Part of the book series:Fascinating Life Sciences ((FLS))
1886Accesses
1Citation
Abstract
The aim of this chapter is to discuss the evolution of the shape of the sacroiliac joint in two carnivoran lineages (Felidae and Canidae) and their large prey (Ungulata) in the context of divergent and convergent evolution. The significant difference in the angle between the iliac wings of the pelvic girdle in the transverse plane (the interiliac angle) between the Ungulata (>100°) and both carnivoran lineages (30–40°) suggests a divergence in form that relates to the evolution of their feeding behavior over at least 75 Myrs. In the Canidae, the interiliac angle of around 40° and the inner C-shape of the iliac auricular surface congruent with the sacral auricular surface are not influenced either by locomotor nor predatory behavior. Hunting on small or large prey has had no impact on the sacroiliac joint of canids, even though solitary hunting of small prey switches to pack hunting of big prey. A hunting strategy based upon the harassment of large prey individuals could explain why the locking properties of the sacroiliac joint, determined by the interiliac angle, and the inner shape of the articular surface have not been influenced by prey selection. These joint properties are similar to those of felids that select prey with body-mass lower than their own. We suggest that the similarities recorded in canids and these felids result from convergent evolution due to prey selection even though their hunting strategies are different. In contrast, the interiliac angle is significantly smaller, and the locking properties of the joint are increased through a strong congruency of the W-shaped inner surface and the outer ridge in solitary big cats that are able to exploit prey with body mass greater than their own, These traits, resulting in a stiff sacroiliac joint, especially during recoil, are probably explained by attributes of the feeding behavior that require a sustained bite during the killing of prey. In lions, the interiliac angle is similar to that of canids, suggesting a relaxation of functional constraints relating to feeding behavior in a species in which individuals organize into social groups for pack-hunting of large prey. This chapter considers the role of divergent and convergent functional evolution of feeding strategies on the morphological traits of the sacroiliac joint that permit us to discuss the “form-function” relationship of this key articulation of the pelvic girdle in the Carnivora.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 16015
- Price includes VAT (Japan)
- Hardcover Book
- JPY 20019
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Abitbol, M. M. (1987). Evolution of the sacrum in hominoids.American Journal of Physical Anthropology, 74(1), 65–81.
Anderson, T. M., White, S., Davis, B., Erhardt, R., Palmer, M., Swanson, A., Kosmala, M., & Packer, C. (2016). The spatial distribution of African savannah herbivores: Species associations and habitat occupancy in a landscape context.Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), 20150314.
Aranda, M., & Sánchez-Cordero, V. (1996). Prey spectra of jaguar (Panthera onca) and puma (Puma concolor) in tropical forests of Mexico.Studies on Neotropical Fauna and Environment, 31(2), 65–67.
Arnold, S. J. (1983). Morphology, performance and fitness.American Zoologist, 23(2), 347–361.
Ávila-Nájera, D. M., Palomares, F., Chávez, C., Tigar, B., & Mendoza, G. D. (2018). Jaguar (Panthera onca) and puma (Puma concolor) diets in Quintana Roo, Mexico.Animal Biodiversity and Conservation, 41(2), 257–266.
Azevedo, F. C. C., & Verdade, L. M. (2012). Predator–prey interactions: jaguar predation on caiman in a floodplain forest.Journal of Zoology, 286(3), 200–207.
Bagatharia, S. B., Joshi, M. N., Pandya, R. V., Pandit, A. S., Patel, R. P., Desai, S. M., Sharma, A., Panchal, O., Jasmani, F. P., & Saxena, A. K. (2013). Complete mitogenome of asiatic lion resolves phylogenetic status withinPanthera.BMC Genomics, 14(1), 1–9.
Bailey, I., Myatt, J. P., & Wilson, A. M. (2013). Group hunting within the Carnivora: physiological, cognitive and environmental influences on strategy and cooperation.Behavioral Ecology and Sociobiology, 67(1), 1–17.
Barone, R. (1986).Anatomie comparée des Mammifères domestiques, tome 2, Arthrologie et myologie (p. 1986). Vigot Freres.
Beisiegel, B. d. M., & Ades, C. (2002). The behavior of the bush dog (Speothos venaticus Lund, 1842) in the field: A review.Revista de Etologia, 4(1), 17–23.
Bichat, X. (1855).Traité d’anatomie descriptive Delahays.
Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory.PLoS Biology, 5(2), e22.
Caro, T. (1994a).Cheetahs of the Serengeti Plains: Group living in an asocial species. University of Chicago Press.
Caro, T. M. (1994b). Ungulate antipredator behaviour: Preliminary and comparative data from African bovids.Behaviour, 128(3–4), 189–228.
Caro, T. (2005).Antipredator defenses in birds and mammals. University of Chicago Press.
Carter, R. N., Romanow, C. A., Pellis, S. M., & Lingle, S. (2019). Play for prey: Do deer fawns play to develop species-typical antipredator tactics or to prepare for the unexpected?Animal Behaviour, 156, 31–40.
Chinery, M., & Lambiotte, A.-F. (1983).Les prédateurs et leurs proies. Delachaux et Niestlé.
Chizzola, M., Belton, L., Ganswindt, A., Greco, I., Hall, G., Swanepoel, L., & Dalerum, F. (2018). Landscape level effects of lion presence (Panthera leo) on two contrasting prey species.Frontiers in Ecology and Evolution, 6, 191.
Christiansen, P., & Adolfssen, J. S. (2005). Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora).Journal of Zoology, 266(2), 133–151.
Creel, S., & Creel, N. M. (1995). Communal hunting and pack size in African wild dogs,Lycaon pictus.Animal Behaviour, 50(5), 1325–1339.
Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., & Hutchinson, J. R. (2016a). The scaling of postcranial muscles in cats (Felidae) I: Forelimb, cervical, and thoracic muscles.Journal of Anatomy, 229(1), 128–141.
Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., & Hutchinson, J. R. (2016b). The scaling of postcranial muscles in cats (Felidae) II: Hindlimb and lumbosacral muscles.Journal of Anatomy, 229(1), 142–152.
Da Silveira, R., Ramalho, E. E., Thorbjarnarson, J. B., & Magnusson, W. E. (2010). Depredation by jaguars on caimans and importance of reptiles in the diet of jaguar.Journal of Herpetology, 44(3), 418–424.
Dalin, G., & Jeffcott, L. B. (1986a). Sacroiliac joint of the horse 1. Gross morphology.Anatomia, Histologia, Embryologia, 15(1), 80–94.
Dalin, G., & Jeffcott, L. B. (1986b). Sacroiliac joint of the horse 2. Morphometric features.Anatomia, Histologia, Embryologia, 15(2), 97–107.
Dar, S. A., & Khan, J. A. (2016). Food habits of dhole Cuon alpinus in tropical forests of southern India.Current Science, 111(10), 1701–1705.
Day, L. M., & Jayne, B. C. (2007). Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae).Journal of Experimental Biology, 210(4), 642–654.
de Oliveira Calleia, F., Rohe, F., & Gordo, M. (2009). Hunting strategy of the margay (Leopardus wiedii) to attract the wild pied tamarin (Saguinus bicolor).Neotropical Primates, 16(1), 32–34.
Derry, D. E. (1911). Note on accessory articular facets between the sacrum and ilium, and their significance.Journal of Anatomy and Physiology, 45(Pt 3), 202.
Eaton, R. L. (1969). Cooperative hunting by cheetahs and jackals and a theory of domestication of the dog.Mammalia, 33(1), 87–92.
Eisenberg, C. (2014). Jaguar (Panthera onca). In:The carnivore way. Springer, 217–240.
Erichsen, C., Berger, M., & Eksell, P. (2002). The scintigraphic anatomy of the equine sacroiliac joint.Veterinary Radiology and Ultrasound, 43(3), 287–292.
Everitt, B. S., & Dunn, G. (2001).Applied multivariate data analysis. Wiley Online Library.
Figueirido, B., Pérez-Claros, J. A., Hunt, R. M., Jr., & Palmqvist, P. (2011). Body mass estimation in amphicyonid carnivoran mammals: A multiple regression approach from the skull and skeleton.Acta Palaeontologica Polonica, 56(2), 225–246.
Flores, J. S. P. (2018). Predation of an adult female Morelet’s crocodile (Crocodylus moreletii) by a jaguar (Panthera onca) in the Calakmul region, Mexico.Herpetology Notes, 11, 613–616.
Garland, T., & Janis, C. M. (1993). Does metatarsal/femur ratio predict maximal running speed in cursorial mammals?Journal of Zoology, 229(1), 133–151.
Gittleman, J. L. (1985). Carnivore body size: ecological and taxonomic correlates.Oecologia, 67(4), 540–554.
Gittleman, J. L. (1989).Carnivore group living: Comparative trends. In: Carnivore behavior, ecology, and evolution (pp. 183–207). Springer.
Gompper, M. E., & Vanak, A. T. (2006). Vulpes bengalensis.Mammalian Species, 2006, 1–5.
Gonyea, W. J. (1978). Functional implications of felid forelimb anatomy.Cells, Tissues, Organs, 102(2), 111–121.
Gonyea, W., & Ashworth, R. (1975). The form and function of retractile claws in the Felidae and other representative carnivorans.Journal of Morphology, 145(2), 229–238.
Hartstone-Rose, A., Perry, J. M., & Morrow, C. J. (2012). Bite force estimation and the fiber architecture of felid masticatory muscles.The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(8), 1336–1351.
Hassanin, A., Veron, G., Ropiquet, A., Jansen van Vuuren, B., Lécu, A., Goodman, S. M., Haider, J., & Nguyen, T. T. (2021). Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes.PLoS One, 16(2), e0240770.
Hayward, M. W., Lyngdoh, S., & Habib, B. (2014). Diet and prey preferences of dholes (Cuon alpinus): Dietary competition within Asia’s apex predator guild.Journal of Zoology, 294(4), 255–266.
Hubel, T. Y., Myatt, J. P., Jordan, N. R., Dewhirst, O. P., McNutt, J. W., & Wilson, A. M. (2016). Additive opportunistic capture explains group hunting benefits in African wild dogs.Nature Communications, 7, 11033.
Hudson, P. E., Corr, S. A., & Wilson, A. M. (2012). High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): Spatio-temporal and kinetic characteristics.Journal of Experimental Biology, 215(14), 2425–2434.
Iwaniuk, A. N., Pellis, S. M., & Whishaw, I. Q. (1999). The relationship between forelimb morphology and behaviour in North American carnivores (Carnivora).Canadian Journal of Zoology, 77(7), 1064–1074.
Janis, C. M., & Figueirido, B. (2014). Forelimb anatomy and the discrimination of the predatory behavior of carnivorous mammals: the thylacine as a case study.Journal of Morphology, 275(12), 1321–1338.
Jesse, M. K., Kleck, C., Williams, A., Petersen, B., Glueck, D., Lind, K., & Patel, V. (2017). 3D Morphometric analysis of normal sacroiliac joints: A new classification of surface shape variation and the potential implications in pain syndromes.Pain Physician, 20.
Kardong, K. V. (2015).Vertebrates: Comparative anatomy, function, evolution. McGraw-Hill.
Karenina, K., & Giljov, A. (2018). Mother and offspring lateralized social behavior across mammalian species.Progress in Brain Research, 238, 115–141.
Kim, S., Cho, Y. S., Kim, H.-M., Chung, O., Kim, H., Jho, S., Seomun, H., Kim, J., Bang, W. Y., & Kim, C. (2016). Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly.Genome Biology, 17(1), 1–12.
Kitchener, A. C., Van Valkenburgh, B., Yamaguchi, N., Macdonald, D. W., & Loveridge, A. J. (2010). Felid form and function.Biology and Conservation of Wild Felids, 2010, 83–106.
Kleiman, D. G. (1972). Social behavior of the maned wolf (Chrysocyon brachyurus) and bush dog (Speothos venaticus): a study in contrast.Journal of Mammalogy, 53(4), 791–806.
Kleiman, D. G., & Eisenberg, J. F. (1973). Comparisons of canid and felid social systems from an evolutionary perspective.Animal Behaviour, 21(4), 637–659.
Kröschel, M., Reineking, B., Werwie, F., Wildi, F., & Storch, I. (2017). Remote monitoring of vigilance behavior in large herbivores using acceleration data.Animal Biotelemetry, 5(1), 10.
Lewton, K. L., Brankovic, R., Byrd, W. A., Cruz, D., Morales, J., & Shin, S. (2020). The effects of phylogeny, body size, and locomotor behavior on the three-dimensional shape of the pelvis in extant carnivorans.PeerJ, 8, e8574.
Liebenberg, L. (2006). Persistence hunting by modern hunter-gatherers.Current Anthropology, 47(6), 1017–1026.
MacDonald, D. W. (1983). The ecology of carnivore social behaviour.Nature, 301(5899), 379.
MacDonald, D. (2009).The encyclopedia of mammals. Oxford University Prss.
MacNulty, D. R., Mech, L. D., & Smith, D. W. (2007). A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf.Journal of Mammalogy, 88(3), 595–605.
Makacha, S., & Schaller, G. B. (1969). Observations on lions in the lake Manyara National Park, Tanzania.African Journal of Ecology, 7(1), 99–103.
Marshall, C.D., & Pyenson, N.D. (2019). Feeding in aquatic mammals: An evolutionary and functional approach. In:Feeding in vertebrates (pp. 743–785). Springer.
Martín-Serra, A., Figueirido, B., & Palmqvist, P. (2014). A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb.BMC Evolutionary Biology, 14(1), 129.
Martín-Serra, A., Figueirido, B., & Palmqvist, P. (2016). In the pursuit of the predatory behavior of Borophagines (Mammalia, Carnivora, Canidae): Inferences from forelimb morphology.Journal of Mammalian Evolution, 23(3), 237–249.
Meachen-Samuels, J. (2010). Comparative scaling of humeral cross-sections of felids and canids using radiographic images.Journal of Mammalian Evolution, 17(3), 193–209.
Meachen-Samuels, J., & Van Valkenburgh, B. (2009). Forelimb indicators of prey-size preference in the Felidae.Journal of Morphology, 270(6), 729–744.
Meachen-Samuels, J. A., & Van Valkenburgh, B. (2010). Radiographs reveal exceptional forelimb strength in the sabertooth cat,Smilodon fatalis.PLoS one, 5(7), e11412.
Meloro, C., Elton, S., Louys, J., Bishop, L. C., & Ditchfield, P. (2013). Cats in the forest: Predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora) Morphometric habitat-adaptation.Paleobiology, 39(3), 323–344.
Meloro, C., Clauss, M., & Raia, P. (2015). Ecomorphology of Carnivora challenges convergent evolution.Organisms Diversity and Evolution, 15(4), 711–720.
Michaud, M., Veron, G., & Fabre, A.-C. (2020). Phenotypic integration in feliform carnivores: Covariation patterns and disparity in hypercarnivores versus generalists.Evolution, 2020.
Montuelle, S. J., & Kane, E. A. (2019). Food capture in vertebrates: A complex integrative performance of the cranial and postcranial systems. In V. Bels & I. Wishaw (Eds.),Feeding in vertebrates (pp. 71–137). Springer.
Mukherjee, S., & Heithaus, M. R. (2013). Dangerous prey and daring predators: a review.Biological Reviews, 88(3), 550–563.
Muro, C., Escobedo, R., Spector, L., & Coppinger, R. P. (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations.Behavioural Processes, 88(3), 192–197.
Nishida, A. H., & Ochman, H. (2018). Rates of gut microbiome divergence in mammals.Molecular Ecology, 27(8), 1884–1897.
Nowak, R., Porter, R. H., Lévy, F., Orgeur, P., & Schaal, B. (2000). Role of mother-young interactions in the survival of offspring in domestic mammals.Reviews of Reproduction, 5(3), 153–163.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., & Morrison, J. C. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity.Bioscience, 51(11), 933–938.
Pallandre, J.-P., Cornette, R., Placide, M.-A., Pelle, E., Lavenne, F., Abad, V., Ribaud, M., & Bels, V. L. (2020). Iliac auricular surface morphofunctional study in Felidae.Zoology, 138, 125714.
Pallandre, J.-P., Lavenne, F., Pellé, E., Breton, G., Ribaud, M., & Bels, V. (2021). Variation in the sacroiliac joint in Felidae.PeerJ, 9, e11116.
Palmeira, F. B., Crawshaw, P. G., Jr., Haddad, C. M., Ferraz, K. M. P., & Verdade, L. M. (2008). Cattle depredation by puma (Puma concolor) and jaguar (Panthera onca) in central-western Brazil.Biological conservation, 141(1), 118–125.
Pucora, E., Schiffmann, C., & Clauss, M. (2019). Resting postures in terrestrial mammalian herbivores.Journal of Mammalogy, 100(2), 552–563.
Pulliam, H. R., & Caraco, T. (1984). Living in groups: Is there an optimal group size.Behavioural ecology: An evolutionary approach, 2, 122–147.
Radloff, F. G. T., & Du Toit, J. T. (2004). Large predators and their prey in a southern African savanna: A predator’s size determines its prey size range.Journal of Animal Ecology, 73(3), 410–423.
Randau, M., & Goswami, A. (2017). Morphological modularity in the vertebral column of Felidae (Mammalia, Carnivora).BMC Evolutionary Biology, 17(1), 133.
Randau, M., & Goswami, A. (2018). Shape covariation (or the lack thereof) between vertebrae and other skeletal traits in felids: the whole is not always greater than the sum of parts.Evolutionary Biology, 45(2), 196–210.
Randau, M., Goswami, A., Hutchinson, J. R., Cuff, A. R., & Pierce, S. E. (2016). Cryptic complexity in felid vertebral evolution: Shape differentiation and allometry of the axial skeleton.Zoological Journal of the Linnean Society, 178(1), 183–202.
Rodríguez-Alba, J. J., Linares-Matás, G., & Yravedra, J. (2019). First assessments of the taphonomic behaviour of jaguar (Panthera onca).Quaternary International, 517, 88–96.
Romer, A. S. (1950).The vertebrate body. WB Saunders Company.
Samuels, J. X., Meachen, J. A., & Sakai, S. A. (2013). Postcranial morphology and the locomotor habits of living and extinct carnivorans.Journal of Morphology, 274(2), 121–146.
Schaller, G. B. (2009).The Serengeti lion: a study of predator-prey relations. University of Chicago Press.
Schaller, G. B., & Vasconcelos, J. M. C. (1978). Jaguar predation on capybara.Z. Säugetierk, 43, 296–301.
Scheel, D. (1993). Profitability, encounter rates, and prey choice of African lions.Behavioral Ecology, 4(1), 90–97.
Scheel, D., & Packer, C. (1991). Group hunting behaviour of lions: A search for cooperation.Animal Behaviour, 41(4), 697–709.
Schwab, J. A., Kriwet, J., Weber, G. W., & Pfaff, C. (2019). Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry.Scientific Reports, 9(1), 1–9.
Sheldon, J. W. (2013).Wild dogs: The natural history of the nondomestic Canidae. Elsevier.
Sicuro, F. L., & Oliveira, L. F. B. (2011). Skull morphology and functionality of extant Felidae (Mammalia: Carnivora): A phylogenetic and evolutionary perspective.Zoological Journal of the Linnean Society, 161(2), 414–462.
Skogland, T. (1991). What are the effects of predators on large ungulate populations?Oikos, 1991, 401–411.
Slater, G. J., & Friscia, A. R. (2019). Hierarchy in adaptive radiation: A case study using the Carnivora (Mammalia).Evolution, 73(3), 524–539.
Smith, J. M., & Savage, R. J. (1956). Some locomotory adaptations in mammals.Zoological Journal of the Linnean Society, 42(288), 603–622.
Sokal, R. R., & Rohlf, F. J. (1981).Biometry. The principles and practice of statistics in biological research, 1981.
Song, S., Liu, L., Edwards, S. V., & Wu, S. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model.Proceedings of the National Academy of Sciences, 109(37), 14942–14947.
Springer, M. S., Foley, N. M., Brady, P. L., Gatesy, J., & Murphy, W. J. (2019). Evolutionary models for the diversification of placental mammals across the KPg boundary.Frontiers in Genetics, 10, 1241.
Stander, P. E. (1992). Cooperative hunting in lions: The role of the individual.Behavioral Ecology and Sociobiology, 29(6), 445–454.
Stanton, L. A., Sullivan, M. S., & Fazio, J. M. (2015). A standardized ethogram for the Felidae: A tool for behavioral researchers.Applied Animal Behaviour Science, 173, 3–16.
Sunquist, M., & Sunquist, F. (2017).Wild cats of the world. University of Chicago Press.
Taylor, M. E. (1989). Locomotor adaptations by carnivores. In:Carnivore behavior, ecology, and evolution (382–409). Springer.
Taylor, C. R., Schmidt-Nielsen, K., Dmi’el, R., & Fedak, M. (1971). Effect of hyperthermia on heat balance during running in the African hunting dog.American Journal of Physiology-Legacy Content, 220(3), 823–827.
Taylor, C. R., Shkolnik, A., Dmi’el, R., Baharav, D., & Borut, A. (1974). Running in cheetahs, gazelles, and goats: Energy cost and limb configuration.American Journal of Physiology-Legacy Content, 227(4), 848–850.
Van Valkenburgh, B. (1996). Feeding behavior in free-ranging, large African carnivores.Journal of Mammalogy, 77(1), 240–254.
Van Valkenburgh, B. (2007). Déjà vu: The evolution of feeding morphologies in the Carnivora.Integrative and Comparative Biology, 47(1), 147–163.
Van Valkenburgh, B., Pang, B., Bird, D., Curtis, A., Yee, K., Wysocki, C., & Craven, B. A. (2014). Respiratory and olfactory turbinals in feliform and caniform carnivorans: The influence of snout length.The Anatomical Record, 297(11), 2065–2079.
Vander Linden, A., & Dumont, E. R. (2019). Intraspecific male combat behaviour predicts morphology of cervical vertebrae in ruminant mammals.Proceedings of the Royal Society B, 286(1915), 20192199.
Venter, J. A., Vermeulen, M. M., & Brooke, C. F. (2019). Feeding ecology of large browsing and grazing herbivores. In:The ecology of browsing and grazing II (127–153). Springer.
Viranta, S., Lommi, H., Holmala, K., & Laakkonen, J. (2016). Musculoskeletal anatomy of the Eurasian lynx,Lynx lynx (Carnivora: Felidae) forelimb: Adaptations to capture large prey?Journal of Morphology, 277(6), 753–765.
Whishaw, I. Q., & Karl, J. M. (2019). The evolution of the hand as a tool in feeding behavior: The multiple motor channel theory of hand use. In V. Bels & I. Wishaw (Eds.),Feeding in vertebrates (pp. 159–186). Springer.
Wible, J. R., Rougier, G. W., Novacek, M. J., & Asher, R. J. (2007). Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary.Nature, 447(7147), 1003–1006.
Williams, S. H. (2019). Feeding in mammals: Comparative, experimental, and evolutionary insights on form and function. In V. L. Bels & I. Wishaw (Eds.),Feeding in vertebrates (pp. 695–742). Springer.
Wilson, A. M., Hubel, T. Y., Wilshin, S. D., Lowe, J. C., Lorenc, M., Dewhirst, O. P., Bartlam-Brooks, H. L., Diack, R., Bennitt, E., & Golabek, K. A. (2018). Biomechanics of predator–prey arms race in lion, zebra, cheetah and impala.Nature, 554(7691), 183.
Winslow, J. B. (1732).Exposition anatomique de la structure du corps humain chez. Guillaume Desprez et Jean Desessartz.
Wroe, S., McHenry, C., & Thomason, J. (2005). Bite club: Comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa.Proceedings of the Royal Society of London B: Biological Sciences, 272(1563), 619–625.
Wroe, S., Lowry, M. B., & Anton, M. (2008). How to build a mammalian super-predator.Zoology, 111(3), 196–203.
Acknowledgements
The authors thank the following for financial support of this study (2014–2018): (i) ATMs—Muséum national d’Histoire naturelle 2013–2015 “Formes possibles, Formes réalisées…” (Dir: Pr Vincent Bels & Pr Pierre-Henri Gouyon), and (ii) UMR 7205 (Dir: Dr. Philippe Grancolas). We are grateful to Pr Luc Zimmer who allowed us to use the “Centre d’Etude et de Recherche multimodale en imagerie du Vivant” (CERMEP, CNRS – INSB) for all of the CT-scans employed in this study, and to Franck Lamberton for his help and coordination with the platform. This study was assisted by Marie-Ange Pierre† who worked as a technician in the FORCE team (UMR7205) during data collection. Many thanks to Roland Simon and Patrick Roux for allowing us to photograph mammals during feeding at the “Réserve Zoologique de la Haute-Touche” (MNHN, Obterre, France). Warm thanks to Anthony Russell for reviewing this chapter. The specimen samples are held in the “Mammifères et Oiseaux” collection at the Museum national d’Histoire naturelle in Paris (MNHN). A list of specimens is available fromjeanpierre.pallandre@wanadoo.fr
Authors Contribution
JPP conducted the study and wrote the paper. FL generated the CT-scans. EP provided the support and help needed to work with the collections of the Museum. KO organized the mammals feeding protocols. VB participated the study and wrote the paper.
Author information
Authors and Affiliations
Institute of Systematics, Evolution, Biodiversity, ISYEB – UMR 7205 – CNRS/MNHN/EPHE/UA, National Museum of Natural History, Sorbonne University, Paris, France
Jean-Pierre Pallandre & Vincent L. Bels
CNRS, INSB, Centre d’Etude et de Recherche Multimodale Et Pluridisciplinaire en Imagerie du Vivant, Bron, France
Franck Lavenne
Sorbonne Université, Muséum National d’Histoire Naturelle, Direction des Collections, Plateforme de Préparation Ostéologique, Paris, France
Eric Pellé
Réserve Zoologique de la Haute Touche, Muséum national d’Histoire Naturelle, Obterre, France
Katia Ortiz
- Jean-Pierre Pallandre
Search author on:PubMed Google Scholar
- Franck Lavenne
Search author on:PubMed Google Scholar
- Eric Pellé
Search author on:PubMed Google Scholar
- Katia Ortiz
Search author on:PubMed Google Scholar
- Vincent L. Bels
Search author on:PubMed Google Scholar
Editor information
Editors and Affiliations
Institute of Systematics, Evolution, Biodiversity, ISYEB – UMR 7205 – CNRS/MNHN/EPHE/UA, National Museum of Natural History, Sorbonne University, Paris, France
Vincent L. Bels
Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
Anthony P. Russell
Appendices
Appendix 1: Geometric Calculation to Determine the Topography of the Articular Surface (Figs.5.12,5.16 and5.17)
For the representative canid and felid species, for each iliac auricular surface, we define the plane including landmark 2 (Pt2(x2, y2, z2)), landmark 3 (Pt3(x3, y3, z3)) and landmark 4 (Pt4(x4, y4, z4)).
We consider Pt3 to be the origin of the new coordinate system.
Vectors\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}2} \) = (Pt2- Pt3) and\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}4} \) = (Pt4- Pt3) are calculated as follows:
where x32 = x2- x3
y32 = y2- y3
z32 = z2- z3
where x34 = x4- x3
y34 = y4- y3
z34 = z4- z3
We calculated the coordinates (X, Y, Z) of a vector\( \overrightarrow{\mathrm{V}} \) normal to vectors\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}2} \) and\( \overrightarrow{\mathrm{Pt}3\mathrm{Pt}4} \):
In order to find the coordinates (Xn, Yn, Zn) of this normalized vector\( \overrightarrow{\mathrm{Vn}} \) we first have to calculate its length (L):
The coordinates of\( \overrightarrow{\mathrm{Vn}} \) orthonormal to the plan are calculated:
The distance (d) of each point (n, m, p) from the plane that includes Pt2, Pt3 and Pt4 is given by the equation:
To compare the distance of each point to the plane within various sized auricular surfaces, the relative distance of each point from the plane was given in percentage (d%) of the distance of landmark 1 (d1) from the plane. Landmark 1 is selected because it is the most dorsal point of each articulation regardless of their size and shape. For each landmark, d% is given by:
d% measures the difference in level of each landmark relative to the plane that includes landmarks 2, 3 and 4. According to our calculation d% = 0 for landmarks 2, 3 and 4 and d% = 100 for landmark 1.
Appendix 2: Data Set Used for the Study of the Interiliac Angle (Fig.5.4; Tables5.2 and5.3)
Species | Number of specimens | Locomotor classa | Hunting strategyb | Body mass (kg)c |
|---|---|---|---|---|
Acinonyx jubatus | 7 | Cursorial | Solitary | 53.5 |
Felis silvestris | 2 | Scansorial | Solitary | 5.5 |
Leopardus wiedii | 1 | Arboreal | Solitary | 3.3 |
Leptailurus serval | 1 | Terrestrial | Solitary | 13.4 |
Lynx canadensis | 2 | Terrestrial | Solitary | 11.2 |
Lynx rufus | 2 | Scansorial | Solitary | 11.2 |
Neofelis nebulosa | 1 | Arboreal | Solitary | 19.5 |
Panthera leo | 13 | Terrestrial | Pack | 185.0 |
Panthera onca | 5 | Scansorial | Solitary | 105.7 |
Panthera pardus | 13 | Scansorial | Solitary | 59.0 |
Panthera tigris | 10 | Terrestrial | Solitary | 185.5 |
Panthera uncia | 2 | Scansorial | Solitary | 50.0 |
Appendix 3: Data set for the Felidae Used for the SIJ Topographic Study (Figs.5.5,5.13,5.14,5.15,5.16, and5.17; Table5.4)
Species | Number of specimens | Body mass (kg)(1) | Locomotor class(2) | Habitat(3) | MPM/PBM(1) classes | Foraging strategy(3)(4) | Hunting strategy(3) | Bite(5)(6)(7) |
|---|---|---|---|---|---|---|---|---|
Acinonyx jubatus | 7 | 53.5 | Cursorial | Savannah | 2 (1.0) | Pursuit | Solitary | Suffocation |
Felis silvestris | 6 | 5.5 | Scansorial | Forest | 3 (0.7) | Ambush | Solitary | Spine |
Leptailurus serval | 2 | 13.4 | Terrestrial | Savannah | 3 (0.4) | Pursuit | Solitary | Spine |
Lynx canadensis | 2 | 11.2 | Terrestrial | Forest | 2 (1.2) | Ambush | Solitary | Spine |
Lynx rufus | 3 | 11.2 | Scansorial | Forest | 1 (2.4) | Ambush | Solitary | Spine |
Neofelis nebulosa | 2 | 19.5 | Arboreal | Forest | 1 (2.7) | Ambush | Solitary | Suffocation |
Panthera leo | 14 | 185.0 | Terrestrial | Savannah | 1 (2.3) | Pursuit | Pack | Suffocation |
Panthera onca | 5 | 105.7 | Scansorial | Forest | 1 (2.0) | Ambush | Solitary | Back of skull |
Panthera pardus | 12 | 59.0 | Scansorial | Savannah | 1 (2.0) | Ambush | Solitary | Suffocation |
Panthera tigris | 11 | 185.5 | Terrestrial | Forest | 1 (2.7) | Ambush | Solitary | Suffocation |
Panthera uncia | 2 | 50.0 | Scansorial | Mountain | 1 (1.9) | Pursuit | Solitary | Suffocation |
Puma concolor | 2 | 67.5 | Scansorial | Forest | 2 (1.7) | Ambush | Solitary | Suffocation |
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pallandre, JP., Lavenne, F., Pellé, E., Ortiz, K., Bels, V.L. (2023). The Sacro-Iliac Joint of the Felidae and Canidae and Their Large Ungulate Prey: An Example of Divergence and Convergence. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_5
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-11440-3
Online ISBN:978-3-031-11441-0
eBook Packages:Biomedical and Life SciencesBiomedical and Life Sciences (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


