1422Accesses
1Citation
Abstract
This chapter reviews the basic principles of skeletal muscle biopsy acquisition, processing and interpretation. Comments about the proper acquisition of muscle biopsies are followed by a discussion of the laboratory procedures involved in the initial processing of the biopsy and the special staining procedures, including enzyme histochemical and immunohistochemical staining, that are necessary for a meaningful evaluation of morphological changes in skeletal muscle. The chapter concludes with a summary of the wide range of morphological changes that can be seen in skeletal muscle, including brief comments about some of the more common artifacts encountered in the interpretation of muscle biopsies.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 7435
- Price includes VAT (Japan)
- Softcover Book
- JPY 9294
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dubowitz VS, Sewry CA, Oldfors A. Muscle biopsy a practical approach. Philadelphia. Sanders Elsevier: 4th ed; 2013.
Nance JR, Mammen AL. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve. 2015;51(6):793–810.
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531.
Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–9.
Engel WK. Focal myopathic changes produced by electromyographic and hypodermic needles. “Needle myopathy”. Arch Neurol. 1967;16(5):509–11.
Edwards RH. Percutaneous needle-biopsy of skeletal muscle in diagnosis and research. Lancet. 1971;2(7724):593–5.
Edwards RH, Lewis PD, Maunder C, Pearse AG. Percutaneous needle biopsy in the diagnosis of muscle diseases. Lancet. 1973;2(7837):1070–1.
Edwards RH, Round JM, Jones DA. Needle biopsy of skeletal muscle: a review of 10 years experience. Muscle Nerve. 1983;6(9):676–83.
Engel WK, Cunningham GC. Rapid examination of muscle tissue. An improved trichrome method for fresh-frozen biopsy specimens. Neurology. 1963;13(11):919–23.
Round JM, Matthews Y, Jones DA. A quick, simple and reliable histochemical method for ATPase in human muscle preparations. Histochem J. 1980;12:707–10.
Sarnat HB. Muscle pathology and histochemistry. Chicago: American Society of Clinical Pathologists Press; 1983.
Barka T, Anderson PJ. Histochemistry theory and practice and bibliography. New York: Hoeber; 1963.
Engel KW, Cunningham GC. Alkaline phosphatase-positive abnormal muscle fibers of humans. J Histochem Cytochem. 1970;18:55–7.
De Paepe B, De Bleecker JL, Van Coster R. Histochemical methods for the diagnosis of mitochondrial diseases. Curr Protoc Hum Genet. 2009;19(2):1–19.
Ross JM. Visualization of mitochondrial respiratory function using cytochrome c oxidase/ succinate dehydrogenase double-labeling histochemistry. J Vis Exp. 2011;e3266:1–6.
Takeuchi T, Kuriaki H. Histochemical detection of phosphorylase in animal tissues. J Histochem Cytochem. 1955;3:153–60.
Bonilla E, Schotland DL. Histochemical diagnosis of muscle phosphofructokinase deficiency. Arch Neurol. 1970;8222:8–12.
Fishbein WN, Griffin JL, Armbrustmacher VW. Stain for skeletal muscle adenylate deaminase. An effective tetrazolium stain for frozen biopsy specimens. Arch Pathol Lab Med. 1980;104:463–6.
Brook MH, Engel WK. The histographic analysis of human muscle biopsies with respect to fiber types. 1. Adult male and female. Neurology. 1969;19(3):221–33.
Spuler S, Carl M, Zabojszcza J, Straub V, et al. Dysferlin-deficient muscular dystrophy features amyloidosis. Ann Neurol. 2008;63(3):323–8.
Milone M, Liewluck T, Winder TL, Pianosi PT. Amyloidosis and exercise intolerance in ANO5 muscular dystrophy. Neuromuscul Disord. 2012;22(1):13–5.
Clement CG, Truong LD. An evaluation of Congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol. 2014;45:1766–72.
Chariot P, Ruet E, Authier FJ, Labes D, Poron F, Gherardi R. Cytochrome c oxidase deficiencies in the muscle of patients with inflammatory myopathies. Acta Neuropathol. 1996;91:530–6.
Alhatou M, Sladky JT, Bagasra O, Glass JD. Mitochondrial abnormalities in dermatomyositis: characteristic pattern of neuropathology. J Mol Histol. 2004;35:615–9.
Fishbein WN, Muldoon SM, Deuster PA, Armbrustmacher VW. Myoadenylate deaminase deficiency and malignant hyperthermia susceptibility: is there a realtionship? Biochem Med. 1985;34:344–54.
Fricker R, Bittner R, Böhm D, Shorney S, Gilly H, Kress HG. Malignant hyperthermia (MH) susceptibility and myoadenylate deaminase (MAD) deficiency. Eur J Anesth. 1997;14:82.
Chkheidze R, Burns DK, White CL 3rd, Castro D, Fuller J, Cai C. Morin stain detects aluminum-containing macrophages in macrophagic myofasciitis and vaccination granuloma with high sensitivity and specificity. J Neuropathol Exp Neurol. 2017;76:323–31.
Vogel H, Zamecnik J. Diagnostic immunohistology of muscle diseases. J Neuropathol Exp Neurol. 2005;64:181–93.
Tews DS, Goebel HH. Diagnostic immunohistochemistry in neuromuscular disorders. Histopathology. 2005;46:1–23.
Suriyonplengsaeng C, Dejthevaporn C, Khongkhatithum C, Sanpapant S, Tubthong N, Pindradap N, Srinark N, Waisayarat J. Immunohistochemistry of sarcolemmal membrane-associated proteins in formalin-fixed and paraffin-embedded skeletal muscle tissue: a promising tool for the diagnostic evaluation of comon muscular dystrophies. Diagn Pathol. 2017;12:19.
Bozzola JJ, Russell LD. Electron microscopy: principles and techniques for biologists. 2nd ed. Boston: Jones and Bartlett; 1992.
Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Disord. 2010;20:223–8.
Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010;68:717–26.
Sewry CA, Quinlivan RCM, Squier W, Morris GE, Holt I. A rapid immunohistochemical test to distinguish congenital myotonic dystrophy from X-linked myotubular myopathy. Neuromuscul Disord. 2012;22:225–30.
Lotz BP, Engel AG, Nishino H, Stevens JC, Litchy WJ. Inclusion body myositis. Observations in 40 patients. Brain. 1989;112:727–47.
Coquet M, Vital C, Julien J. Presence of inclusion body myositis-like filaments in oculopharyngeal muscular dystrophy. Ultrastructural study of 10 cases. Neuropathol Appl Neurobiol. 1990;16:393–400.
Stenzel W, Preuβe C, Allenbach Y, Pehl D, Junckerstorff R, Heppner FL, et al. Nuclear actin aggregatino is a hallmakr of anti-synthetase syndrome-induced dysimmune myopathy. Neurology. 2015;84:1346–54.
Koy A, Ilkovski B, Laing N, North K, Weis J, Mayatepek E, et al. Nemaline myopathy with exclusively intranuclear rods and a nobel mutation in ACTA1 (Q139H). Neuropediatrics. 2007;38:282–6.
Wu S, Ibarra MC, Malicdan MC, Murayama K, Ichihara Y, Nonaka I, et al. Central core disease is due to RYR1 mutations in more than 90% of patients. Brain. 2006;129:1470–80.
Ferreiro A, Monnier N, Romero NB, Leroy J-P, Bönneman C, Haenggeli C-A, Straub V, et al. A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol. 2002;51:750–9.
Figarella-Branger D, El-Dassouki M, Saenz A, Cobo AM, Malzac P, Tong S, et al. Myopathy with lobulated fibers: evidence for heterogeneous etiology and clincial presentation. Neuromuscul Dis. 2002;12:4–12.
Tsuburaya R, Suzuki T, Saiki K, Nonaka I, Sugito H, Hayashi YK, et al. Lobulated fibers in a patient with a 46-year history of limb-girdle muscle weakness. Neuropathology. 2011;31:455–7.
Weller B, Carpenter S, Lochmuller H, Karpati G. Myopathy with trabecular muscle fibers. Neuromuscul Dis. 1999;9:208–14.
Hilton-Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG. Inclusion body myositis. Neuromuscul Dis. 2010;20:142–7.
Blume G, Pestronk A, Frank B, Johns DR. Polymyositis with cytochrome oxidase negative muscle fibres. Early quadriceps weakness and poor response to immunosuppressive therapy. Brain. 1997;120:39–45.
Wharton SB, Chan KK, Pickard JD, Anderson JR. Pearavertebral muscles in disease of the cervical spine. J Neurol Neurosurg Psychiatry. 1996;61:461–5.
Fayet G, Rouche A, Hogrel J-Y, Tomé FMS, Fardeau M. Age-related morphological changes in the deltoid muscle from 50 to 79 years of age. Acta Neuropathol. 2001;101:358–66.
Rosenberg NL, Neville HE, Ringel SP. Tubular aggregates. Their association with neuromuscular disease, including the syndrome of myalgias/cramps. Arch Neurol. 1985;42:973–6.
Romero NB, Sandaradura SA, Clarke NF. Recent advances in nemaline myopathy. Curr Opin Neurol. 2013;26:519–26.
Schröder JM, Sommer C, Schmidt B. Desmin and actin associated with cytoplasmic bodies in skeletal muscle fibers: immunohistochemical and fine structural studies, with a note on unusual 18- to 20-nm filaments. Acta Neuropathol. 1990;80:406–14.
Mateer JE, Farrell BJ, Chou SSM, Gutmann L. Reversible ipecac myopathy. Arch Neurol. 1985;42:188–90.
Foroud T, Pankratz N, Batchman AP, Pauciulo MW, Vidal R, Miravalle N, et al. A mutation in myotilin causes spheroid body myopathy. Neurology. 2005;65:1936–40.
Brooke MH, Neville HE. Reducing body myopathy. Neurology. 1972;22:829–40.
Schessl J, Taratuto AL, Sewry C, Battini R, Chin SS, Maiti B, et al. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1. Brain. 2009;132:452–64.
Nakano S, Engel AG, Wacklawik AJ, Emslie-Smith AM, Busis NA. Myofibrillar myopathy with abnormal foci of desmin positivity. I. Light and electron microscopy analysis of 10 cases. J Neuropathol Exp Neurol. 1996;55:549–62.
Olive M, Kley RA, Goldfarb MG. Myofibrillar myopathies: new developments. Curr Opin Neurol. 2013;26:527–35.
Askansas V, Engel WK, Nogalska A. Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation. Brain Pathol. 2009;19:493–506.
Broccolini A, Mirabella M. Hereditary inclusion body myopathies. Biochim Biophys Acta. 1852;2015:644–50.
Sugie K, Yamamoto A, Murayama K, Oh SJ, Takahashi M, Mora M, et al. Clinicopathological features of genetically confirmed Danon disease. Neurology. 2002;58:1773–8.
Kalimo H, Savontaus ML, Lang H, Paljarvi L, Sonninen V, Dean PB, et al. X-linked myopathy with excessive autophagy: a new hereditary muscle disease. Ann Neurol. 1988;23:258–65.
Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ, Israelian N, et al. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol. 2013;25:439–57.
Le Roux K, Streichenberger N, Vial C, Petiot P, Feasson L, Bouhour F, et al. Granulomatous myositis: a clincial study of thirteen cases. Muscle Nerve. 2007;35:171–7.
Prieto-Gonzalez S, Grau JM. Diagnosis and classification of granulomatous myositis. Autoimmun Rev. 2014;13:372–4.
Maed MH, Tsuji S, Shimizu J. Inflammatory myopathies associated with anti-mitochondrial antibodies. Brain. 2012;135:1767–77.
Selva-O’Callaghan A, Trallero-Araguás E, Grau JM. Eosinophilic myositis: an updated review. Autoimmune Rev. 2014;13:375–8.
Vital A, Vital C, Viallard J-F, Ragnaud J-M, Canron MH, Lagueny A. Neuro-muscular biopsy in Churg-Strauss syndrome: 24 cases. J Neuropathol Exp Neurol. 2006;65:187–92.
Amato A. Adults with eosinophilic myositis and calpain-3 mutations. Neurology. 2008;70:730–1.
Baumeister SK, Todorovic S, Milać-Rašić V, Dekomien G, Lochmüller H, Walter MC. Eosinophilic myositis as presenting symptom in gamma-sarcoglycanopathy. Neuromuscul Disord. 2009;19:167–71.
Attias D, Laor R, Zuckermann E, Naschitz JE, Luria M, Misselevitch I, Boss JH. Acute neutrophilic myositis ins Sweet’s syndrome: late phase transformation into fibrosing myositis and panniculitis. Hum Pathol. 1995;26:687–90.
Schröder NWJ, Goebel H-H, Brandis A, Ladhoff A-M, Heppner FL, Stenzel W. Pipestem capillaries in necrotizing myopathy revisited. Neuromuscul Disord. 2013;23:66–74.
Yell PC, Burns DK, Dittmar EG, White CL 3rd, Cai C. Diffuse microvascular C5b-9 deposition is a common feature in muscle and nerve biopsies from diabetic patients. Acta Neuropathol Commun. 2018;6(1):11.
Acknowledgement
The author gratefully acknowledges the many helpful suggestions from Drs. Lan Zhou and Chunyu Cai during the preparation of this chapter, and for special assistance provided by Dr. Zhou in the preparation of the section on muscle biopsy technique.
Author information
Authors and Affiliations
Department of Pathology, Neuropathology Section, University of Texas Southwestern Medical Center, Dallas, TX, USA
Dennis K. Burns
- Dennis K. Burns
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toDennis K. Burns.
Editor information
Editors and Affiliations
Departments of Neurology and Pathology, Boston University Medical Center, Boston, MA, USA
Lan Zhou
Department of Pathology, Neuropathology Section, University of Texas Southwestern Medical Center, Dallas, TX, USA
Dennis K. Burns
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
Chunyu Cai
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Burns, D.K. (2020). Skeletal Muscle Biopsy Evaluation. In: Zhou, L., Burns, D., Cai, C. (eds) A Case-Based Guide to Neuromuscular Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-25682-1_1
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-25681-4
Online ISBN:978-3-030-25682-1
eBook Packages:MedicineMedicine (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative