S., & Creel, N. M. (1995). Communal hunting and pack size in African wild dogs,Lycaon pictus.Animal Behaviour, 50(5), 1325–1339.

    Article  Google Scholar 

  • Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., & Hutchinson, J. R. (2016a). The scaling of postcranial muscles in cats (Felidae) I: Forelimb, cervical, and thoracic muscles.Journal of Anatomy, 229(1), 128–141.

    Article PubMed PubMed Central  Google Scholar 

  • Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., & Hutchinson, J. R. (2016b). The scaling of postcranial muscles in cats (Felidae) II: Hindlimb and lumbosacral muscles.Journal of Anatomy, 229(1), 142–152.

    Article PubMed PubMed Central  Google Scholar 

  • Da Silveira, R., Ramalho, E. E., Thorbjarnarson, J. B., & Magnusson, W. E. (2010). Depredation by jaguars on caimans and importance of reptiles in the diet of jaguar.Journal of Herpetology, 44(3), 418–424.

    Article  Google Scholar 

  • Dalin, G., & Jeffcott, L. B. (1986a). Sacroiliac joint of the horse 1. Gross morphology.Anatomia, Histologia, Embryologia, 15(1), 80–94.

    Article CAS PubMed  Google Scholar 

  • Dalin, G., & Jeffcott, L. B. (1986b). Sacroiliac joint of the horse 2. Morphometric features.Anatomia, Histologia, Embryologia, 15(2), 97–107.

    Article CAS PubMed  Google Scholar 

  • Dar, S. A., & Khan, J. A. (2016). Food habits of dhole Cuon alpinus in tropical forests of southern India.Current Science, 111(10), 1701–1705.

    Article  Google Scholar 

  • Day, L. M., & Jayne, B. C. (2007). Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae).Journal of Experimental Biology, 210(4), 642–654.

    Article PubMed  Google Scholar 

  • de Oliveira Calleia, F., Rohe, F., & Gordo, M. (2009). Hunting strategy of the margay (Leopardus wiedii) to attract the wild pied tamarin (Saguinus bicolor).Neotropical Primates, 16(1), 32–34.

    Article  Google Scholar 

  • Derry, D. E. (1911). Note on accessory articular facets between the sacrum and ilium, and their significance.Journal of Anatomy and Physiology, 45(Pt 3), 202.

    CAS PubMed PubMed Central  Google Scholar 

  • Eaton, R. L. (1969). Cooperative hunting by cheetahs and jackals and a theory of domestication of the dog.Mammalia, 33(1), 87–92.

    Article  Google Scholar 

  • Eisenberg, C. (2014). Jaguar (Panthera onca). In:The carnivore way. Springer, 217–240.

    Google Scholar 

  • Erichsen, C., Berger, M., & Eksell, P. (2002). The scintigraphic anatomy of the equine sacroiliac joint.Veterinary Radiology and Ultrasound, 43(3), 287–292.

    Article PubMed  Google Scholar 

  • Everitt, B. S., & Dunn, G. (2001).Applied multivariate data analysis. Wiley Online Library.

    Google Scholar 

  • Figueirido, B., Pérez-Claros, J. A., Hunt, R. M., Jr., & Palmqvist, P. (2011). Body mass estimation in amphicyonid carnivoran mammals: A multiple regression approach from the skull and skeleton.Acta Palaeontologica Polonica, 56(2), 225–246.

    Article  Google Scholar 

  • Flores, J. S. P. (2018). Predation of an adult female Morelet’s crocodile (Crocodylus moreletii) by a jaguar (Panthera onca) in the Calakmul region, Mexico.Herpetology Notes, 11, 613–616.

    Google Scholar 

  • Garland, T., & Janis, C. M. (1993). Does metatarsal/femur ratio predict maximal running speed in cursorial mammals?Journal of Zoology, 229(1), 133–151.

    Article  Google Scholar 

  • Gittleman, J. L. (1985). Carnivore body size: ecological and taxonomic correlates.Oecologia, 67(4), 540–554.

    Article PubMed  Google Scholar 

  • Gittleman, J. L. (1989).Carnivore group living: Comparative trends. In: Carnivore behavior, ecology, and evolution (pp. 183–207). Springer.

    Google Scholar 

  • Gompper, M. E., & Vanak, A. T. (2006). Vulpes bengalensis.Mammalian Species, 2006, 1–5.

    Article  Google Scholar 

  • Gonyea, W. J. (1978). Functional implications of felid forelimb anatomy.Cells, Tissues, Organs, 102(2), 111–121.

    Article CAS  Google Scholar 

  • Gonyea, W., & Ashworth, R. (1975). The form and function of retractile claws in the Felidae and other representative carnivorans.Journal of Morphology, 145(2), 229–238.

    Article CAS PubMed  Google Scholar 

  • Hartstone-Rose, A., Perry, J. M., & Morrow, C. J. (2012). Bite force estimation and the fiber architecture of felid masticatory muscles.The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(8), 1336–1351.

    Article PubMed  Google Scholar 

  • Hassanin, A., Veron, G., Ropiquet, A., Jansen van Vuuren, B., Lécu, A., Goodman, S. M., Haider, J., & Nguyen, T. T. (2021). Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes.PLoS One, 16(2), e0240770.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Hayward, M. W., Lyngdoh, S., & Habib, B. (2014). Diet and prey preferences of dholes (Cuon alpinus): Dietary competition within Asia’s apex predator guild.Journal of Zoology, 294(4), 255–266.

    Article  Google Scholar 

  • Hubel, T. Y., Myatt, J. P., Jordan, N. R., Dewhirst, O. P., McNutt, J. W., & Wilson, A. M. (2016). Additive opportunistic capture explains group hunting benefits in African wild dogs.Nature Communications, 7, 11033.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Hudson, P. E., Corr, S. A., & Wilson, A. M. (2012). High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): Spatio-temporal and kinetic characteristics.Journal of Experimental Biology, 215(14), 2425–2434.

    Article PubMed  Google Scholar 

  • Iwaniuk, A. N., Pellis, S. M., & Whishaw, I. Q. (1999). The relationship between forelimb morphology and behaviour in North American carnivores (Carnivora).Canadian Journal of Zoology, 77(7), 1064–1074.

    Article  Google Scholar 

  • Janis, C. M., & Figueirido, B. (2014). Forelimb anatomy and the discrimination of the predatory behavior of carnivorous mammals: the thylacine as a case study.Journal of Morphology, 275(12), 1321–1338.

    Article PubMed  Google Scholar 

  • Jesse, M. K., Kleck, C., Williams, A., Petersen, B., Glueck, D., Lind, K., & Patel, V. (2017). 3D Morphometric analysis of normal sacroiliac joints: A new classification of surface shape variation and the potential implications in pain syndromes.Pain Physician, 20.

    Google Scholar 

  • Kardong, K. V. (2015).Vertebrates: Comparative anatomy, function, evolution. McGraw-Hill.

    Google Scholar 

  • Karenina, K., & Giljov, A. (2018). Mother and offspring lateralized social behavior across mammalian species.Progress in Brain Research, 238, 115–141.

    Article PubMed  Google Scholar 

  • Kim, S., Cho, Y. S., Kim, H.-M., Chung, O., Kim, H., Jho, S., Seomun, H., Kim, J., Bang, W. Y., & Kim, C. (2016). Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly.Genome Biology, 17(1), 1–12.

    Article CAS  Google Scholar 

  • Kitchener, A. C., Van Valkenburgh, B., Yamaguchi, N., Macdonald, D. W., & Loveridge, A. J. (2010). Felid form and function.Biology and Conservation of Wild Felids, 2010, 83–106.

    Google Scholar 

  • Kleiman, D. G. (1972). Social behavior of the maned wolf (Chrysocyon brachyurus) and bush dog (Speothos venaticus): a study in contrast.Journal of Mammalogy, 53(4), 791–806.

    Article  Google Scholar 

  • Kleiman, D. G., & Eisenberg, J. F. (1973). Comparisons of canid and felid social systems from an evolutionary perspective.Animal Behaviour, 21(4), 637–659.

    Article CAS PubMed  Google Scholar 

  • Kröschel, M., Reineking, B., Werwie, F., Wildi, F., & Storch, I. (2017). Remote monitoring of vigilance behavior in large herbivores using acceleration data.Animal Biotelemetry, 5(1), 10.

    Article  Google Scholar 

  • Lewton, K. L., Brankovic, R., Byrd, W. A., Cruz, D., Morales, J., & Shin, S. (2020). The effects of phylogeny, body size, and locomotor behavior on the three-dimensional shape of the pelvis in extant carnivorans.PeerJ, 8, e8574.

    Article PubMed PubMed Central  Google Scholar 

  • Liebenberg, L. (2006). Persistence hunting by modern hunter-gatherers.Current Anthropology, 47(6), 1017–1026.

    Article  Google Scholar 

  • MacDonald, D. W. (1983). The ecology of carnivore social behaviour.Nature, 301(5899), 379.

    Article  Google Scholar 

  • MacDonald, D. (2009).The encyclopedia of mammals. Oxford University Prss.

    Google Scholar 

  • MacNulty, D. R., Mech, L. D., & Smith, D. W. (2007). A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf.Journal of Mammalogy, 88(3), 595–605.

    Article  Google Scholar 

  • Makacha, S., & Schaller, G. B. (1969). Observations on lions in the lake Manyara National Park, Tanzania.African Journal of Ecology, 7(1), 99–103.

    Article  Google Scholar 

  • Marshall, C.D., & Pyenson, N.D. (2019). Feeding in aquatic mammals: An evolutionary and functional approach. In:Feeding in vertebrates (pp. 743–785). Springer.

    Google Scholar 

  • Martín-Serra, A., Figueirido, B., & Palmqvist, P. (2014). A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb.BMC Evolutionary Biology, 14(1), 129.

    Article PubMed PubMed Central  Google Scholar 

  • Martín-Serra, A., Figueirido, B., & Palmqvist, P. (2016). In the pursuit of the predatory behavior of Borophagines (Mammalia, Carnivora, Canidae): Inferences from forelimb morphology.Journal of Mammalian Evolution, 23(3), 237–249.

    Article  Google Scholar 

  • Meachen-Samuels, J. (2010). Comparative scaling of humeral cross-sections of felids and canids using radiographic images.Journal of Mammalian Evolution, 17(3), 193–209.

    Article  Google Scholar 

  • Meachen-Samuels, J., & Van Valkenburgh, B. (2009). Forelimb indicators of prey-size preference in the Felidae.Journal of Morphology, 270(6), 729–744.

    Article PubMed  Google Scholar 

  • Meachen-Samuels, J. A., & Van Valkenburgh, B. (2010). Radiographs reveal exceptional forelimb strength in the sabertooth cat,Smilodon fatalis.PLoS one, 5(7), e11412.

    Article PubMed PubMed Central  Google Scholar 

  • Meloro, C., Elton, S., Louys, J., Bishop, L. C., & Ditchfield, P. (2013). Cats in the forest: Predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora) Morphometric habitat-adaptation.Paleobiology, 39(3), 323–344.

    Article  Google Scholar 

  • Meloro, C., Clauss, M., & Raia, P. (2015). Ecomorphology of Carnivora challenges convergent evolution.Organisms Diversity and Evolution, 15(4), 711–720.

    Article  Google Scholar 

  • Michaud, M., Veron, G., & Fabre, A.-C. (2020). Phenotypic integration in feliform carnivores: Covariation patterns and disparity in hypercarnivores versus generalists.Evolution, 2020.

    Google Scholar 

  • Montuelle, S. J., & Kane, E. A. (2019). Food capture in vertebrates: A complex integrative performance of the cranial and postcranial systems. In V. Bels & I. Wishaw (Eds.),Feeding in vertebrates (pp. 71–137). Springer.

    Chapter  Google Scholar 

  • Mukherjee, S., & Heithaus, M. R. (2013). Dangerous prey and daring predators: a review.Biological Reviews, 88(3), 550–563.

    Article PubMed  Google Scholar 

  • Muro, C., Escobedo, R., Spector, L., & Coppinger, R. P. (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations.Behavioural Processes, 88(3), 192–197.

    Article CAS PubMed  Google Scholar 

  • Nishida, A. H., & Ochman, H. (2018). Rates of gut microbiome divergence in mammals.Molecular Ecology, 27(8), 1884–1897.

    Article PubMed PubMed Central  Google Scholar 

  • Nowak, R., Porter, R. H., Lévy, F., Orgeur, P., & Schaal, B. (2000). Role of mother-young interactions in the survival of offspring in domestic mammals.Reviews of Reproduction, 5(3), 153–163.

    Article CAS PubMed  Google Scholar 

  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., & Morrison, J. C. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity.Bioscience, 51(11), 933–938.

    Article  Google Scholar 

  • Pallandre, J.-P., Cornette, R., Placide, M.-A., Pelle, E., Lavenne, F., Abad, V., Ribaud, M., & Bels, V. L. (2020). Iliac auricular surface morphofunctional study in Felidae.Zoology, 138, 125714.

    Article PubMed  Google Scholar 

  • Pallandre, J.-P., Lavenne, F., Pellé, E., Breton, G., Ribaud, M., & Bels, V. (2021). Variation in the sacroiliac joint in Felidae.PeerJ, 9, e11116.

    Article PubMed PubMed Central  Google Scholar 

  • Palmeira, F. B., Crawshaw, P. G., Jr., Haddad, C. M., Ferraz, K. M. P., & Verdade, L. M. (2008). Cattle depredation by puma (Puma concolor) and jaguar (Panthera onca) in central-western Brazil.Biological conservation, 141(1), 118–125.

    Article  Google Scholar 

  • Pucora, E., Schiffmann, C., & Clauss, M. (2019). Resting postures in terrestrial mammalian herbivores.Journal of Mammalogy, 100(2), 552–563.

    Article  Google Scholar 

  • Pulliam, H. R., & Caraco, T. (1984). Living in groups: Is there an optimal group size.Behavioural ecology: An evolutionary approach, 2, 122–147.

    Google Scholar 

  • Radloff, F. G. T., & Du Toit, J. T. (2004). Large predators and their prey in a southern African savanna: A predator’s size determines its prey size range.Journal of Animal Ecology, 73(3), 410–423.

    Article  Google Scholar 

  • Randau, M., & Goswami, A. (2017). Morphological modularity in the vertebral column of Felidae (Mammalia, Carnivora).BMC Evolutionary Biology, 17(1), 133.

    Article PubMed PubMed Central  Google Scholar 

  • Randau, M., & Goswami, A. (2018). Shape covariation (or the lack thereof) between vertebrae and other skeletal traits in felids: the whole is not always greater than the sum of parts.Evolutionary Biology, 45(2), 196–210.

    Article PubMed  Google Scholar 

  • Randau, M., Goswami, A., Hutchinson, J. R., Cuff, A. R., & Pierce, S. E. (2016). Cryptic complexity in felid vertebral evolution: Shape differentiation and allometry of the axial skeleton.Zoological Journal of the Linnean Society, 178(1), 183–202.

    Article  Google Scholar 

  • Rodríguez-Alba, J. J., Linares-Matás, G., & Yravedra, J. (2019). First assessments of the taphonomic behaviour of jaguar (Panthera onca).Quaternary International, 517, 88–96.

    Article  Google Scholar 

  • Romer, A. S. (1950).The vertebrate body. WB Saunders Company.

    Google Scholar 

  • Samuels, J. X., Meachen, J. A., & Sakai, S. A. (2013). Postcranial morphology and the locomotor habits of living and extinct carnivorans.Journal of Morphology, 274(2), 121–146.

    Article PubMed  Google Scholar 

  • Schaller, G. B. (2009).The Serengeti lion: a study of predator-prey relations. University of Chicago Press.

    Google Scholar 

  • Schaller, G. B., & Vasconcelos, J. M. C. (1978). Jaguar predation on capybara.Z. Säugetierk, 43, 296–301.

    Google Scholar 

  • Scheel, D. (1993). Profitability, encounter rates, and prey choice of African lions.Behavioral Ecology, 4(1), 90–97.

    Article  Google Scholar 

  • Scheel, D., & Packer, C. (1991). Group hunting behaviour of lions: A search for cooperation.Animal Behaviour, 41(4), 697–709.

    Article  Google Scholar 

  • Schwab, J. A., Kriwet, J., Weber, G. W., & Pfaff, C. (2019). Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry.Scientific Reports, 9(1), 1–9.

    Article CAS  Google Scholar 

  • Sheldon, J. W. (2013).Wild dogs: The natural history of the nondomestic Canidae. Elsevier.

    Google Scholar 

  • Sicuro, F. L., & Oliveira, L. F. B. (2011). Skull morphology and functionality of extant Felidae (Mammalia: Carnivora): A phylogenetic and evolutionary perspective.Zoological Journal of the Linnean Society, 161(2), 414–462.

    Article  Google Scholar 

  • Skogland, T. (1991). What are the effects of predators on large ungulate populations?Oikos, 1991, 401–411.

    Article  Google Scholar 

  • Slater, G. J., & Friscia, A. R. (2019). Hierarchy in adaptive radiation: A case study using the Carnivora (Mammalia).Evolution, 73(3), 524–539.

    Article PubMed  Google Scholar 

  • Smith, J. M., & Savage, R. J. (1956). Some locomotory adaptations in mammals.Zoological Journal of the Linnean Society, 42(288), 603–622.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1981).Biometry. The principles and practice of statistics in biological research, 1981.

    Google Scholar 

  • Song, S., Liu, L., Edwards, S. V., & Wu, S. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model.Proceedings of the National Academy of Sciences, 109(37), 14942–14947.

    Article CAS  Google Scholar 

  • Springer, M. S., Foley, N. M., Brady, P. L., Gatesy, J., & Murphy, W. J. (2019). Evolutionary models for the diversification of placental mammals across the KPg boundary.Frontiers in Genetics, 10, 1241.

    Article PubMed PubMed Central  Google Scholar 

  • Stander, P. E. (1992). Cooperative hunting in lions: The role of the individual.Behavioral Ecology and Sociobiology, 29(6), 445–454.

    Article  Google Scholar 

  • Stanton, L. A., Sullivan, M. S., & Fazio, J. M. (2015). A standardized ethogram for the Felidae: A tool for behavioral researchers.Applied Animal Behaviour Science, 173, 3–16.

    Article  Google Scholar 

  • Sunquist, M., & Sunquist, F. (2017).Wild cats of the world. University of Chicago Press.

    Google Scholar 

  • Taylor, M. E. (1989). Locomotor adaptations by carnivores. In:Carnivore behavior, ecology, and evolution (382–409). Springer.

    Google Scholar 

  • Taylor, C. R., Schmidt-Nielsen, K., Dmi’el, R., & Fedak, M. (1971). Effect of hyperthermia on heat balance during running in the African hunting dog.American Journal of Physiology-Legacy Content, 220(3), 823–827.

    Article CAS  Google Scholar 

  • Taylor, C. R., Shkolnik, A., Dmi’el, R., Baharav, D., & Borut, A. (1974). Running in cheetahs, gazelles, and goats: Energy cost and limb configuration.American Journal of Physiology-Legacy Content, 227(4), 848–850.

    Article CAS  Google Scholar 

  • Van Valkenburgh, B. (1996). Feeding behavior in free-ranging, large African carnivores.Journal of Mammalogy, 77(1), 240–254.

    Article  Google Scholar 

  • Van Valkenburgh, B. (2007). Déjà vu: The evolution of feeding morphologies in the Carnivora.Integrative and Comparative Biology, 47(1), 147–163.

    Article PubMed  Google Scholar 

  • Van Valkenburgh, B., Pang, B., Bird, D., Curtis, A., Yee, K., Wysocki, C., & Craven, B. A. (2014). Respiratory and olfactory turbinals in feliform and caniform carnivorans: The influence of snout length.The Anatomical Record, 297(11), 2065–2079.

    Article PubMed  Google Scholar 

  • Vander Linden, A., & Dumont, E. R. (2019). Intraspecific male combat behaviour predicts morphology of cervical vertebrae in ruminant mammals.Proceedings of the Royal Society B, 286(1915), 20192199.

    Article PubMed PubMed Central  Google Scholar 

  • Venter, J. A., Vermeulen, M. M., & Brooke, C. F. (2019). Feeding ecology of large browsing and grazing herbivores. In:The ecology of browsing and grazing II (127–153). Springer.

    Google Scholar 

  • Viranta, S., Lommi, H., Holmala, K., & Laakkonen, J. (2016). Musculoskeletal anatomy of the Eurasian lynx,Lynx lynx (Carnivora: Felidae) forelimb: Adaptations to capture large prey?Journal of Morphology, 277(6), 753–765.

    Article PubMed  Google Scholar 

  • Whishaw, I. Q., & Karl, J. M. (2019). The evolution of the hand as a tool in feeding behavior: The multiple motor channel theory of hand use. In V. Bels & I. Wishaw (Eds.),Feeding in vertebrates (pp. 159–186). Springer.

    Chapter  Google Scholar 

  • Wible, J. R., Rougier, G. W., Novacek, M. J., & Asher, R. J. (2007). Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary.Nature, 447(7147), 1003–1006.

    Article CAS PubMed  Google Scholar 

  • Williams, S. H. (2019). Feeding in mammals: Comparative, experimental, and evolutionary insights on form and function. In V. L. Bels & I. Wishaw (Eds.),Feeding in vertebrates (pp. 695–742). Springer.

    Chapter  Google Scholar 

  • Wilson, A. M., Hubel, T. Y., Wilshin, S. D., Lowe, J. C., Lorenc, M., Dewhirst, O. P., Bartlam-Brooks, H. L., Diack, R., Bennitt, E., & Golabek, K. A. (2018). Biomechanics of predator–prey arms race in lion, zebra, cheetah and impala.Nature, 554(7691), 183.

    Article CAS PubMed  Google Scholar 

  • Winslow, J. B. (1732).Exposition anatomique de la structure du corps humain chez. Guillaume Desprez et Jean Desessartz.

    Google Scholar 

  • Wroe, S., McHenry, C., & Thomason, J. (2005). Bite club: Comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa.Proceedings of the Royal Society of London B: Biological Sciences, 272(1563), 619–625.

    Google Scholar 

  • Wroe, S., Lowry, M. B., & Anton, M. (2008). How to build a mammalian super-predator.Zoology, 111(3), 196–203.

    Article PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following for financial support of this study (2014–2018): (i) ATMs—Muséum national d’Histoire naturelle 2013–2015 “Formes possibles, Formes réalisées…” (Dir: Pr Vincent Bels & Pr Pierre-Henri Gouyon), and (ii) UMR 7205 (Dir: Dr. Philippe Grancolas). We are grateful to Pr Luc Zimmer who allowed us to use the “Centre d’Etude et de Recherche multimodale en imagerie du Vivant” (CERMEP, CNRS – INSB) for all of the CT-scans employed in this study, and to Franck Lamberton for his help and coordination with the platform. This study was assisted by Marie-Ange Pierre who worked as a technician in the FORCE team (UMR7205) during data collection. Many thanks to Roland Simon and Patrick Roux for allowing us to photograph mammals during feeding at the “Réserve Zoologique de la Haute-Touche” (MNHN, Obterre, France). Warm thanks to Anthony Russell for reviewing this chapter. The specimen samples are held in the “Mammifères et Oiseaux” collection at the Museum national d’Histoire naturelle in Paris (MNHN). A list of specimens is available fromjeanpierre.pallandre@wanadoo.fr

Authors Contribution

JPP conducted the study and wrote the paper. FL generated the CT-scans. EP provided the support and help needed to work with the collections of the Museum. KO organized the mammals feeding protocols. VB participated the study and wrote the paper.

Author information

Authors and Affiliations

  1. Institute of Systematics, Evolution, Biodiversity, ISYEB – UMR 7205 – CNRS/MNHN/EPHE/UA, National Museum of Natural History, Sorbonne University, Paris, France

    Jean-Pierre Pallandre & Vincent L. Bels

  2. CNRS, INSB, Centre d’Etude et de Recherche Multimodale Et Pluridisciplinaire en Imagerie du Vivant, Bron, France

    Franck Lavenne

  3. Sorbonne Université, Muséum National d’Histoire Naturelle, Direction des Collections, Plateforme de Préparation Ostéologique, Paris, France

    Eric Pellé

  4. Réserve Zoologique de la Haute Touche, Muséum national d’Histoire Naturelle, Obterre, France

    Katia Ortiz

Authors
  1. Jean-Pierre Pallandre
  2. Franck Lavenne
  3. Eric Pellé
  4. Katia Ortiz
  5. Vincent L. Bels

Editor information

Editors and Affiliations

  1. Institute of Systematics, Evolution, Biodiversity, ISYEB – UMR 7205 – CNRS/MNHN/EPHE/UA, National Museum of Natural History, Sorbonne University, Paris, France

    Vincent L. Bels

  2. Department of Biological Sciences, University of Calgary, Calgary, AB, Canada

    Anthony P. Russell

Appendices

Appendix 1: Geometric Calculation to Determine the Topography of the Articular Surface (Figs.5.12,5.16 and5.17)

For the representative canid and felid species, for each iliac auricular surface, we define the plane including landmark 2 (Pt2(x2, y2, z2)), landmark 3 (Pt3(x3, y3, z3)) and landmark 4 (Pt4(x4, y4, z4)).

We consider Pt3 to be the origin of the new coordinate system.

Vectors\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}2} \) = (Pt2- Pt3) and\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}4} \) = (Pt4- Pt3) are calculated as follows:

$$ \overrightarrow{\mathrm{Pt}3\mathrm{Pt}2}\left({\mathrm{x}}_{32},{\mathrm{y}}_{32},{\mathrm{z}}_{32}\right) $$

where x32 = x2- x3

y32 = y2- y3

z32 = z2- z3

$$ \overrightarrow{\mathrm{Pt}3\mathrm{Pt}4}\left({\mathrm{x}}_{34},{\mathrm{y}}_{34},{\mathrm{z}}_{34}\right) $$

where x34 = x4- x3

y34 = y4- y3

z34 = z4- z3

We calculated the coordinates (X, Y, Z) of a vector\( \overrightarrow{\mathrm{V}} \) normal to vectors\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}2} \) and\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}4} \):

$$ \mathrm{X}={\mathrm{y}}_{32}{\mathrm{z}}_{34}\hbox{--} {\mathrm{z}}_{32}{\mathrm{y}}_{34} $$
$$ \mathrm{Y}={\mathrm{z}}_{32}{\mathrm{x}}_{34}\hbox{--} {\mathrm{x}}_{32}{\mathrm{z}}_{34} $$
$$ \mathrm{Z}={\mathrm{x}}_{32}{\mathrm{y}}_{34}\hbox{--} {\mathrm{y}}_{32}{\mathrm{x}}_{34} $$

In order to find the coordinates (Xn, Yn, Zn) of this normalized vector\( \overrightarrow{\mathrm{Vn}} \) we first have to calculate its length (L):

$$ \mathrm{L}=\sqrt{{\mathrm{X}}^2+{\mathrm{Y}}^2+{\mathrm{Z}}^2} $$

The coordinates of\( \overrightarrow{\mathrm{Vn}} \) orthonormal to the plan are calculated:

$$ {\mathrm{X}}_{\mathrm{n}}=\mathrm{X}:\mathrm{L} $$
$$ {\mathrm{Y}}_{\mathrm{n}}=\mathrm{Y}:\mathrm{L} $$
$$ {\mathrm{Z}}_{\mathrm{n}}=\mathrm{Y}:\mathrm{L} $$

The distance (d) of each point (n, m, p) from the plane that includes Pt2, Pt3 and Pt4 is given by the equation:

$$ \mathrm{d}=\left(\mathrm{n}\hbox{--} {\mathrm{x}}_3\right)\ {\mathrm{X}}_{\mathrm{n}}+\left(\mathrm{m}\hbox{--} {\mathrm{y}}_3\right)\ {\mathrm{Y}}_{\mathrm{n}}+\left(\mathrm{p}\hbox{--} {\mathrm{z}}_3\right)\ {\mathrm{Z}}_{\mathrm{n}} $$

To compare the distance of each point to the plane within various sized auricular surfaces, the relative distance of each point from the plane was given in percentage (d%) of the distance of landmark 1 (d1) from the plane. Landmark 1 is selected because it is the most dorsal point of each articulation regardless of their size and shape. For each landmark, d% is given by:

$$ {\mathrm{d}}_{\%}=\left(\mathrm{d}:{\mathrm{d}}_1\right)100 $$

d% measures the difference in level of each landmark relative to the plane that includes landmarks 2, 3 and 4. According to our calculation d% = 0 for landmarks 2, 3 and 4 and d% = 100 for landmark 1.

Appendix 2: Data Set Used for the Study of the Interiliac Angle (Fig.5.4; Tables5.2 and5.3)

Species

Number of specimens

Locomotor classa

Hunting strategyb

Body mass (kg)c

Acinonyx jubatus

7

Cursorial

Solitary

53.5

Felis silvestris

2

Scansorial

Solitary

5.5

Leopardus wiedii

1

Arboreal

Solitary

3.3

Leptailurus serval

1

Terrestrial

Solitary

13.4

Lynx canadensis

2

Terrestrial

Solitary

11.2

Lynx rufus

2

Scansorial

Solitary

11.2

Neofelis nebulosa

1

Arboreal

Solitary

19.5

Panthera leo

13

Terrestrial

Pack

185.0

Panthera onca

5

Scansorial

Solitary

105.7

Panthera pardus

13

Scansorial

Solitary

59.0

Panthera tigris

10

Terrestrial

Solitary

185.5

Panthera uncia

2

Scansorial

Solitary

50.0

  1. aSamuels et al. (2013)
  2. bSunquist and Sunquist (2017)
  3. cSicuro and Oliveira (2011)

Appendix 3: Data set for the Felidae Used for the SIJ Topographic Study (Figs.5.5,5.13,5.14,5.15,5.16, and5.17; Table5.4)

Species

Number of specimens

Body mass (kg)(1)

Locomotor class(2)

Habitat(3)

MPM/PBM(1) classes

Foraging strategy(3)(4)

Hunting strategy(3)

Bite(5)(6)(7)

Acinonyx jubatus

7

53.5

Cursorial

Savannah

2 (1.0)

Pursuit

Solitary

Suffocation

Felis silvestris

6

5.5

Scansorial

Forest

3 (0.7)

Ambush

Solitary

Spine

Leptailurus serval

2

13.4

Terrestrial

Savannah

3 (0.4)

Pursuit

Solitary

Spine

Lynx canadensis

2

11.2

Terrestrial

Forest

2 (1.2)

Ambush

Solitary

Spine

Lynx rufus

3

11.2

Scansorial

Forest

1 (2.4)

Ambush

Solitary

Spine

Neofelis nebulosa

2

19.5

Arboreal

Forest

1 (2.7)

Ambush

Solitary

Suffocation

Panthera leo

14

185.0

Terrestrial

Savannah

1 (2.3)

Pursuit

Pack

Suffocation

Panthera onca

5

105.7

Scansorial

Forest

1 (2.0)

Ambush

Solitary

Back of skull

Panthera pardus

12

59.0

Scansorial

Savannah

1 (2.0)

Ambush

Solitary

Suffocation

Panthera tigris

11

185.5

Terrestrial

Forest

1 (2.7)

Ambush

Solitary

Suffocation

Panthera uncia

2

50.0

Scansorial

Mountain

1 (1.9)

Pursuit

Solitary

Suffocation

Puma concolor

2

67.5

Scansorial

Forest

2 (1.7)

Ambush

Solitary

Suffocation

  1. aSicuro and Oliveira (2011)
  2. bSamuels et al. (2013)
  3. cSunquist and Sunquist (2017)
  4. dMacNulty et al. (2007)
  5. eKitchener et al. (2010)
  6. fSchaller and Vasconcelos (1978)
  7. gPalmeira et al. (2008)

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pallandre, JP., Lavenne, F., Pellé, E., Ortiz, K., Bels, V.L. (2023). The Sacro-Iliac Joint of the Felidae and Canidae and Their Large Ungulate Prey: An Example of Divergence and Convergence. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_5

Download citation

Keywords

Publish with us

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp