Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

General Open Shop Scheduling

  • Chapter
  • First Online:

Part of the book series:International Series in Operations Research & Management Science ((ISOR,volume 325))

  • 518Accesses

Abstract

Abstract

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. J.O. Achugbue, F.Y. Chin, Scheduling the open shop to minimize mean flow time. SIAM J. Comput.11, 709–720 (1982)

    Google Scholar 

  2. I. Adiri, N. Amit, Openshop and flowshop scheduling to minimize sum of completion times. Comput. Oper. Res.11, 275–284 (1984)

    Google Scholar 

  3. M.M. Ahmadian, M. Khatami, A. Salehipour, T.C.E. Cheng, Four decades of research on the open-shop scheduling problem to minimize makespan. Eur. J. Oper. Res. (2021).https://doi.org/10.1016/j.ejor.2021.03.026

  4. A.S. Asratian, C.J. Casselgren, On interval edge colorings of (α,β)-biregular bipartite graphs. Discrete Math.307, 1951–1956 (2007)

    Google Scholar 

  5. A. Atay, P. Calleja, S. Soteras, Open shop scheduling games. Eur. J. Oper. Res. (2021).https://doi.org/10.1016/j.ejor.2021.02.030

  6. W. Banaszczyk, The Steinitz constant of the plane. J. Reine Angew. Math.373, 218–220 (1987)

    Google Scholar 

  7. P. Baptiste, On minimizing the weighted number of late jobs in unit execution time open shops. Eur. J. Oper. Res.149, 344–354 (2003)

    Google Scholar 

  8. P. Baptiste, P. Brucker, M. Chrobak, C. Dürr, S. A. Kravchenko, F. Sourd, The complexity of mean flow time scheduling problems with release times. J. Sched.10, 139–146 (2007)

    Google Scholar 

  9. I. Bárány, T. Fiala, Nearly optimum solution of multimachine scheduling problems (in Hungarian). Szigma15, 177–191 (1982)

    Google Scholar 

  10. J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, J. Wȩglarz,Handbook on Scheduling: From Theory to Applications. International Handbooks on Information Systems (Springer, Berlin, 2007)

    Google Scholar 

  11. J.A. Bondy, U.S.R. Murty,Graph Theory with Applications (North-Holland Publishing, Amsterdam, 1976)

    Google Scholar 

  12. H. Bräsel, M. Harborth, T. Tautenhahn, P. Willenius, On the set of solutions of the open shop problem. Ann. Oper. Res.92, 241–263 (1999)

    Google Scholar 

  13. R.A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic matrices. Can. Math. Bull.25, 127–147 (1982)

    Google Scholar 

  14. P. Brucker,Scheduling Algorithms (Springer, Berlin, 1995)

    Google Scholar 

  15. P. Brucker, T. Hilbig, J. Hurink, A branch and bound algorithm for a single-machine scheduling problem with positive and negative time lags. Discrete Appl. Math.94, 77–99 (1999)

    Google Scholar 

  16. P. Brucker, J. Hurink, B. Jurisch, Wöstmann, A branch and bound algorithm for the open shop problem. Discrete Appl. Math.76, 43–49 (1997)

    Google Scholar 

  17. P. Brucker, B. Jurisch, M. Jurisch, Open-shop problems with unit processing times. Z. Opns. Res.37, 59–73 (1993)

    Google Scholar 

  18. P. Brucker, B. Jurisch, T. Tautenhahn, F. Werner, Scheduling unit time open shops to minimize the weighted number of late jobs. Oper. Res. Lett.14, 245 –250 (1993)

    Google Scholar 

  19. J. Carlier, É. Pinson, An algorithm for solving the job-shop problem. Manag. Sci.35, 164–176 (1989)

    Google Scholar 

  20. B. Chen, V.A. Strusevich, Approximation algorithms for three machine open shop scheduling. ORSA J. Comput.5, 321–328 (1993)

    Google Scholar 

  21. B. Chen, W. Yu, How good is a dense shop schedule. Acta Math. Appl. Sin.17, 121–128 (2001)

    Google Scholar 

  22. R. Chen,Open Shop Scheduling Problems and Their Dense Schedules. PhD Thesis, East China University of Science and Technology, 2003

    Google Scholar 

  23. R. Chen, W. Huang, Z. Men, G. Tang, Open-shop dense schedules: properties and worst-case performance ratio. J. Sched.15, 3–11 (2012)

    Google Scholar 

  24. R. Chen, W. Yu, Upper-bound of performance ratio of dense schedules for open-shop (in Chinese). J. East China Univ. Sci. Technol.26, 522–526 (2000)

    Google Scholar 

  25. R. Chen, W. Yu, Analysis of operation chain’s properties of dense schedules for open-shop. J. East China Univ. Sci. Technol.29, 522–526 (2003)

    Google Scholar 

  26. Y. Cho, S. Sahni, Preemptive scheduling of independent jobs with release and due times on open, flow and job shop. Opns. Res.29, 511–522 (1981)

    Google Scholar 

  27. E.G. Coffman Jr., D. Dereniowski, W. Kubiak, An efficient algorithm for finding ideal schedules. Acta Inform.49, 1–14 (2012)

    Google Scholar 

  28. E. Cole, K. Ost, S. Schirra, Edge-coloring Bipartite Multigraphs in\(O(E \log D)\). Combinatorica21, 5–12 (2001)

    Google Scholar 

  29. U. Dorndorf, E. Pesch, T. Phan-Huy, Solving the open shop scheduling problem. J. Sched.4, 157–174 (2001)

    Google Scholar 

  30. J. Du, J.Y.-T. Leung, Minimizing mean flow time in two-machine open shops and flow shops. J. Algorithms14, 24–44 (1993)

    Google Scholar 

  31. F. Dufossé, B. Uçar, Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices. Linear Algebra Appl.479, 108–115 (2016)

    Google Scholar 

  32. T. Fiala, An algorithm for the open-shop problem. Math. Oper. Res.8, 100–109 (1983)

    Google Scholar 

  33. M.R. Garey, D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, San Francisco, 1979)

    Google Scholar 

  34. A.A. Gladky, A two-machine preemptive openshop scheduling problem: an elementary proof of np-completeness. Eur. J. Oper. Res.103, 113–116 (1997)

    Google Scholar 

  35. T. Gonzalez, A note on open shop preemptive schedules. IEEE Trans. Comput.C-28, 782–786 (1979)

    Google Scholar 

  36. T. Gonzalez, Unit execution time shop problems. Math. Oper. Res.7, 57–66 (1982)

    Google Scholar 

  37. T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time. J. ACM23, 665–679 (1976)

    Google Scholar 

  38. J. Grabowski, E. Nowicki, S. Zdrzałka, A block approach for single-machine scheduling with release dates and due dates. Eur. J. Oper. Res.26, 278 –285 (1986)

    Google Scholar 

  39. R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discr. Math.5, 287–326 (1979)

    Google Scholar 

  40. A. Grigoriev,High Multiplicity Scheduling Problems. PhD Thesis, Maastricht University, 2003

    Google Scholar 

  41. D. Grimes, E. Hebrard, A. Malapert, Closing the open shop: Contradicting conventional wisdom, inInternational Conference on Principles and Practice of Constraint Programming (Springer, 2009), pp. 400–408

    Google Scholar 

  42. C. Guéret, N. Jussien, C. Prins, Using intelligent backtracking to improve branch-and-bound methods: an application to open-shop problems. Eur. J. Oper. Res.127, 344– 354 (2000)

    Google Scholar 

  43. C. Guéret, C. Prins, A new lower bound for the open-shop problem. Ann. Oper. Res.92, 165–183 (1999)

    Google Scholar 

  44. G. Hardy, J. Littlewood, G. Polya,Inequalities (Cambridge University Press, Cambridge, 1952)

    Google Scholar 

  45. H. Hoogeveen, P. Schuurman, G.J. Woeginger, Nonapproximability results for scheduling problems with minsum criteria. INFORMS J. Comput.13, 157–168 (2001)

    Google Scholar 

  46. W.A. Horn, Some simple scheduling algorithms. Naval Res. Logist. Q.21, 177–185 (1974)

    Google Scholar 

  47. J. Józefowska, B. Jurisch, W. Kubiak, Scheduling shops to minimize the weighted number of late jobs. Oper. Res. Lett.16, 277–283 (1994)

    Google Scholar 

  48. A. Kononov, S. Sevastyanov, M. Sviridenko, A complete 4-parametric complexity classification of short shop scheduling problems. J. Sched.15, 427–446 (2012)

    Google Scholar 

  49. C. Koulamas, G.J. Kyparisis, Open shop scheduling to minimize the number of late jobs. Naval Res. Logist.45, 525–532 (1998)

    Google Scholar 

  50. S.A. Kravchenko, On the complexity of minimizing the number of late jobs in unit time open shop. Discrete Appl. Math.100, 127–132 (2000)

    Google Scholar 

  51. M. Kubale, Open shop problem with zero-one time operations and integer date/deadline intervals. Discrete Appl. Math.76, 213–223 (1997)

    Google Scholar 

  52. W. Kubiak, A pseudo-polynomial algorithm for a two-machine no-wait job-shop scheduling problem. Eur. J. Oper. Res.43, 267–270 (1989)

    Google Scholar 

  53. W. Kubiak, C. Sriskandarajah, K. Zaras, A note on the complexity of open shop scheduling problems. INFOR29 (1991)

    Google Scholar 

  54. G.J. Kyparisis, C. Koulamas, Open shop scheduling with makespan and total completion time criteria. Comput. Oper. Res.27, 15–27 (2000)

    Google Scholar 

  55. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Minimizing maximum lateness in a two-machine open shop. Math. Oper. Res.6, 153–158 (1981)

    Google Scholar 

  56. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Minimizing maximum lateness in a two-machine open shop (erratum). Math. Oper. Res.7, 635 (1982)

    Google Scholar 

  57. J.K. Lenstra, Unpublished.

    Google Scholar 

  58. C-F. Liaw, Scheduling two-machine preemptive open shops to minimize total completion times. Comput. Oper. Res.31, 1349–1363 (2004)

    Google Scholar 

  59. C.Y. Liu, R.L. Bulfin, On the complexity of preemptive open-shop scheduling problems. Oper. Res. Lett.4, 71–74 (1985)

    Google Scholar 

  60. C.Y. Liu, R.L. Bulfin, Scheduling open shops with unit execution times to minimize functions of due dates. Oper. Res.36, 553–559 (1988)

    Google Scholar 

  61. L. Lu, M.E. Posner, An NP-hard open shop scheduling problem with polynomial average time complexity. Math. Oper. Res.18, 12–38 (1993)

    Google Scholar 

  62. I.N. Lushchakova, S.A. Kravchenko, Two-machine shop scheduling with zero and unit processing times. Eur. J. Oper. Res.107, 378–388 (1998)

    Google Scholar 

  63. A. Malapert, H. Cambazard, C. Guéret, N. Jussien, A. Langevin, L.M. Rousseau, An optimal constraint programming approach to the open-shop problem. INFORMS J. Comput.24, 228–244 (2012)

    Google Scholar 

  64. V.M. Malhotra, M.P. Kumar, S.N. Maheshwari, AnO(|V |3) Algorithm for finding maximum flows in networks. Info. Process. Lett.7, 277–278 (1978)

    Google Scholar 

  65. T. Masuda, H. Ishii, Two machine open shop scheduling problem with bi-criteria. Discrete Appl. Math.52, 253–259 (1994)

    Google Scholar 

  66. R. McNaughton, Scheduling with deadlines and loss functions. Manag. Sci.6, 1–12 (1959)

    Google Scholar 

  67. A. Ozolins, Dynamic programming approach for solving the open shop problem. Central Eur. J. Oper. Res.29, 291–306 (2021)

    Google Scholar 

  68. M. Queyranne, M. Sviridenko, A (2+𝜖)-approximation algorithm for the generalized preemptive open shop problem with minsum objective. J. Algorithms45, 202–212 (2002)

    Google Scholar 

  69. S.V. Sevastianow, A polynomially solvable case of the open shop problem with arbitrary number of machines (In Russian). Kibernetika i Systemnii Analiz6, 135–154 (1992)

    Google Scholar 

  70. S.V. Sevastianow, On some geometric methods in scheduling theory: a survey. Discrete Appl. Math.55, 59–82 (1994)

    Google Scholar 

  71. S.V. Sevastianow, G.J. Woeginger, Makespan minimization in open shops: a polynomial time approximation scheme. Math. Program.82, 191–198 (1998)

    Google Scholar 

  72. S.V. Sevast’janow, Vector summation in Banach Space and polynomial algorithms for flow shops and open shops. Math. Oper. Res20, 90–103 (1995)

    Google Scholar 

  73. S.V. Sevast’janow, W. Banaszczyk, To the Steinitz lemma in coordinate form. Discrete Math.169, 145–152 (1997)

    Google Scholar 

  74. E.V. Shchepin, N. Vakhania, On the geometry, preemptions and complexity of multiprocessor and shop scheduling. Ann. Oper. Res.159, 183–213 (2008)

    Google Scholar 

  75. E.V. Shchepin, N. Vakhania, A note on the proof of the complexity of the little preemptive open-shop problem. Ann. Oper. Res.191, 251–253 (2011)

    Google Scholar 

  76. E. Taillard, Benchmarks for basic scheduling problems. Eur. J. Oper. Res.64, 278–285 (1993)

    Google Scholar 

  77. N. Tamura, A. Taga, S. Kitagawa, M. Banbara, Compiling finite linear CSP into SAT. Constraints14, 254–272 (2009)

    Google Scholar 

  78. É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res.34, 250–256 (1986)

    Google Scholar 

  79. V.G. Timkovsky, Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity. Eur. J. Oper. Res.149, 355–376 (2003)

    Google Scholar 

  80. G. Vairaktarakis, S. Sahni, Dual criteria preemptive open shop problems with minimum finish time. Naval Res. Logist.42, 103–121 (1995)

    Google Scholar 

  81. D.P. Williamson, L.A. Hall, H. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra, S.V. Sevast’janow, D.B. Shmoys, Short shop schedules. Oper. Res.45, 288–294 (1997)

    Google Scholar 

  82. G.J. Woeginger, The open shop scheduling problem, in35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), ed. by R. Niedermeier, B. Vallée. Leibniz International Proceedings in Informatics (Dagstuhl Publishing, 2018), pp. 4:1–4:12

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Memorial University of Newfoundland, St. John’s, NL, Canada

    Wieslaw Kubiak

Authors
  1. Wieslaw Kubiak

Rights and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kubiak, W. (2022). General Open Shop Scheduling. In: A Book of Open Shop Scheduling. International Series in Operations Research & Management Science, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-91025-9_3

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp