Part of the book series:International Series in Operations Research & Management Science ((ISOR,volume 325))
518Accesses
Abstract
Abstract
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 14871
- Price includes VAT (Japan)
- Softcover Book
- JPY 18589
- Price includes VAT (Japan)
- Hardcover Book
- JPY 18589
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
J.O. Achugbue, F.Y. Chin, Scheduling the open shop to minimize mean flow time. SIAM J. Comput.11, 709–720 (1982)
I. Adiri, N. Amit, Openshop and flowshop scheduling to minimize sum of completion times. Comput. Oper. Res.11, 275–284 (1984)
M.M. Ahmadian, M. Khatami, A. Salehipour, T.C.E. Cheng, Four decades of research on the open-shop scheduling problem to minimize makespan. Eur. J. Oper. Res. (2021).https://doi.org/10.1016/j.ejor.2021.03.026
A.S. Asratian, C.J. Casselgren, On interval edge colorings of (α,β)-biregular bipartite graphs. Discrete Math.307, 1951–1956 (2007)
A. Atay, P. Calleja, S. Soteras, Open shop scheduling games. Eur. J. Oper. Res. (2021).https://doi.org/10.1016/j.ejor.2021.02.030
W. Banaszczyk, The Steinitz constant of the plane. J. Reine Angew. Math.373, 218–220 (1987)
P. Baptiste, On minimizing the weighted number of late jobs in unit execution time open shops. Eur. J. Oper. Res.149, 344–354 (2003)
P. Baptiste, P. Brucker, M. Chrobak, C. Dürr, S. A. Kravchenko, F. Sourd, The complexity of mean flow time scheduling problems with release times. J. Sched.10, 139–146 (2007)
I. Bárány, T. Fiala, Nearly optimum solution of multimachine scheduling problems (in Hungarian). Szigma15, 177–191 (1982)
J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, J. Wȩglarz,Handbook on Scheduling: From Theory to Applications. International Handbooks on Information Systems (Springer, Berlin, 2007)
J.A. Bondy, U.S.R. Murty,Graph Theory with Applications (North-Holland Publishing, Amsterdam, 1976)
H. Bräsel, M. Harborth, T. Tautenhahn, P. Willenius, On the set of solutions of the open shop problem. Ann. Oper. Res.92, 241–263 (1999)
R.A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic matrices. Can. Math. Bull.25, 127–147 (1982)
P. Brucker,Scheduling Algorithms (Springer, Berlin, 1995)
P. Brucker, T. Hilbig, J. Hurink, A branch and bound algorithm for a single-machine scheduling problem with positive and negative time lags. Discrete Appl. Math.94, 77–99 (1999)
P. Brucker, J. Hurink, B. Jurisch, Wöstmann, A branch and bound algorithm for the open shop problem. Discrete Appl. Math.76, 43–49 (1997)
P. Brucker, B. Jurisch, M. Jurisch, Open-shop problems with unit processing times. Z. Opns. Res.37, 59–73 (1993)
P. Brucker, B. Jurisch, T. Tautenhahn, F. Werner, Scheduling unit time open shops to minimize the weighted number of late jobs. Oper. Res. Lett.14, 245 –250 (1993)
J. Carlier, É. Pinson, An algorithm for solving the job-shop problem. Manag. Sci.35, 164–176 (1989)
B. Chen, V.A. Strusevich, Approximation algorithms for three machine open shop scheduling. ORSA J. Comput.5, 321–328 (1993)
B. Chen, W. Yu, How good is a dense shop schedule. Acta Math. Appl. Sin.17, 121–128 (2001)
R. Chen,Open Shop Scheduling Problems and Their Dense Schedules. PhD Thesis, East China University of Science and Technology, 2003
R. Chen, W. Huang, Z. Men, G. Tang, Open-shop dense schedules: properties and worst-case performance ratio. J. Sched.15, 3–11 (2012)
R. Chen, W. Yu, Upper-bound of performance ratio of dense schedules for open-shop (in Chinese). J. East China Univ. Sci. Technol.26, 522–526 (2000)
R. Chen, W. Yu, Analysis of operation chain’s properties of dense schedules for open-shop. J. East China Univ. Sci. Technol.29, 522–526 (2003)
Y. Cho, S. Sahni, Preemptive scheduling of independent jobs with release and due times on open, flow and job shop. Opns. Res.29, 511–522 (1981)
E.G. Coffman Jr., D. Dereniowski, W. Kubiak, An efficient algorithm for finding ideal schedules. Acta Inform.49, 1–14 (2012)
E. Cole, K. Ost, S. Schirra, Edge-coloring Bipartite Multigraphs in\(O(E \log D)\). Combinatorica21, 5–12 (2001)
U. Dorndorf, E. Pesch, T. Phan-Huy, Solving the open shop scheduling problem. J. Sched.4, 157–174 (2001)
J. Du, J.Y.-T. Leung, Minimizing mean flow time in two-machine open shops and flow shops. J. Algorithms14, 24–44 (1993)
F. Dufossé, B. Uçar, Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices. Linear Algebra Appl.479, 108–115 (2016)
T. Fiala, An algorithm for the open-shop problem. Math. Oper. Res.8, 100–109 (1983)
M.R. Garey, D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, San Francisco, 1979)
A.A. Gladky, A two-machine preemptive openshop scheduling problem: an elementary proof of np-completeness. Eur. J. Oper. Res.103, 113–116 (1997)
T. Gonzalez, A note on open shop preemptive schedules. IEEE Trans. Comput.C-28, 782–786 (1979)
T. Gonzalez, Unit execution time shop problems. Math. Oper. Res.7, 57–66 (1982)
T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time. J. ACM23, 665–679 (1976)
J. Grabowski, E. Nowicki, S. Zdrzałka, A block approach for single-machine scheduling with release dates and due dates. Eur. J. Oper. Res.26, 278 –285 (1986)
R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discr. Math.5, 287–326 (1979)
A. Grigoriev,High Multiplicity Scheduling Problems. PhD Thesis, Maastricht University, 2003
D. Grimes, E. Hebrard, A. Malapert, Closing the open shop: Contradicting conventional wisdom, inInternational Conference on Principles and Practice of Constraint Programming (Springer, 2009), pp. 400–408
C. Guéret, N. Jussien, C. Prins, Using intelligent backtracking to improve branch-and-bound methods: an application to open-shop problems. Eur. J. Oper. Res.127, 344– 354 (2000)
C. Guéret, C. Prins, A new lower bound for the open-shop problem. Ann. Oper. Res.92, 165–183 (1999)
G. Hardy, J. Littlewood, G. Polya,Inequalities (Cambridge University Press, Cambridge, 1952)
H. Hoogeveen, P. Schuurman, G.J. Woeginger, Nonapproximability results for scheduling problems with minsum criteria. INFORMS J. Comput.13, 157–168 (2001)
W.A. Horn, Some simple scheduling algorithms. Naval Res. Logist. Q.21, 177–185 (1974)
J. Józefowska, B. Jurisch, W. Kubiak, Scheduling shops to minimize the weighted number of late jobs. Oper. Res. Lett.16, 277–283 (1994)
A. Kononov, S. Sevastyanov, M. Sviridenko, A complete 4-parametric complexity classification of short shop scheduling problems. J. Sched.15, 427–446 (2012)
C. Koulamas, G.J. Kyparisis, Open shop scheduling to minimize the number of late jobs. Naval Res. Logist.45, 525–532 (1998)
S.A. Kravchenko, On the complexity of minimizing the number of late jobs in unit time open shop. Discrete Appl. Math.100, 127–132 (2000)
M. Kubale, Open shop problem with zero-one time operations and integer date/deadline intervals. Discrete Appl. Math.76, 213–223 (1997)
W. Kubiak, A pseudo-polynomial algorithm for a two-machine no-wait job-shop scheduling problem. Eur. J. Oper. Res.43, 267–270 (1989)
W. Kubiak, C. Sriskandarajah, K. Zaras, A note on the complexity of open shop scheduling problems. INFOR29 (1991)
G.J. Kyparisis, C. Koulamas, Open shop scheduling with makespan and total completion time criteria. Comput. Oper. Res.27, 15–27 (2000)
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Minimizing maximum lateness in a two-machine open shop. Math. Oper. Res.6, 153–158 (1981)
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Minimizing maximum lateness in a two-machine open shop (erratum). Math. Oper. Res.7, 635 (1982)
J.K. Lenstra, Unpublished.
C-F. Liaw, Scheduling two-machine preemptive open shops to minimize total completion times. Comput. Oper. Res.31, 1349–1363 (2004)
C.Y. Liu, R.L. Bulfin, On the complexity of preemptive open-shop scheduling problems. Oper. Res. Lett.4, 71–74 (1985)
C.Y. Liu, R.L. Bulfin, Scheduling open shops with unit execution times to minimize functions of due dates. Oper. Res.36, 553–559 (1988)
L. Lu, M.E. Posner, An NP-hard open shop scheduling problem with polynomial average time complexity. Math. Oper. Res.18, 12–38 (1993)
I.N. Lushchakova, S.A. Kravchenko, Two-machine shop scheduling with zero and unit processing times. Eur. J. Oper. Res.107, 378–388 (1998)
A. Malapert, H. Cambazard, C. Guéret, N. Jussien, A. Langevin, L.M. Rousseau, An optimal constraint programming approach to the open-shop problem. INFORMS J. Comput.24, 228–244 (2012)
V.M. Malhotra, M.P. Kumar, S.N. Maheshwari, AnO(|V |3) Algorithm for finding maximum flows in networks. Info. Process. Lett.7, 277–278 (1978)
T. Masuda, H. Ishii, Two machine open shop scheduling problem with bi-criteria. Discrete Appl. Math.52, 253–259 (1994)
R. McNaughton, Scheduling with deadlines and loss functions. Manag. Sci.6, 1–12 (1959)
A. Ozolins, Dynamic programming approach for solving the open shop problem. Central Eur. J. Oper. Res.29, 291–306 (2021)
M. Queyranne, M. Sviridenko, A (2+𝜖)-approximation algorithm for the generalized preemptive open shop problem with minsum objective. J. Algorithms45, 202–212 (2002)
S.V. Sevastianow, A polynomially solvable case of the open shop problem with arbitrary number of machines (In Russian). Kibernetika i Systemnii Analiz6, 135–154 (1992)
S.V. Sevastianow, On some geometric methods in scheduling theory: a survey. Discrete Appl. Math.55, 59–82 (1994)
S.V. Sevastianow, G.J. Woeginger, Makespan minimization in open shops: a polynomial time approximation scheme. Math. Program.82, 191–198 (1998)
S.V. Sevast’janow, Vector summation in Banach Space and polynomial algorithms for flow shops and open shops. Math. Oper. Res20, 90–103 (1995)
S.V. Sevast’janow, W. Banaszczyk, To the Steinitz lemma in coordinate form. Discrete Math.169, 145–152 (1997)
E.V. Shchepin, N. Vakhania, On the geometry, preemptions and complexity of multiprocessor and shop scheduling. Ann. Oper. Res.159, 183–213 (2008)
E.V. Shchepin, N. Vakhania, A note on the proof of the complexity of the little preemptive open-shop problem. Ann. Oper. Res.191, 251–253 (2011)
E. Taillard, Benchmarks for basic scheduling problems. Eur. J. Oper. Res.64, 278–285 (1993)
N. Tamura, A. Taga, S. Kitagawa, M. Banbara, Compiling finite linear CSP into SAT. Constraints14, 254–272 (2009)
É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res.34, 250–256 (1986)
V.G. Timkovsky, Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity. Eur. J. Oper. Res.149, 355–376 (2003)
G. Vairaktarakis, S. Sahni, Dual criteria preemptive open shop problems with minimum finish time. Naval Res. Logist.42, 103–121 (1995)
D.P. Williamson, L.A. Hall, H. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra, S.V. Sevast’janow, D.B. Shmoys, Short shop schedules. Oper. Res.45, 288–294 (1997)
G.J. Woeginger, The open shop scheduling problem, in35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), ed. by R. Niedermeier, B. Vallée. Leibniz International Proceedings in Informatics (Dagstuhl Publishing, 2018), pp. 4:1–4:12
Author information
Authors and Affiliations
Memorial University of Newfoundland, St. John’s, NL, Canada
Wieslaw Kubiak
- Wieslaw Kubiak
Search author on:PubMed Google Scholar
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kubiak, W. (2022). General Open Shop Scheduling. In: A Book of Open Shop Scheduling. International Series in Operations Research & Management Science, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-91025-9_3
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-91024-2
Online ISBN:978-3-030-91025-9
eBook Packages:Business and ManagementBusiness and Management (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative