Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Compact Scheduling of Open Shops

  • Chapter
  • First Online:

Part of the book series:International Series in Operations Research & Management Science ((ISOR,volume 325))

  • 458Accesses

Abstract

This chapter concentrates on compact and cyclic compact open shop scheduling. Compact scheduling is motivated by timetabling and cyclic compact scheduling by just-in-time systems. A compact schedule requires each job to be processed in a no-wait fashion and each machine to process operations without idle time. Compact schedules do not always exist. The chapter presents smallest instances for which compact schedules do not exist and tests to determine whether compact schedules exist for a given degree Δ. Such tests run in polynomial time for open shop instances with Δ ≤ 4 but becomeNP-complete for Δ = 5. The minimization of makespan over all compact schedules has polynomial-time solution only for Δ ≤ 3, and it is open even for (3, 4)-biregular open shops where every job has length equal 3 and each machine workload equal 4. Deficiency has been proposed as a measure of deviation from compactness. However, the problem of minimizing deficiency is not onlyNP-hard in the strong sense but also the existing integer programming (IP) and constraint programming (CP) models can hardly solve problems of sizen + m = 10 in reasonable time.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. J. Akiyama, M. Kano,Factors and Factorizations of Graphs: Proof Techniques in Factor Theory, vol. 2031 ofLecture Notes in Mathematics (Springer Berlin/Heidelberg, 2011)

    Google Scholar 

  2. S. Altinakar, G. Caporossi, A. Hertz, A comparison of integer and constraint programming models for the deficiency problem. Comput. Oper. Res.68, 89–96 (2016)

    Article  Google Scholar 

  3. S. Altinakar, G. Caporossi, A. Hertz, Symmetry breaking constraints for the minimum deficiency problem. J. Graph Algorithms Appl.21, 195–218 (2017)

    Article  Google Scholar 

  4. A. Asratian, C.J. Casselgren, P.A. Petrosyan, Some results on cyclic interval edge colorings of graphs. J. Graph Theory87, 239–252 (2018)

    Article  Google Scholar 

  5. A.S. Asratian, C.J. Casselgren, On interval edge colorings of (α,β)-biregular bipartite graphs. Discrete Mathematics307, 1951–1956 (2007)

    Article  Google Scholar 

  6. A.S. Asratian, C.J. Casselgren, On path factors of (3,4)-biregular bigraphs. Graphs Comb.24, 405–411 (2008)

    Article  Google Scholar 

  7. A.S. Asratian, C.J. Casselgren, P.A. Petrosyan, Cyclic deficiency of graphs. Discrete Appl. Math.266, 171–185 (2019)

    Article  Google Scholar 

  8. A.S. Asratian, C.J. Casselgren, J. Vandenbussche, D.B. West, Proper path-factors and interval edge-coloring of (3, 4)-biregular bigraphs. J. Graph Theory61, 88–97 (2009)

    Article  Google Scholar 

  9. A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph (in Russian). Appl. Math. (also arXiv:1401.8079v1)5, 25–34 (1987)

    Google Scholar 

  10. J.J. Bartholdi, K.L. McCroan, Scheduling interviews for a job fair. Operations Research38, 951–960 (1990)

    Article  Google Scholar 

  11. M. Bodur, J.R. Luedtke, Integer programming formulations for minimum deficiency interval coloring. Networks72, 249–271 (2018)

    Article  Google Scholar 

  12. M. Bouchard, A. Hertz, G. Desaulniers, Lower bounds and a tabu search algorithm for the minimum deficiency problem. J. Comb. Optim.17, 168–191 (2009)

    Article  Google Scholar 

  13. C.J. Casselgren, A note on path factors of (3, 4)-biregular bigraphs. Electron. J. Comb.18, 1–12 (2011)

    Google Scholar 

  14. C.J. Casselgren, P.A. Petrosyan, B. Toft, On interval and cyclic interval edge colorings of (3,5)-biregular graphs. Discrete Mathematics340, 2678–2687 (2017)

    Article  Google Scholar 

  15. C.J. Casselgren, B. Toft, On interval edge colorings of biregular bipartite graphs with small vertex degrees. J. Graph Theory80, 83–97 (2015)

    Article  Google Scholar 

  16. E.G. Coffman Jr., D. Dereniowski, W. Kubiak, An efficient algorithm for finding ideal schedules. Acta Informatica49, 1–14 (2012)

    Article  Google Scholar 

  17. E. Cole, K. Ost, S. Schirra, Edge-coloring Bipartite Multigraphs in\(O(E \log D)\). Combinatorica21, 5–12 (2001)

    Google Scholar 

  18. D. de Werra, Ph. Solot, Compact cylindrical chromatic scheduling. SIAM J. Disc. Math.4, 528–534 (1991)

    Article  Google Scholar 

  19. D. de Werra, Ph. Solot, Some graph-theoretical models for scheduling in automated production systems. Networks23, 651–660 (1993)

    Article  Google Scholar 

  20. S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems. SIAM J. Comput.5, 691–703 (1976)

    Article  Google Scholar 

  21. K. Giaro, The complexity of consecutive Δ-coloring of bipartite graphs: 4 is easy, 5 is hard. Ars Combin.47, 287–298 (1997)

    Google Scholar 

  22. K. Giaro,Compact task scheduling on dedicated processors with no waiting periods. PhD thesis, Gdańsk University of Technology, EIT Faculty, 1999

    Google Scholar 

  23. K. Giaro, M. Kubale, M. Małafiejski, Compact scheduling in open shop with zero-one time operations. INFOR37, 37–47 (1999)

    Google Scholar 

  24. K. Giaro, M. Kubale, M. Małafiejski, On the deficiency of bipartite graphs. Discrete Appl. Math.94, 193–203 (1999)

    Article  Google Scholar 

  25. K. Giaro, M. Kubale, M. Małafiejski, Consecutive colorings of the edges of general graphs. Discrete Mathematics236, 131–143 (2001)

    Article  Google Scholar 

  26. T. Gonzalez, Unit execution time shop problems. Math. O. R7, 57–66 (1982)

    Article  Google Scholar 

  27. A. Grzesik, H. Khachatrian, Interval edge-coloring ofK1,m,n. Discrete Appl. Math.174, 140–145 (2014)

    Article  Google Scholar 

  28. R.W. Hall, Cyclic scheduling for improvement. Int. J. Prod. Res.26, 457–472 (1988)

    Article  Google Scholar 

  29. H.M. Hansen, Scheduling with minimum waiting periods (in Danish). Master’s thesis, Odense University, Denmark, 1992

    Google Scholar 

  30. D. Hanson, C.O.M. Loten, A lower bound for interval coloring bi-regular bipartite graphs. Bull. Inst. Comb. Appl.18, 69–74 (1996)

    Google Scholar 

  31. D. Hanson, C.O.M. Loten, B. Toft, On interval colourings of bi-regular bipartite graphs. Ars Comb.50, 23–32 (1998)

    Google Scholar 

  32. T.R. Jensen, B. Toft,Graph Coloring Problems (Wiley, 1995)

    Google Scholar 

  33. R.R. Kamalian, Interval colorings of complete bipartite graphs and trees. Comput. Cen. of Acad. Sci. of Armenian SSR, Erevan, 1989 (in Russian)

    Google Scholar 

  34. R.R. Kamalian,Interval edge-colorings. PhD thesis, Novosibirsk, 1990

    Google Scholar 

  35. H.H. Khachatrian, T. Mamikonyan, On interval edge-colorings of bipartite graphs of small order. arXiv:1508.02851v1, 2015

    Google Scholar 

  36. A.V. Kostochka, Unpublished manuscript (1995)

    Google Scholar 

  37. M. Kubale, Some results concerning the complexity of restricted coloring of graphs. Discrete Appl. Math.36, 35–46 (1992)

    Article  Google Scholar 

  38. M. Kubale, A. Nadolski, Chromatic scheduling in a cyclic open shop. Eur. J. Oper. Res.164, 585–591 (2005)

    Article  Google Scholar 

  39. W. Kubiak,Proportional Optimization and Fairness (Springer, 2009)

    Google Scholar 

  40. N.V.R. Mahadev, Ph. Solot, D. de Werra, The cyclic compact open-shop scheduling problem. Discrete Mathematics111, 361–366 (1993)

    Article  Google Scholar 

  41. S. Micali, V.V. Vazirani, An\(O(m\sqrt {n})\) algorithm for finding maximum matching in general graphs, inProc. 21st Ann. IEEE Symp. on Foundations of Computer Science, pp. 17–27 (1980)

    Google Scholar 

  42. Y. Monden,Toyota Production System: An Integrated Approach to Just–In–Time (Engineering and Management Press, Norcross, GA, 1998)

    Google Scholar 

  43. A. Nadolski, Compact cyclic edge-colorings of graphs. Discrete Mathematics308, 2407–2417 (2008)

    Article  Google Scholar 

  44. J. Petersen, Die teorie der regul\(\ddot {a}\)ren graphs. Acta Math., 193–220 (1891)

    Google Scholar 

  45. P.A. Petrosyan, H.H. Khachatrian, Interval non-edge-colorable bipartite graphs and multigraphs. J. Graph Theory76, 200–216 (2014)

    Article  Google Scholar 

  46. M.D. Plummer, Graph factors and factorization:1985 - 2003: A survey. Discrete Mathematics307, 791–821 (2007)

    Article  Google Scholar 

  47. A.V. Pyatkin, Interval coloring of (3,4)-biregular bipartite graphs having large cubic subgraphs. J. Graph Theory47, 122–128 (2004)

    Article  Google Scholar 

  48. A. Schwartz, The deficiency of a regular graph. Discrete Mathematics306, 1947–1954 (2006)

    Article  Google Scholar 

  49. S.V. Sevast’janov, Interval colorability of the edges of a bipartite graph (in Russian). Met. Diskret Analiz.50, 61–72 (1990)

    Google Scholar 

  50. Z. Shao, Z. Li, B. Wang, S. Wang, X. Zhang, Interval edge-coloring: A model of curriculum scheduling. AKCE Int. J. Graphs Comb.17, 725–729 (2020)

    Article  Google Scholar 

  51. F. Yang, X. Li, Interval coloring of (3,4)-biregular graphs having two (2,3)-biregular subgraphs. Appl. Math. Lett.24, 1574–1577 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Memorial University of Newfoundland, St. John’s, NL, Canada

    Wieslaw Kubiak

Authors
  1. Wieslaw Kubiak

Rights and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kubiak, W. (2022). Compact Scheduling of Open Shops. In: A Book of Open Shop Scheduling. International Series in Operations Research & Management Science, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-91025-9_9

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp