Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Convergence of Arboreal Locomotor Specialization: Morphological and Behavioral Solutions for Movement on Narrow and Compliant Supports

  • Chapter
  • First Online:

Part of the book series:Fascinating Life Sciences ((FLS))

  • 2177Accesses

  • 19Citations

Abstract

Arboreal supports impose a set of locomotor challenges not typically encountered in other terrestrial ecosystems. Because all arboreal animals must negotiate this common set of physical challenges in an environment where clumsy mistakes can lead to tragedy (or at least to the increased energetic burden of having to fight gravity to regain a lost position), it is of little surprise that we see widespread convergence of locomotor morphology and behavior among arboreal amphibians, lizards, and mammals. In this chapter I consider the biomechanical challenges imposed by moving on narrow and compliant arboreal supports, and survey existing data on how arboreal amphibians, lizards, and mammals have arrived at morphological and behavioral solutions to these problems. I focus on the biomechanical problems of negotiating narrow and compliant supports given that these challenges are, to some degree, uniquely characteristic of the arboreal environment.

Narrow supports potentially compromise locomotor performance in two ways: (1) by increasing the probability that the animal may tangentially slip from the support and, (2) by challenging mediolateral (i.e., transverse/rolling plane) stability. Compliant supports, by contrast, have the potential to reduce locomotor performance by absorbing some of the mechanical energy that the animal could use to accelerate and redirect its center of mass, and then unpredictably returning this energy at random times and in random directions (at least with respect to the animal’s desired movement dynamics). Widespread morphological solutions to the biomechanical problems of moving on narrow and compliant supports include small body size, appendicular joints with enhanced mobility, grasping extremities, and long tails. Convergent behavioral solutions for increasing stability on precarious arboreal supports include reducing speed, increased limb joint flexion, the use of “compliant” gait kinematics marked by elongated limb contact durations (i.e., duty factors), a switch to gaits that facilitate more continuous contact with the substrate (and fewer ballistic aerial phases), and a decrease overall limb stiffness typically accomplished via exaggerated limb joint excursions during the stance phase. Future research on arboreal locomotion in tetrapods should focus on integrating quantitative laboratory data on locomotor kinematics and kinetics with holistic ecological data on substrate use and support morphology gleaned in the field. Such integrated datasets will be critical for furthering our understanding of how locomotor anatomy and behavior are shaped by the rigors of the natural arboreal environment.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Abourachid, A. (2003). A new way of analysing symmetrical and asymmetrical gaits in quadrupeds.Comptes Rendus Biologies, 326(7), 625–630.

    Article PubMed  Google Scholar 

  • Abourachid, A., Fabre, A. C., Cornette, R., & Höfling, E. (2017). Foot shape in arboreal birds: Two morphological patterns for the same pincer-like tool.Journal of Anatomy, 231(1), 1–11.

    Article PubMed PubMed Central  Google Scholar 

  • Abu-Ghalyun, Y., Greenwald, L., Hetherington, T. E., & Gaunt, A. S. (1988). The physiological basis of slow locomotion in chamaeleons.The Journal of Experimental Zoology, 245(3), 225–231.

    Article CAS PubMed  Google Scholar 

  • Alexander, R. M. (1991). Elastic mechanisms in primate locomotion.Zeitschrift für Morphologie und Anthropologie, 78, 315–320.

    Article CAS PubMed  Google Scholar 

  • Alexander, R. M., & Jayes, A. (1978). Vertical movements in walking and running.Journal of Zoology, 185(1), 27–40.

    Article  Google Scholar 

  • Alexander, R. M., & Maloiy, G. M. O. (1984). Stride lengths and stride frequencies of primates.Journal of Zoology London, 202, 577–582.

    Article  Google Scholar 

  • Almécija, S., Smaers, J. B., & Jungers, W. L. (2015). The evolution of human and ape hand proportions.Nature Communications, 6, 7717.https://doi.org/10.1038/ncomms8717

    Article CAS PubMed  Google Scholar 

  • Amir Abdul Nasir, A. F., Clemente, C. J., Wynn, M. L., & Wilson, R. S. (2017). Optimal running speeds when there is a trade-off between speed and the probability of mistakes.Functional Ecology, 31(10), 1941–1949.

    Article  Google Scholar 

  • Astley, H. C., Haruta, A., & Roberts, T. J. (2015). Robust jumping performance and elastic energy recovery from compliant perches in tree frogs.The Journal of Experimental Biology, 218(21), 3360–3363.

    Article PubMed  Google Scholar 

  • Ballinger, R. E. (1973). Experimental evidence of the tail as a balancing organ in the lizard,Anolis carolinensis.Herpetologica, 29(1), 65–66.

    Google Scholar 

  • Bergeson, D. J. (1996).The positional behavior and prehensile tail use of Alouatta palliata, Ateles geoffroyi, and Cebus capucinus. Washington University.

    Google Scholar 

  • Bhagat, R., Bertrand, O. C., & Silcox, M. T. (2021). Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents.Journal of Anatomy, 238(1), 96–112.

    Article PubMed  Google Scholar 

  • Biknevicius, A. R. (2006). Locomotor mechanics of the tölt in Icelandic horses.American Journal of Veterinary Research, 67, 1505–1510.

    Article PubMed  Google Scholar 

  • Biknevicius, A. R., Reilly, S. M., McElroy, E. J., & Bennett, M. B. (2013). Symmetrical gaits and center of mass mechanics in small-bodied, primitive mammals.Zoology, 116(1), 67–74.

    Article PubMed  Google Scholar 

  • Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., & Purvis, A. (2007). The delayed rise of present-day mammals.Nature, 446(7135), 507–512.

    Article CAS PubMed  Google Scholar 

  • Birn-Jeffery, A. V., & Higham, T. E. (2014). The scaling of uphill and downhill locomotion in legged animals.Integrative and Comparative Biology, 54(6), 1159–1172.

    Article PubMed  Google Scholar 

  • Boistel, R., Herrel, A., Daghfous, G., Libourel, P. A., Boller, E., Tafforeau, P., & Bels, V. (2010). Assisted walking in Malagasy dwarf chamaeleons.Biology Letters:1–5.

    Google Scholar 

  • Bonser, R. H. (1999). Branching out in locomotion: The mechanics of perch use in birds and primates.The Journal of Experimental Biology, 202, 1459–1463.

    Article CAS PubMed  Google Scholar 

  • Bruijn, S. M., van Dieėn, J. H., Meijer, O. G., & Beek, P. J. (2009). Is slow walking more stable?Journal of Biomechanics, 42(10), 1506–1512.

    Article PubMed  Google Scholar 

  • Buikstra, J. E. (1975). Healed fractures inMacaca mulatta: Age, sex and symmetry.Folia Primatol (Basel), 23, 140–148.

    Article CAS PubMed  Google Scholar 

  • Camargo, N. F., Sano, N. Y., Ribeiro, J. F., & Vieira, E. M. (2016). Contrasting the realized and fundamental niche of the arboreal walking performance of neotropical rodents.Journal of Mammalogy, 97(1), 155–166.

    Article  Google Scholar 

  • Cant, J. G. H. (1992). Positional behavior and body size of arboreal primates: A theoretical framework for field studies and an illustration of its application.American Journal of Physical Anthropology, 88(3), 273–283.

    Article CAS PubMed  Google Scholar 

  • Carlson, K. J., Demes, B., & Franz, T. M. (2005). Mediolateral forces associated with quadrupedal gaits of lemurids.Journal of Zoology, 266(3), 261–273.

    Article  Google Scholar 

  • Carter, M. L., Pontzer, H., Wrangham, R., & Peterhans, J. K. (2008). Skeletal pathology inPan troglodytes schweinfurthii in Kibale National Park, Uganda.American Journal of Physical Anthropology, 135, 389–403.

    Article PubMed  Google Scholar 

  • Cartmill, M. (1974). Pads and claws in arboreal locomotion. In F. A. Jenkins Jr. (Ed.),Primate locomotion (pp. 45–83). Academic.

    Google Scholar 

  • Cartmill, M. (1979). The volar skin of primates: Its frictional characteristics and their functional significance.American Journal of Physical Anthropology, 50(4), 497–510.

    Article CAS PubMed  Google Scholar 

  • Cartmill, M. (1985). Climbing. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.),Functional vertebrate morphology (pp. 73–88). Harvard University Press.

    Chapter  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals.Zoological Journal of the Linnean Society, 136, 401–420.

    Article  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2007a). Primate gaits and primate origins. In M. J. Ravosa & M. Dagosto (Eds.),Primate origins: Adaptations and evolution (pp. 403–435). Springer.

    Chapter  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2007b). Understanding the adaptive value of diagonal-sequence gaits in primates: A comment on Shapiro and Raichlen, 2005.American Journal of Physical Anthropology, 133, 822–825.

    Article PubMed  Google Scholar 

  • Chadwell, B. A., & Young, J. W. (2015). Angular momentum and arboreal stability in common marmosets (Callithrix jacchus).American Journal of Physical Anthropology, 156, 565–576.

    Article PubMed  Google Scholar 

  • Chang, M. D., Sejdić, E., Wright, V., & Chau, T. (2010). Measures of dynamic stability: Detecting differences between walking overground and on a compliant surface.Human Movement Science, 29(6), 977–986.

    Article PubMed  Google Scholar 

  • Channon, A. J., Gunther, M. M., Crompton, R. H., D’Aout, K., Preuschoft, H., & Vereecke, E. E. (2011). The effect of substrate compliance on the biomechanics of gibbon leaps.The Journal of Experimental Biology, 214(4), 687–696.

    Article PubMed  Google Scholar 

  • Clemente, C. J., Dick, T. J., Wheatley, R., Gaschk, J., Nasir, A. F. A. A., Cameron, S. F., & Wilson, R. S. (2019). Moving in complex environments: A biomechanical analysis of locomotion on inclined and narrow substrates.The Journal of Experimental Biology, 222(6), jeb189654.

    Article PubMed  Google Scholar 

  • Crompton, R. H., Sellers, W. I., & Gunther, M. M. (1993). Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates.Proceedings of the Royal Society B: Biological Sciences, 254(1339), 41–45.

    Article CAS  Google Scholar 

  • Dagg, A. I. (1973). Gaits in mammals.Mammal Review, 3, 135–154.

    Article  Google Scholar 

  • Delciellos, A. C., & Vieira, M. V. (2007). Stride lengths and frequencies of arboreal walking in seven species of didelphid marsupials.Acta Theriol (Warsz), 52(1), 101–111.

    Article  Google Scholar 

  • Demes, B., Jungers, W. L., & Nieschalk, U. (1990). Size- and speed-related aspects of quadrupedal walking in slender and slow lorises. In F. K. Jouffroy, M. H. Stack, & C. Niemetz (Eds.),Gravity, posture and locomotion in primates (pp. 175–197). Florence.

    Google Scholar 

  • Demes, B., Jungers, W. L., Gross, T., & Fleagle, J. (1995). Kinetics of leaping primates: Influence of substrate orientation and compliance.American Journal of Physical Anthropology, 96(4), 419–429.

    Article CAS PubMed  Google Scholar 

  • Dickson, B. V., Sherratt, E., Losos, J. B., & Pierce, S. E. (2017). Semicircular canals inAnolis lizards: Ecomorphological convergence and ecomorph affinities of fossil species.Royal Society Open Science, 4(10), 170058.

    Article PubMed PubMed Central  Google Scholar 

  • Dunbar, R. I. M. (1988).Primate social systems. Croom Helm Ltd.

    Book  Google Scholar 

  • Dunham, N. T., McNamara, A., Shapiro, L. J., Hieronymus, T. L., & Young, J. W. (2018). A user’s guide for the quantitative analysis of substrate characteristics and locomotor kinematics in free-ranging primates.American Journal of Physical Anthropology, 167, 569–584.

    Article PubMed  Google Scholar 

  • Dunham, N. T., McNamara, A., Shapiro, L. J., Hieronymus, T. L., Phelps, T., & Young, J. W. (2019a). Effects of substrate and phylogeny on quadrupedal gait in free-ranging platyrrhines.American Journal of Physical Anthropology, 170(4), 565–578.

    Article PubMed  Google Scholar 

  • Dunham, N. T., McNamara, A., Shapiro, L. J., Phelps, T., Wolfe, A. N., & Young, J. W. (2019b). Locomotor kinematics of tree squirrels (Sciurus carolinensis) in free-ranging and laboratory environments: Implications for primate locomotion and evolution.Journal of Experimental Zoology Part A Ecological Genetics and Physiology, 331, 103–119.

    Google Scholar 

  • Dunham, N. T., McNamara, A., Shapiro, L. J., Phelps, T., & Young, J. W. (2020). Asymmetrical gait kinematics of free-ranging callitrichines in response to changes in substrate diameter and orientation.The Journal of Experimental Biology, 223, jeb217562.https://doi.org/10.1242/jeb.217562

    Article PubMed  Google Scholar 

  • Emmons, L. H., & Gentry, A. H. (1983). Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates.The American Naturalist, 121(4), 513–524.

    Article  Google Scholar 

  • Farley, C. T. (1991). A mechanical trigger for the trot-gallop transition in horses.Science, 253, 306–308.

    Article CAS PubMed  Google Scholar 

  • Fischer, M. S., Schilling, N., Schmidt, M., Harrhaus, D., & Witte, H. (2002). Basic limb kinematics in small therian mammals.The Journal of Experimental Biology, 205, 1315–1328.

    Article PubMed  Google Scholar 

  • Fischer, M. S., Krause, C., & Lilje, K. E. (2010). Evolution of chameleon locomotion, or how to become arboreal as a reptile.Zoology, 113, 67–74.

    Article PubMed  Google Scholar 

  • Foster, K. L., & Higham, T. E. (2012). How forelimb and hindlimb function changes with incline and perch diameter in the green anole,Anolis carolinensis.The Journal of Experimental Biology, 215(Pt 13), 2288–2300.

    Article PubMed  Google Scholar 

  • Franz, T. M., Demes, B., & Carlson, K. J. (2005). Gait mechanics of lemurid primates on terrestrial and arboreal substrates.Journal of Human Evolution, 48, 199–217.

    Article PubMed  Google Scholar 

  • Fröbisch, J., & Reisz, R. R. (2009). The Late Permian herbivoreSuminia and the early evolution of arboreality in terrestrial vertebrate ecosystems.Proceedings of the Royal Society B-Biological Sciences London, 276(1673), 3611–3618.

    Article  Google Scholar 

  • Gálvez-López, E., Maes, L. D., & Abourachid, A. (2011). The search for stability on narrow supports: An experimental study in cats and dogs.Zoology, 114(4), 224–232.

    Article PubMed  Google Scholar 

  • Gans, C. (1967). The chameleon.Natural History, 76(4), 52–59.

    Google Scholar 

  • Garber, P. A., & Rehg, J. A. (1999). The ecological role of the prehensile tail in white-faced capuchins (Cebus capucinus).American Journal of Physical Anthropology, 110(3), 325–339.

    Article CAS PubMed  Google Scholar 

  • Garland, T., Jr., & Losos, J. (1994). Ecological morphology of locomotor performance in squamate reptiles. In P. C. Wainwright & S. Reilly (Eds.),Ecological morphology: Integrative organismal biology (pp. 60–98). University of Chicago Press.

    Google Scholar 

  • Gaschk, J. L., Frère, C. H., & Clemente, C. J. (2019). Quantifying koala locomotion strategies: Implications for the evolution of arborealism in marsupials.The Journal of Experimental Biology, 222(24), jeb207506.

    Article PubMed  Google Scholar 

  • Gatesy, S. M. (1991). Hind limb movements of the American alligator (Alligator mississippiensis) and postural grades.Journal of Zoology, 224(4), 577–588.

    Article  Google Scholar 

  • Gebo, D. L. (2004). A shrew-sized origin for primates.The Yearbook of Physical Anthropology, 47, 40–62.

    Article  Google Scholar 

  • Gilman, C. A., & Irschick, D. J. (2013). Foils of flexion: The effects of perch compliance on lizard locomotion and perch choice in the wild.Functional Ecology, 27(2), 374–381.

    Article  Google Scholar 

  • Gilman, C. A., Bartlett, M. D., Gillis, G. B., & Irschick, D. J. (2012). Total recoil: Perch compliance alters jumping performance and kinematics in green anole lizards (Anolis carolinensis).The Journal of Experimental Biology, 215(Pt 2), 220–226.

    Article PubMed  Google Scholar 

  • Graham, M., & Socha, J. J. (2020). Going the distance: The biomechanics of gap-crossing behaviors.Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333(1), 60–73.

    Article PubMed  Google Scholar 

  • Granatosky, M. C., Amanat, S., Panyutina, A. A., & Youlatos, D. (2021). Gait mechanics of a blind echolocating rodent: Implications for the locomotion of small arboreal mammals and proto-bats.Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335(4), 436–453.

    Article PubMed  Google Scholar 

  • Grand, T. I. (1972). A mechanical interpretation of terminal branch feeding.Journal of Mammalogy, 53(1), 198–201.

    Article  Google Scholar 

  • Grand, T. I. (1977). Body weight: Its relation to tissue composition, segment distribution, and motor function. I. Interspecific comparisons.American Journal of Physical Anthropology, 47(2), 211–239.

    Article CAS PubMed  Google Scholar 

  • Grand, T. I. (1984). Motion economy within the canopy: Four strategies for mobility. In P. S. Rodman & J. G. H. Cant (Eds.),Adaptations for foraging in nonhuman primates: Contributions to an organismal biology of prosimians, monkeys, and apes (pp. 54–72). Columbia University Press.

    Chapter  Google Scholar 

  • Guillot, D. (2011). Forelimb suspensory gait characteristics of wildLagothrix poeppigii andAteles belzebuth: Developing video-based methodologies in free-ranging primates. In K. D’Août & E. E. Vereecke (Eds.),Primate locomotion: Linking field and laboratory research (pp. 247–269). Springer.

    Chapter  Google Scholar 

  • Hagey, T. J., Harte, S., Vickers, M., Harmon, L. J., & Schwarzkopf, L. (2017). There’s more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads.PLoS One, 12(9), e0184641.

    Article PubMed PubMed Central  Google Scholar 

  • Hayssen, V. (2008). Patterns of body and tail length and body mass in Sciuridae.Journal of Mammalogy, 89(4), 852–873.

    Article  Google Scholar 

  • Healy, K., Guillerme, T., Finlay, S., Kane, A., Kelly, S. B., McClean, D., Kelly, D. J., Donohue, I., Jackson, A. L., & Cooper, N. (2014). Ecology and mode-of-life explain lifespan variation in birds and mammals.Proceedings of the Royal Society B: Biological Sciences, 281(1784), 20140298.

    Article PubMed Central  Google Scholar 

  • Herrel, A., Measey, G. J., Vanhooydonck, B., & Tolley, K. A. (2011). Functional consequences of morphological differentiation between populations of the Cape Dwarf Chameleon (Bradypodion pumilum).Biological Journal of the Linnean Society, 104(3), 692–700.

    Article  Google Scholar 

  • Herrel, A., Perrenoud, M., Decamps, T., Abdala, V., Manzano, A., & Pouydebat, E. (2013a). The effect of substrate diameter and incline on locomotion in an arboreal frog.The Journal of Experimental Biology, 216(19), 3599–3605.

    Article PubMed  Google Scholar 

  • Herrel, A., Tolley, K. A., Measey, G. J., da Silva, J. M., Potgieter, D. F., Boller, E., Boistel, R., & Vanhooydonck, B. (2013b). Slow but tenacious: An analysis of running and gripping performance in chameleons.The Journal of Experimental Biology, 216(6), 1025–1030.

    PubMed  Google Scholar 

  • Higham, T. E., & Jayne, B. C. (2004). Locomotion of lizards on inclines and perches: Hindlimb kinematics of an arboreal specialist and a terrestrial generalist.The Journal of Experimental Biology, 207(2), 233–248.

    Article PubMed  Google Scholar 

  • Higham, T. E., Birn-Jeffery, A. V., Collins, C. E., Hulsey, C. D., & Russell, A. P. (2015). Adaptive simplification and the evolution of gecko locomotion: Morphological and biomechanical consequences of losing adhesion.Proceedings of the National Academy of Sciences, 112(3), 809–814.

    Article CAS  Google Scholar 

  • Hildebrand, M. (1966). Analysis of the symmetrical gaits of tetrapods.Folia Biotheoretica, 1–22.

    Google Scholar 

  • Hildebrand, M. (1967). Symmetrical gaits of primates.American Journal of Physical Anthropology, 26, 119–130.

    Article  Google Scholar 

  • Hildebrand, M. (1980). The adaptive significance of tetrapod gait selection.American Zoologist, 20, 255–267.

    Article  Google Scholar 

  • Hildebrand, M., & Goslow, G. E. (2001).Analysis of vertebrate structure. Wiley.

    Google Scholar 

  • Hopkins, K., & Tolley, K. (2011). Ecomorphological variation in dwarf chameleons and the dynamics between natural and sexual selection.Biological Journal of the Linnean Society, 102, 878–888.

    Article  Google Scholar 

  • Horner, E. (1954). Arboreal adaptations ofPeromyscus, with special reference to use of the tail.Contributions from the Laboratory of Vertebrate Biology, University of Michigan, 61, 1–84.

    Google Scholar 

  • Hsieh, S.-T. T. (2016). Tail loss and narrow surfaces decrease locomotor stability in the arboreal green anole lizard (Anolis carolinensis).The Journal of Experimental Biology, 219, 364–373.

    PubMed  Google Scholar 

  • Hunt, N. H., Jinn, J., Jacobs, L. F., & Full, R. J. (2021). Acrobatic squirrels learn to leap and land on tree branches without falling.Science, 373(6555), 697–700.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Hutchinson, J. R., Famini, D., Lair, R., & Kram, R. (2003). Are fast-moving elephants really running?Nature, 422, 493–494.

    Article CAS PubMed  Google Scholar 

  • Hutchinson, J. R., Felkler, D., Houston, K., Chang, Y.-M., Brueggen, J., Kledzik, D., & Vliet, K. A. (2019). Divergent evolution of terrestrial locomotor abilities in extant Crocodylia.Scientific Reports, 9(1), 1–11.

    Article  Google Scholar 

  • Huyghe, K., Herrel, A., Vanhooydonck, B., Meyers, J. J., & Irschick, D. J. (2007). Microhabitat use, diet, and performance data on the Hispaniolan twig anole,Anolis sheplani: Pushing the boundaries of morphospace.Zoology, 110(1), 2–8.

    Article PubMed  Google Scholar 

  • Igarashi, M., & Levy, J. K. (1981). Locomotor balance performance of short-tailed squirrel monkeys.Journal of Medical Primatology, 10, 136–140.

    Article CAS PubMed  Google Scholar 

  • Irschick, D. J., Vitt, L. J., Zani, P. A., & Losos, J. B. (1997). A comparison of evolutionary radiations in mainland and CaribbeanAnolis lizards.Ecology, 78(7), 2191–2203.

    Article  Google Scholar 

  • Isbell, L. (1994). Predation on primates: Ecological patterns and evolutionary consequences.Evolutionary Anthropology: Issues, News, and Reviews, 3, 61–71.

    Article  Google Scholar 

  • Jayne, B. C. (2020). What defines different modes of snake locomotion?Integrative and Comparative Biology, 60(1), 156–170.

    Article PubMed PubMed Central  Google Scholar 

  • Jenkins, F. A. (1974). Tree shrew locomotion and the origins of primate arborealism. In F. A. Jenkins (Ed.),Primate locomotion (pp. 85–115). Academic Press.

    Google Scholar 

  • Jenkins, F. A., & Camazine, S. M. (1977). Hip structure and locomotion in ambulatory and cursorial carnivores.Journal of Zoology, 181(3), 351–370.

    Article  Google Scholar 

  • Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., & Carbone, C. (2009). PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090-184.Ecology, 90(9), 2648–2648.

    Article  Google Scholar 

  • Jurmain, R. (1997). Skeletal evidence of trauma in African apes, with special reference to the Gombe chimpanzees.Primates, 38, 1–14.

    Article  Google Scholar 

  • Jusufi, A., Goldman, D. I., Revzen, S., & Full, R. J. (2008). Active tails enhance arboreal acrobatics in geckos.Proceedings of the National Academy of Sciences, 105(11), 4215–4219.

    Article CAS  Google Scholar 

  • Karantanis, N.-E., Youlatos, D., & Rychlik, L. (2015). Diagonal gaits in the feathertail gliderAcrobates pygmaeus (Acrobatidae, Diprotodontia): Insights for the evolution of primate quadrupedalism.Journal of Human Evolution, 86, 43–54.

    Article PubMed  Google Scholar 

  • Karantanis, N.-E., Rychlik, L., Herrel, A., & Youlatos, D. (2017a). Arboreal gaits in three sympatric rodentsApodemus agrarius,Apodemus flavicollis (Rodentia, Muridae) andMyodes glareolus (Rodentia, Cricetidae).Mammalian Biology, 83, 51–63.

    Article  Google Scholar 

  • Karantanis, N.-E., Rychlik, L., Herrel, A., & Youlatos, D. (2017b). Comparing the arboreal gaits ofMuscardinus avellanarius andGlis glis (Gliridae, Rodentia): A first quantitative analysis.Mammal Study, 42(3), 161–173.

    Article  Google Scholar 

  • Karantanis, N. E., Rychlik, L., Herrel, A., & Youlatos, D. (2017c). Arboreal locomotion in Eurasian harvest miceMicromys minutus (Rodentia: Muridae): The gaits of small mammals.Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 327(1), 38–52.

    Article PubMed  Google Scholar 

  • Karantanis, N. E., Rychlik, L., Herrel, A., & Youlatos, D. (2017d). Arboreality in acacia rats (Thallomys paedulcus; Rodentia, Muridae): Gaits and gait metrics.Journal of Zoology, 303(2), 107–119.

    Article  Google Scholar 

  • Khannoon, E. R., Endlein, T., Russell, A. P., & Autumn, K. (2014). Experimental evidence for friction-enhancing integumentary modifications of chameleons and associated functional and evolutionary implications.Proceedings of the Royal Society B: Biological Sciences, 281(1775), 20132334.

    Article PubMed Central  Google Scholar 

  • Krause, C., & Fischer, M. S. (2013). Biodynamics of climbing: Effects of substrate orientation on the locomotion of a highly arboreal lizard (Chamaeleo calyptratus).The Journal of Experimental Biology, 216.

    Google Scholar 

  • Lammers, A. R. (2009a). The effects of substrate texture on the mechanics of quadrupedal arboreal locomotion in the gray short-tailed opossum (Monodelphis domestica).The Journal of Experimental Zoology, 311A, 813–823.

    Article  Google Scholar 

  • Lammers, A. R. (2009b). Mechanics of generating friction during locomotion on rough and smooth arboreal trackways.The Journal of Experimental Biology, 212(Pt 8), 1163–1169.

    Article PubMed  Google Scholar 

  • Lammers, A. R., & Biknevicius, A. R. (2004). The biodynamics of arboreal loocmotion: The effects of substrate diameter on locomotor kinetics in the gray short-tailed opossum (Monodelphis domestica).The Journal of Experimental Biology, 207, 4325–4336.

    Article PubMed  Google Scholar 

  • Lammers, A. R., & Gauntner, T. (2008). Mechanics of torque generation during quadrupedal arboreal locomotion.Journal of Biomechanics, 41, 2388–2395.

    Article PubMed  Google Scholar 

  • Lammers, A. R., & Zurcher, U. (2011a). Stability during arboreal locomotion. In V. Klika (Ed.),Theoretical biomechanics (pp. 1–16).

    Google Scholar 

  • Lammers, A. R., & Zurcher, U. (2011b). Torque around the center of mass: Dynamic stability during quadrupedal arboreal locomotion in the Siberian chipmunk (Tamias sibiricus).Zoology, 114(2), 95–103.

    Article PubMed  Google Scholar 

  • Langowski, J. K., Dodou, D., Kamperman, M., & van Leeuwen, J. L. (2018). Tree frog attachment: Mechanisms, challenges, and perspectives.Frontiers in Zoology, 15(1), 1–21.

    Article  Google Scholar 

  • Larney, E., & Larson, S. G. (2004). Compliant walking in primates: Elbow and knee yield in primates compared to other mammals.American Journal of Physical Anthropology, 125, 42–50.

    Article PubMed  Google Scholar 

  • Larson, S. G. (1998a). Parallel evolution of the hominoid trunk and forelimb.Evolutionary Anthroplogy, 87–99.

    Google Scholar 

  • Larson, S. G. (1998b). Unique aspects of quadrupedal locomotion in nonhuman primates. In E. Strasser, J. Fleagle, A. Rosenberger, & H. McHenry (Eds.),Primate locomotion: Recent advances (pp. 157–173). Plenum Press.

    Chapter  Google Scholar 

  • Larson, S. G., & Stern, J. T. (2006). Maintenance of above-branch balance during primate arboreal quadrupedalism: Coordinated use of forearm rotators and tail motion.American Journal of Physical Anthropology, 129, 71–81.

    Article PubMed  Google Scholar 

  • Larson, S. G., Schmitt, D., Lemelin, P., & Hamrick, M. (2000). Uniqueness of primate forelimb posture during quadrupedal locomotion.American Journal of Physical Anthropology, 112, 87–101.

    Article CAS PubMed  Google Scholar 

  • Larson, S. G., Schmitt, D., Lemelin, P., & Hamrick, M. (2001). Limb excursion during quadrupedal walking: how do primates compare to other mammals?Journal of Zoology London, 255, 353–365.

    Article  Google Scholar 

  • Lawler, R. R., & Stamps, C. (2002). The relationship between tail use and positional behavior inAlouatta palliata.Primates, 43, 147–152.

    Article PubMed  Google Scholar 

  • Lemelin, P., & Cartmill, M. (2010). The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus).The Journal of Experimental Zoology, 313A, 157–168.

    Google Scholar 

  • Lemelin, P., Schmitt, D., & Cartmill, M. (2003). Footfall patterns and interlimb coordination in opossums (Family Didelphidae): Evidence for the evolution of diagonal sequence gaits in primates.Journal of Zoology London, 260, 423–429.

    Article  Google Scholar 

  • Losos, J. B. (1990). The evolution of form and function: Morphology and locomotor performance in West IndianAnolis lizards.Evolution, 44(5), 1189–1203.

    Article PubMed  Google Scholar 

  • Losos, J. (2009).Lizards in an evolutionary tree. University of California Press.

    Google Scholar 

  • Losos, J. B., & Irschick, D. J. (1996). The effect of perch diameter on escape behaviour ofAnolis lizards: Laboratory predictions and field tests.Animal Behaviour, 51(3), 593–602.

    Article  Google Scholar 

  • Losos, J. B., & Sinervo, B. (1989). The effects of morphology and perch diameter on sprint performance ofAnolis lizards.The Journal of Experimental Biology, 145(1), 23–30.

    Article  Google Scholar 

  • Losos, J. B., Warheitt, K. I., & Schoener, T. W. (1997). Adaptive differentiation following experimental island colonization inAnolis lizards.Nature, 387(6628), 70–73.

    Article CAS  Google Scholar 

  • Lovell, N. C. (1991). An evolutionary framework for assessing illness and injury in nonhuman primates.The Yearbook of Physical Anthropology, 34, 117–155.

    Article  Google Scholar 

  • MacLellan, M. J., & Patla, A. E. (2006). Adaptations of walking pattern on a compliant surface to regulate dynamic stability.Experimental Brain Research, 173(3), 521–530.

    Article PubMed  Google Scholar 

  • Maiolino, S. A., Kingston, A. K., & Lemelin, P. (2016). Comparative and functional morphology of the primate hand integument. In T. L. Kivell, P. Lemelin, B. G. Richmond, & D. Schmitt (Eds.),The evolution of the primate hand (pp. 195–224). Springer.

    Chapter  Google Scholar 

  • Manzano, A. S., Abdala, V., & Herrel, A. (2008). Morphology and function of the forelimb in arboreal frogs: Specializations for grasping ability?Journal of Anatomy, 213, 296–307.

    Article PubMed PubMed Central  Google Scholar 

  • Martin, R. D. (1968). Reproduction and ontogeny in tree-shrews (Tupaia belangeri), with reference to the general behaviour and taxonomic relationships.Zeitschrift für Tierpsychologie, 25(4).

    Google Scholar 

  • Mattingly, W. B., & Jayne, B. C. (2004). Resource use in arboreal habitats: Structure affects locomotion of four ecomorphs ofAnolis lizards.Ecology, 85(4), 1111–1124.

    Article  Google Scholar 

  • McGraw, W. S. (1998). Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast.The American Journal of Physical Anthropologists, 105(4), 493–510.

    Article CAS  Google Scholar 

  • McMahon, T. A. (1985). The role of compliance in mammalian running.The Journal of Experimental Biology, 115, 263–282.

    Article CAS PubMed  Google Scholar 

  • McMahon, T. A., & Cheng, G. C. (1990). The mechanics of running: How does stiffness couple with speed?Journal of Biomechanics, 23(Suppl 1), 65–78.

    Article PubMed  Google Scholar 

  • McMahon, T. A., & Kronauer, R. E. (1976). Tree structures: Deducing the principle of mechanical design.Journal of Theoretical Biology, 59(2), 443–466.

    Article CAS PubMed  Google Scholar 

  • McMahon, T. A., Valiant, G., & Frederick, E. C. (1987). Groucho running.Journal of Applied Physiology, 62, 2326–2337.

    Article CAS PubMed  Google Scholar 

  • McNamara, A., Dunham, N. T., Shapiro, L. J., & Young, J. W. (2019). The effects of natural substrate discontinuities on the quadrupedal gait kinematics of free-rangingSaimiri sciureus.American Journal of Primatology, 81, e23055.

    Article PubMed  Google Scholar 

  • Meiri, S. (2018). Traits of lizards of the world: Variation around a successful evolutionary design.Global Ecology and Biogeography, 27(10), 1168–1172.

    Article  Google Scholar 

  • Meldrum, D. J. (1998).Tail-assisted hind limb suspension as a transitional behavior in the evolution of the platyrrhine prehensile tail. Primate locomotion (pp. 145–156). Springer.

    Google Scholar 

  • Miller, A. H., & Stroud, J. T. (2021). Novel tests of the key innovation hypothesis: Adhesive toepads in arboreal lizards.Systematic Biology.

    Google Scholar 

  • Mincer, S. T., & Russo, G. A. (2020). Substrate use drives the macroevolution of mammalian tail length diversity.Proceedings of the Royal Society B, 287(1920), 20192885.

    Article PubMed PubMed Central  Google Scholar 

  • Morbeck, M. E. (1977). Positional behavior, selective use of habitat substrate and associated non-positional behavior in free-rangingColobus guereza (Rüppel, 1835).Primates, 18, 35–58.

    Article  Google Scholar 

  • Myatt, J. P., & Thorpe, S. K. S. (2011). Postural strategies employed by orangutans (Pongo abelii) during feeding in the terminal branch niche.American Journal of Physical Anthropology, 146, 73–82.

    Article CAS PubMed  Google Scholar 

  • Napier, J. R. (1967). Evolutionary aspects of primate locomotion.American Journal of Physical Anthropology, 27, 333–342.

    Article CAS PubMed  Google Scholar 

  • Nekaris, K. A. I. (2005). Foraging behavior of the slender loris (Loris lydekkerianus lydekkerianus): Implications for theories of primate origins.Journal of Human Evolution, 49, 289–300.

    Article CAS PubMed  Google Scholar 

  • Nyakatura, J. A. (2019). Early primate evolution: insights into the functional significance of grasping from motion analyses of extant mammals.Biological Journal of the Linnean Society, 127(3), 611–631.

    Article  Google Scholar 

  • Nyakatura, J. A., & Heymann, E. W. (2010). Effects of support size and orientation on symmetric gaits in free-ranging tamarins of Amazonian Peru: implications for the functional significance of primate gait sequence patterns.Journal of Human Evolution, 58(3), 242–251.

    Article PubMed  Google Scholar 

  • O’Neill, M. C., & Schmitt, D. (2012). The gaits of primates: Center of mass mechanics in walking, cantering and galloping ring-tailed lemurs,Lemur catta.Journal of Experimental Biology, 215(10), 1728–1739.

    Article PubMed  Google Scholar 

  • Organ, J. M., Teaford, M. F., & Taylor, A. B. (2009). Functional correlates of fiber architecture of the lateral caudal musculature in prehensile and nonprehensile tails of the Platyrrhini (Primates) and Procyonidae (Carnivora).The Anatomical Record, 292(6), 827–841.

    Article PubMed  Google Scholar 

  • Peterson, J. A. (1984). The locomotion ofChamaeleo (Reptilia: Sauria) with particular reference to the forelimb.Journal of Zoology, 202(1), 1–42.

    Article  Google Scholar 

  • Polk, J. D., Demes, B., Jungers, W. L., Biknevicius, A. R., Heinrich, R. E., & Runestad, J. A. (2000). A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: Are primates really unique?Journal of Human Evolution, 39, 297–325.

    Article CAS PubMed  Google Scholar 

  • Pouydebat, E., & Bardo, A. (2019).An interdisciplinary approach to the evolution of grasping and manipulation. Oxford University Press.

    Book  Google Scholar 

  • Preuschoft, H., & Günther, M. M. (1994). Biomechanics and body shape in primates compared with horses.Zeitschrift für Morphologie und Anthropologie, 80, 149–165.

    Article  Google Scholar 

  • Pruetz, J. D., Fulton, S., Marchant, L. F., McGrew, W. C., Schiel, M., & Waller, M. (2008). Arboreal nesting as anti-predator adaptation by savanna chimpanzees (Pan troglodytes verus) in southeastern Senegal.American Journal of Primatology: Official Journal of the American Society of Primatologists, 70(4), 393–401.

    Article CAS  Google Scholar 

  • Raichlen, D. A. (2005). Effects of limb mass distribution on the ontogeny of quadrupedalism in infant baboons (Papio cynocephalus) and implications for the evolution of primate quadrupedalism.Journal of Human Evolution, 49, 415–431.

    Article PubMed  Google Scholar 

  • Rendall, D., & Di Fiore, A. (2007). Homoplasy, homology, and the perceived special status of behavior in evolution.Journal of Human Evolution, 52(5), 504–521.

    Article PubMed  Google Scholar 

  • Renous, S., Höfling, E., & Da Rocha, P. (2010). Effect of substrate on the locomotion behaviour of the South American iguanian lizardPolychrus acutirostris.Italian Journal of Zoology, 77(2), 216–226.

    Article  Google Scholar 

  • Reynaga, C. M., Eaton, C. E., Strong, G. A., & Azizi, E. (2019). Compliant substrates disrupt elastic energy storage in jumping tree frogs.Integrative and Comparative Biology, 59(6), 1535–1545.

    Article PubMed  Google Scholar 

  • Reynolds, T. R. (1987). Stride length and its determinants in humans, early hominids, primates, and mammals.American Journal of Physical Anthropology, 72, 101–115.

    Article CAS PubMed  Google Scholar 

  • Rose, M. D. (1973). Quadrupedalism in primates.Primates, 14, 337–357.

    Article  Google Scholar 

  • Rose, M. D. (1974). Postural adaptations in New and Old World monkeys. In F. A. Jenkins (Ed.),Primate locomotion (pp. 201–222). Academic Press.

    Google Scholar 

  • Rubenson, J., Heliams, D. B., Lloyd, D. G., & Fournier, P. A. (2004). Gait selection in the ostrich: Mechanical and metabolic characteristics of walking and running with and without an aerial phase.Proceedings of the Royal Society B-Biological Sciences, 271(1543), 1091–1099.

    Article PubMed Central  Google Scholar 

  • Ruina, A., Bertram, J. E. A., & Srinivasan, M. (2005). A collisional model of the energetic cost of support work in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.Journal of Theoretical Biology, 237, 170–192.

    Article PubMed  Google Scholar 

  • Russo, G. A., & Shapiro, L. J. (2011). Morphological correlates of tail length in the catarrhine sacrum.Journal of Human Evolution, 61(3), 223–232.

    Article PubMed  Google Scholar 

  • Sargis, E. J. (2002a). Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications.Journal of Morphology, 253(1), 10–42.

    Article PubMed  Google Scholar 

  • Sargis, E. J. (2002b). Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications.Journal of Morphology, 254(2), 149–185.

    Article PubMed  Google Scholar 

  • Schapker, N. M., Chadwell, B. A., & Young, J. W. (2022). Robust locomotor performance of squirrel monkeys (Saimiri boliviensis) in response to simulated changes in support diameter and compliance.Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 337, 417–433.

    Article PubMed  Google Scholar 

  • Schmelzle, T., Sánchez-Villagra, M. R., & Maier, W. (2007). Vestibular labyrinth diversity in diprotodontian marsupial mammals.Mammal Study, 32(2), 83–97.

    Article  Google Scholar 

  • Schmidt, M. (2005a). Hind limb proportions and kinematics: Are small primates different from other small mammals?The Journal of Experimental Biology, 208(17), 3367–3383.

    Article PubMed  Google Scholar 

  • Schmidt, M. (2005b). Quadrupedal locomotion in squirrel monkeys (Cebidae:Saimiri sciureus): A cineradiographic study of limb kinematics and related substrate reaction forces.American Journal of Physical Anthropology, 128, 359–370.

    Article PubMed  Google Scholar 

  • Schmidt, A. (2011). Functional differentiation of trailing and leading forelimbs during locomotion on the ground and on a horizontal branch in the European red squirrel (Sciurus vulgaris, Rodentia).Zoology (Jena, Germany), 114(3), 155–164.

    Article PubMed  Google Scholar 

  • Schmidt, A., & Fischer, M. S. (2010). Arboreal locomotion in rats - The challenge of maintaining stability.The Journal of Experimental Biology, 213(21), 3615–3624.

    Article PubMed  Google Scholar 

  • Schmidt, A., & Fischer, M. S. (2011). The kinematic consequences of locomotion on sloped arboreal substrates in a generalized (Rattus norvegicus) and a specialized (Sciurus vulgaris) rodent.The Journal of Experimental Biology, 214(15), 2544–2559.

    Article  Google Scholar 

  • Schmitt, D. (1994). Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates.Journal of Human Evolution, 26(441–458), 441–457.

    Article  Google Scholar 

  • Schmitt, D. (1998). Forelimb mechanics during arboreal and terrestrial quadrupedalism in Old World monkeys. In E. Strasser, J. Fleagle, A. Rosenberger, & H. McHenry (Eds.),Primate locomotion: Recent advances (pp. 175–200). Plenum Press.

    Chapter  Google Scholar 

  • Schmitt, D. (1999). Compliant walking in primates.Journal of Zoology London, 248, 149–160.

    Article  Google Scholar 

  • Schmitt, D. (2003a). Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: Implications for interpreting locomotor behavior in fossil primates.Journal of Human Evolution, 44, 47–58.

    Article PubMed  Google Scholar 

  • Schmitt, D. (2003b). Substrate size and primate forelimb mechanics: Implications for understanding the evolution of primate locomotion.International Journal of Primatology, 24, 1023–1036.

    Article  Google Scholar 

  • Schmitt, D., Cartmill, M., Griffin, T. M., Hanna, J. B., & Lemelin, P. (2006). Adaptive value of ambling gaits in primates and other mammals.The Journal of Experimental Biology, 209, 2042–2049.

    Article PubMed  Google Scholar 

  • Schmitt, D., Gruss, L. T., & Lemelin, P. (2010). Brief communication: Forelimb compliance in arboreal and terrestrial opossums.American Journal of Physical Anthropology, 141(1), 142–146.

    PubMed  Google Scholar 

  • Schultz, A. H. (1944). Age changes and variability in gibbons. A morphological study on a populations sample of a man-like ape.American Journal of Physical Anthropology, 2, 1–129.

    Article  Google Scholar 

  • Schwaner, M., Hsieh, S., Swalla, B., & McGowan, C. (2021). An introduction to an evolutionary tail: EvoDevo, structure and function of post-anal appendages.Integrative and Comparative Biology.

    Google Scholar 

  • Shapiro, L. J., & Raichlen, D. A. (2005). Lateral sequence walking in infantPapio cynocephalus: Implications for the evolution of diagonal sequence walking in primates.American Journal of Physical Anthropology, 126, 205–213.

    Article PubMed  Google Scholar 

  • Shapiro, L. J., & Raichlen, D. A. (2007). Primate gaits and arboreal stability: A response to Cartmill et al.American Journal of Physical Anthropology, 133, 825–827.

    Article  Google Scholar 

  • Shapiro, L. J., & Young, J. W. (2010). Is primate-like quadrupedalism necessary for fine-branch locomotion? A test using sugar gliders (Petaurus breviceps).Journal of Human Evolution, 58, 309–319.

    Article PubMed  Google Scholar 

  • Shapiro, L. J., & Young, J. W. (2012). Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps): Effects of age and substrate size.The Journal of Experimental Biology, 215(3), 480–496.

    Article PubMed  Google Scholar 

  • Shapiro, L. J., Young, J. W., & VandeBerg, J. L. (2014). Body size and the small branch niche: Using marsupial ontogeny to model primate locomotor evolution.Journal of Human Evolution, 68, 14–31.

    Article PubMed  Google Scholar 

  • Shapiro, L. J., Chadwell, B. A., & Young, J. W. (2016a). Tail kinematics during asymmetrical gaits in mouse lemurs (Microcebus murinus).American Journal of Physical Anthropology, 159(Suppl. 62), 38.

    Google Scholar 

  • Shapiro, L. J., Kemp, A. D., & Young, J. W. (2016b). Effects of substrate size and orientation on quadrupedal gait kinematics in mouse lemurs (Microcebus murinus).Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 325, 329–343.

    Article PubMed  Google Scholar 

  • Shattuck, M. R., & Williams, S. A. (2010). Arboreality has allowed for the evolution of increased longevity in mammals.Proceedings of the National Academy of Sciences, 107(10), 4635–4639.

    Article CAS  Google Scholar 

  • Sheehy, C. M., III, Albert, J. S., & Lillywhite, H. B. (2016). The evolution of tail length in snakes associated with different gravitational environments.Functional Ecology, 30(2), 244–254.

    Article  Google Scholar 

  • Siegel, M. I., & van Meter, R. (1973). Skeletal correlates of ecological adaptation in two species ofPeromyscus.Journal of Mammalogy, 54(1), 275–278.

    Article  Google Scholar 

  • Sinervo, B., & Losos, J. B. (1991). Walking the tight rope: Arboreal sprint performance amongSceloporus occidentalis lizard populations.Ecology, 72(4), 1225.

    Article  Google Scholar 

  • Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology.Journal of Human Evolution, 32, 523–559.

    Article CAS PubMed  Google Scholar 

  • Spezzano, L. C., & Jayne, B. C. (2004). The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei).The Journal of Experimental Biology, 207(12), 2115–2131.

    Article PubMed  Google Scholar 

  • Spinner, M., Westhoff, G., & Gorb, S. N. (2014). Subdigital setae of chameleon feet: Friction-enhancing microstructures for a wide range of substrate roughness.Scientific Reports, 4(1), 1–9.

    Article  Google Scholar 

  • Stevens, N. J. (2003).The influence of substrate size, orientation and compliance upon prosimian arboreal quadrupedalism [Ph.D. Dissertation]. State University of New York at Stony Brook: Stony Brook University.

    Google Scholar 

  • Stevens, N. J. (2007). The effect of branch diameter on primate gait sequence pattern.American Journal of Primatology, 70, 1–7.

    Google Scholar 

  • Sussman, R. W. (1991). Primate origins and the evolution of angiosperms.American Journal of Primatology, 23, 209–223.

    Article PubMed  Google Scholar 

  • Sussman, R. W., & Raven, P. H. (1978). Pollination by lemurs and marsupials: An archaic coevolutionary system.Science, 200, 731–736.

    Article CAS PubMed  Google Scholar 

  • Sustaita, D., Pouydebat, E., Manzano, A., Abdala, V., Hertel, F., & Herrel, A. (2013). Getting a grip on tetrapod grasping: Form, function, and evolution.Biological Reviews, 88(2), 380–405.

    Article PubMed  Google Scholar 

  • Taylor, M. E. (1970). Locomotion in some East African viverrids.Journal of Mammalogy, 51, 42–51.

    Article  Google Scholar 

  • Thorpe, S., Crompton, R., & Alexander, R. (2007a). Orangutans use compliant branches to lower the energetic cost of locomotion.Biology Letters, 3, 253–256.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Thorpe, S. K. S., Holder, R. L., & Crompton, R. H. (2007b). Origin of human bipedalism as an adaptation for locomotion on flexible branches.Science, 316(5829), 1328–1331.

    Article CAS PubMed  Google Scholar 

  • Thorpe, S. K. S., Holder, R., & Crompton, R. H. (2009). Orangutans employ unique strategies to control branch flexibility.Proceedings of the National Academy of Sciences, 106(31), 12646.

    Article CAS  Google Scholar 

  • Tinius, A., & Russell, A. P. (2017). Points on the curve: An analysis of methods for assessing the shape of vertebrate claws.Journal of Morphology, 278(2), 150–169.

    Article PubMed  Google Scholar 

  • Toro, E., Herrel, A., & Irschick, D. (2004). The evolution of jumping performance in CaribbeanAnolis lizards: Solutions to biomechanical trade-offs.The American Naturalist, 163(6), 844–856.

    Article PubMed  Google Scholar 

  • Usherwood, J. R., & Smith, B. J. (2018). The grazing gait, and implications of toppling table geometry for primate footfall sequences.Biology Letters, 14(5), 20180137.

    Article PubMed PubMed Central  Google Scholar 

  • van Casteren, A., Sellers, W. I., Thorpe, S. K. S., Coward, S., Crompton, R. H., & Ennos, A. R. (2013). Factors affecting the compliance and sway properties of tree branches used by the Sumatran orangutan (Pongo abelii).PLoS One, 8(7), e67877–e67879.

    Article PubMed PubMed Central  Google Scholar 

  • van Schaik, C. P., & Deaner, R. O. (2003). Life history and cognitive evolution in primates. In F. B. M. de Waal & P. L. Tyack (Eds.),Animal social complexity (pp. 5–25). Harvard Unversity Press.

    Chapter  Google Scholar 

  • Van Valkenburgh, B. (1987). Skeletal indicators of locomotor behavior in living and extinct carnivores.Journal of Vertebrate Paleontology, 7(2), 162–182.

    Article  Google Scholar 

  • Walker, S. E. (1998). Fine-grained differences within positional categories: a case study ofPithecia andChiropotes. In E. Strasser, J. Fleagle, A. Rosenberger, & H. McHenry (Eds.),Primate locomotion: Recent advances (pp. 31–43). Springer.

    Chapter  Google Scholar 

  • Walker, S. E. (2005). Leaping behavior ofPithecia pithecia andChiropotes satanas in eastern Venezuela.American Journal of Primatology, 66(4), 369–387.

    Article PubMed  Google Scholar 

  • Walker, C., Vierck, C. J., & Ritz, L. A. (1998). Balance in the cat: Role of the tail and effects of sacrocaudal transection.Behavioural Brain Research, 91(1–2), 41–47.

    Article CAS PubMed  Google Scholar 

  • Wallace, I. J., & Demes, B. (2008). Symmetrical gaits ofCebus apella: Implications for the functional significance of diagonal sequence gait in primates.Journal of Human Evolution, 54, 783–794.

    Article PubMed  Google Scholar 

  • Warren, R. D., & Crompton, R. H. (1997). Locomotor ecology ofLepilemur edwardsi andAvahi occidentalis.American Journal of Physical Anthropology, 104(4), 471–486.

    Article CAS PubMed  Google Scholar 

  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements.Journal of Applied Physiology, 89(5), 1991–1999.

    Article CAS PubMed  Google Scholar 

  • Wheatley, R., Angilletta, M. J., Niehaus, A. C., & Wilson, R. S. (2015). How fast should an animal run when escaping? An optimality model based on the trade-off between speed and accuracy.Integrative and Comparative Biology, 55(6), 1166–1175.

    PubMed  Google Scholar 

  • Wheatley, R., Buettel, J. C., Brook, B. W., Johnson, C. N., & Wilson, R. P. (2021). Accidents alter animal fitness landscapes.Ecology Letters, 24(5), 920–934.

    Article PubMed  Google Scholar 

  • Williamson, R. E., Webb, S. E., Dubreuil, C., Lopez, R., Hernandez, S. C., Fedigan, L. M., & Melin, A. D. (2021). Sharing spaces: Niche differentiation in diet and substrate use among wild capuchin monkeys.Animal Behaviour.

    Google Scholar 

  • Wilson, D. R. (1972). Tail reduction inMacaca. In R. H. Tuttle (Ed.),The functional and evolutionary biology of primates (pp. 241–261). Aldine-Atherton.

    Google Scholar 

  • Wimberly, A. N., Slater, G. J., & Granatosky, M. C. (2021). Evolutionary history of quadrupedal walking gaits shows mammalian release from locomotor constraint.Proceedings of the Royal Society B, 288(1957), 20210937.

    Article PubMed PubMed Central  Google Scholar 

  • Wölfer, J., Aschenbach, T., Michel, J., & Nyakatura, J. (2021).Mechanics of arboreal locomotion in Swinhoe’s striped squirrels: A potential model for early Euarchontoglires.

    Google Scholar 

  • Wynn, M. L., Clemente, C., Nasir, A. F. A. A., & Wilson, R. S. (2015). Running faster causes disaster: Trade-offs between speed, manoeuvrability and motor control when running around corners in northern quolls (Dasyurus hallucatus).The Journal of Experimental Biology, 218(Pt 3), 433–439.

    Article PubMed  Google Scholar 

  • Young, J. W. (2009). Substrate determines asymmetrical gait dynamics in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis).American Journal of Physical Anthropology, 138, 403–420.

    Article PubMed  Google Scholar 

  • Young, J. W. (2012). Ontogeny of limb force distribution in squirrel monkeys (Saimiri boliviensis): insights into the mechanical bases of primate hind limb dominance.Journal of Human Evolution, 62, 473–485.

    Article PubMed  Google Scholar 

  • Young, J. W., & Chadwell, B. A. (2015). The mechanics of arboreal stability in squirrel monkeys (Saimiri boliviensis).The American Journal of Physical Anthropolology Supplement, 60, 330.

    Google Scholar 

  • Young, J. W., & Chadwell, B. A. (2020). Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports.Journal of Human Evolution, 142, 102767.

    Article PubMed  Google Scholar 

  • Young, J. W., Russo, G. A., Fellmann, C. D., Thatikunta, M. A., & Chadwell, B. A. (2015). Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus).Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 323(8), 556–566.

    PubMed  Google Scholar 

  • Young, J. W., Stricklen, B. M., & Chadwell, B. A. (2016). Effects of support diameter and compliance on common marmoset (Callithrix jacchus) gait kinematics.The Journal of Experimental Biology, 219, 2659–2672.

    Article PubMed  Google Scholar 

  • Young, J. W., McNamara, A., Dunham, N. T., & Shapiro, L.J. (2019). Influence of substrate compliance on wild primate gait kinematics.88th Annual Meeting of the American Association of Physical Anthropologists. Cleveland, OH.

    Google Scholar 

  • Young, J. W., Chadwell, B. A., Dunham, N. T., McNamara, A., Phelps, T., Hieronymus, T., & Shapiro, L. J. (2021). The stabilizing function of the tail during arboreal quadrupedalism.Integrative and Comparative Biology.https://doi.org/10.1093/icb/icab096

  • Zani, P. (2000). The comparative evolution of lizard claw and toe morphology and clinging performance.Journal of Evolutionary Biology, 13(2), 316–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA

    Jesse W. Young

Authors
  1. Jesse W. Young

Corresponding author

Correspondence toJesse W. Young.

Editor information

Editors and Affiliations

  1. Institute of Systematics, Evolution, Biodiversity, ISYEB – UMR 7205 – CNRS/MNHN/EPHE/UA, National Museum of Natural History, Sorbonne University, Paris, France

    Vincent L. Bels

  2. Department of Biological Sciences, University of Calgary, Calgary, AB, Canada

    Anthony P. Russell

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Young, J.W. (2023). Convergence of Arboreal Locomotor Specialization: Morphological and Behavioral Solutions for Movement on Narrow and Compliant Supports. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_11

Download citation

Keywords

Publish with us

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp