Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Skeletal Muscle Biopsy Evaluation

  • Chapter
  • First Online:
  • 1422Accesses

  • 1Citation

Abstract

This chapter reviews the basic principles of skeletal muscle biopsy acquisition, processing and interpretation. Comments about the proper acquisition of muscle biopsies are followed by a discussion of the laboratory procedures involved in the initial processing of the biopsy and the special staining procedures, including enzyme histochemical and immunohistochemical staining, that are necessary for a meaningful evaluation of morphological changes in skeletal muscle. The chapter concludes with a summary of the wide range of morphological changes that can be seen in skeletal muscle, including brief comments about some of the more common artifacts encountered in the interpretation of muscle biopsies.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Dubowitz VS, Sewry CA, Oldfors A. Muscle biopsy a practical approach. Philadelphia. Sanders Elsevier: 4th ed; 2013.

    Chapter  Google Scholar 

  2. Nance JR, Mammen AL. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve. 2015;51(6):793–810.

    Article CAS PubMed PubMed Central  Google Scholar 

  3. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531.

    Article CAS PubMed  Google Scholar 

  4. Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–9.

    Article CAS PubMed  Google Scholar 

  5. Engel WK. Focal myopathic changes produced by electromyographic and hypodermic needles. “Needle myopathy”. Arch Neurol. 1967;16(5):509–11.

    Article CAS PubMed  Google Scholar 

  6. Edwards RH. Percutaneous needle-biopsy of skeletal muscle in diagnosis and research. Lancet. 1971;2(7724):593–5.

    Article CAS PubMed  Google Scholar 

  7. Edwards RH, Lewis PD, Maunder C, Pearse AG. Percutaneous needle biopsy in the diagnosis of muscle diseases. Lancet. 1973;2(7837):1070–1.

    Article CAS PubMed  Google Scholar 

  8. Edwards RH, Round JM, Jones DA. Needle biopsy of skeletal muscle: a review of 10 years experience. Muscle Nerve. 1983;6(9):676–83.

    Article CAS PubMed  Google Scholar 

  9. Engel WK, Cunningham GC. Rapid examination of muscle tissue. An improved trichrome method for fresh-frozen biopsy specimens. Neurology. 1963;13(11):919–23.

    Article CAS PubMed  Google Scholar 

  10. Round JM, Matthews Y, Jones DA. A quick, simple and reliable histochemical method for ATPase in human muscle preparations. Histochem J. 1980;12:707–10.

    Article CAS PubMed  Google Scholar 

  11. Sarnat HB. Muscle pathology and histochemistry. Chicago: American Society of Clinical Pathologists Press; 1983.

    Google Scholar 

  12. Barka T, Anderson PJ. Histochemistry theory and practice and bibliography. New York: Hoeber; 1963.

    Google Scholar 

  13. Engel KW, Cunningham GC. Alkaline phosphatase-positive abnormal muscle fibers of humans. J Histochem Cytochem. 1970;18:55–7.

    Article CAS PubMed  Google Scholar 

  14. De Paepe B, De Bleecker JL, Van Coster R. Histochemical methods for the diagnosis of mitochondrial diseases. Curr Protoc Hum Genet. 2009;19(2):1–19.

    Google Scholar 

  15. Ross JM. Visualization of mitochondrial respiratory function using cytochrome c oxidase/ succinate dehydrogenase double-labeling histochemistry. J Vis Exp. 2011;e3266:1–6.

    Google Scholar 

  16. Takeuchi T, Kuriaki H. Histochemical detection of phosphorylase in animal tissues. J Histochem Cytochem. 1955;3:153–60.

    Article CAS PubMed  Google Scholar 

  17. Bonilla E, Schotland DL. Histochemical diagnosis of muscle phosphofructokinase deficiency. Arch Neurol. 1970;8222:8–12.

    Article  Google Scholar 

  18. Fishbein WN, Griffin JL, Armbrustmacher VW. Stain for skeletal muscle adenylate deaminase. An effective tetrazolium stain for frozen biopsy specimens. Arch Pathol Lab Med. 1980;104:463–6.

    Google Scholar 

  19. Brook MH, Engel WK. The histographic analysis of human muscle biopsies with respect to fiber types. 1. Adult male and female. Neurology. 1969;19(3):221–33.

    Article CAS PubMed  Google Scholar 

  20. Spuler S, Carl M, Zabojszcza J, Straub V, et al. Dysferlin-deficient muscular dystrophy features amyloidosis. Ann Neurol. 2008;63(3):323–8.

    Article CAS PubMed  Google Scholar 

  21. Milone M, Liewluck T, Winder TL, Pianosi PT. Amyloidosis and exercise intolerance in ANO5 muscular dystrophy. Neuromuscul Disord. 2012;22(1):13–5.

    Article PubMed  Google Scholar 

  22. Clement CG, Truong LD. An evaluation of Congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol. 2014;45:1766–72.

    Article CAS PubMed  Google Scholar 

  23. Chariot P, Ruet E, Authier FJ, Labes D, Poron F, Gherardi R. Cytochrome c oxidase deficiencies in the muscle of patients with inflammatory myopathies. Acta Neuropathol. 1996;91:530–6.

    Article CAS PubMed  Google Scholar 

  24. Alhatou M, Sladky JT, Bagasra O, Glass JD. Mitochondrial abnormalities in dermatomyositis: characteristic pattern of neuropathology. J Mol Histol. 2004;35:615–9.

    PubMed  Google Scholar 

  25. Fishbein WN, Muldoon SM, Deuster PA, Armbrustmacher VW. Myoadenylate deaminase deficiency and malignant hyperthermia susceptibility: is there a realtionship? Biochem Med. 1985;34:344–54.

    Article CAS PubMed  Google Scholar 

  26. Fricker R, Bittner R, Böhm D, Shorney S, Gilly H, Kress HG. Malignant hyperthermia (MH) susceptibility and myoadenylate deaminase (MAD) deficiency. Eur J Anesth. 1997;14:82.

    Article  Google Scholar 

  27. Chkheidze R, Burns DK, White CL 3rd, Castro D, Fuller J, Cai C. Morin stain detects aluminum-containing macrophages in macrophagic myofasciitis and vaccination granuloma with high sensitivity and specificity. J Neuropathol Exp Neurol. 2017;76:323–31.

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Vogel H, Zamecnik J. Diagnostic immunohistology of muscle diseases. J Neuropathol Exp Neurol. 2005;64:181–93.

    Article CAS PubMed  Google Scholar 

  29. Tews DS, Goebel HH. Diagnostic immunohistochemistry in neuromuscular disorders. Histopathology. 2005;46:1–23.

    Article CAS PubMed  Google Scholar 

  30. Suriyonplengsaeng C, Dejthevaporn C, Khongkhatithum C, Sanpapant S, Tubthong N, Pindradap N, Srinark N, Waisayarat J. Immunohistochemistry of sarcolemmal membrane-associated proteins in formalin-fixed and paraffin-embedded skeletal muscle tissue: a promising tool for the diagnostic evaluation of comon muscular dystrophies. Diagn Pathol. 2017;12:19.

    Article PubMed PubMed Central CAS  Google Scholar 

  31. Bozzola JJ, Russell LD. Electron microscopy: principles and techniques for biologists. 2nd ed. Boston: Jones and Bartlett; 1992.

    Google Scholar 

  32. Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Disord. 2010;20:223–8.

    Article PubMed  Google Scholar 

  33. Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010;68:717–26.

    Article CAS PubMed  Google Scholar 

  34. Sewry CA, Quinlivan RCM, Squier W, Morris GE, Holt I. A rapid immunohistochemical test to distinguish congenital myotonic dystrophy from X-linked myotubular myopathy. Neuromuscul Disord. 2012;22:225–30.

    Article PubMed  Google Scholar 

  35. Lotz BP, Engel AG, Nishino H, Stevens JC, Litchy WJ. Inclusion body myositis. Observations in 40 patients. Brain. 1989;112:727–47.

    Article PubMed  Google Scholar 

  36. Coquet M, Vital C, Julien J. Presence of inclusion body myositis-like filaments in oculopharyngeal muscular dystrophy. Ultrastructural study of 10 cases. Neuropathol Appl Neurobiol. 1990;16:393–400.

    Article CAS PubMed  Google Scholar 

  37. Stenzel W, Preuβe C, Allenbach Y, Pehl D, Junckerstorff R, Heppner FL, et al. Nuclear actin aggregatino is a hallmakr of anti-synthetase syndrome-induced dysimmune myopathy. Neurology. 2015;84:1346–54.

    Article CAS PubMed  Google Scholar 

  38. Koy A, Ilkovski B, Laing N, North K, Weis J, Mayatepek E, et al. Nemaline myopathy with exclusively intranuclear rods and a nobel mutation in ACTA1 (Q139H). Neuropediatrics. 2007;38:282–6.

    Article CAS PubMed  Google Scholar 

  39. Wu S, Ibarra MC, Malicdan MC, Murayama K, Ichihara Y, Nonaka I, et al. Central core disease is due to RYR1 mutations in more than 90% of patients. Brain. 2006;129:1470–80.

    Article PubMed  Google Scholar 

  40. Ferreiro A, Monnier N, Romero NB, Leroy J-P, Bönneman C, Haenggeli C-A, Straub V, et al. A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol. 2002;51:750–9.

    Article CAS PubMed  Google Scholar 

  41. Figarella-Branger D, El-Dassouki M, Saenz A, Cobo AM, Malzac P, Tong S, et al. Myopathy with lobulated fibers: evidence for heterogeneous etiology and clincial presentation. Neuromuscul Dis. 2002;12:4–12.

    Article CAS  Google Scholar 

  42. Tsuburaya R, Suzuki T, Saiki K, Nonaka I, Sugito H, Hayashi YK, et al. Lobulated fibers in a patient with a 46-year history of limb-girdle muscle weakness. Neuropathology. 2011;31:455–7.

    Article PubMed  Google Scholar 

  43. Weller B, Carpenter S, Lochmuller H, Karpati G. Myopathy with trabecular muscle fibers. Neuromuscul Dis. 1999;9:208–14.

    Article CAS  Google Scholar 

  44. Hilton-Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG. Inclusion body myositis. Neuromuscul Dis. 2010;20:142–7.

    Article CAS  Google Scholar 

  45. Blume G, Pestronk A, Frank B, Johns DR. Polymyositis with cytochrome oxidase negative muscle fibres. Early quadriceps weakness and poor response to immunosuppressive therapy. Brain. 1997;120:39–45.

    Article PubMed  Google Scholar 

  46. Wharton SB, Chan KK, Pickard JD, Anderson JR. Pearavertebral muscles in disease of the cervical spine. J Neurol Neurosurg Psychiatry. 1996;61:461–5.

    Article CAS PubMed PubMed Central  Google Scholar 

  47. Fayet G, Rouche A, Hogrel J-Y, Tomé FMS, Fardeau M. Age-related morphological changes in the deltoid muscle from 50 to 79 years of age. Acta Neuropathol. 2001;101:358–66.

    CAS PubMed  Google Scholar 

  48. Rosenberg NL, Neville HE, Ringel SP. Tubular aggregates. Their association with neuromuscular disease, including the syndrome of myalgias/cramps. Arch Neurol. 1985;42:973–6.

    Article CAS PubMed  Google Scholar 

  49. Romero NB, Sandaradura SA, Clarke NF. Recent advances in nemaline myopathy. Curr Opin Neurol. 2013;26:519–26.

    Article PubMed  Google Scholar 

  50. Schröder JM, Sommer C, Schmidt B. Desmin and actin associated with cytoplasmic bodies in skeletal muscle fibers: immunohistochemical and fine structural studies, with a note on unusual 18- to 20-nm filaments. Acta Neuropathol. 1990;80:406–14.

    Google Scholar 

  51. Mateer JE, Farrell BJ, Chou SSM, Gutmann L. Reversible ipecac myopathy. Arch Neurol. 1985;42:188–90.

    Article CAS PubMed  Google Scholar 

  52. Foroud T, Pankratz N, Batchman AP, Pauciulo MW, Vidal R, Miravalle N, et al. A mutation in myotilin causes spheroid body myopathy. Neurology. 2005;65:1936–40.

    Article CAS PubMed  Google Scholar 

  53. Brooke MH, Neville HE. Reducing body myopathy. Neurology. 1972;22:829–40.

    Article CAS PubMed  Google Scholar 

  54. Schessl J, Taratuto AL, Sewry C, Battini R, Chin SS, Maiti B, et al. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1. Brain. 2009;132:452–64.

    Article PubMed  Google Scholar 

  55. Nakano S, Engel AG, Wacklawik AJ, Emslie-Smith AM, Busis NA. Myofibrillar myopathy with abnormal foci of desmin positivity. I. Light and electron microscopy analysis of 10 cases. J Neuropathol Exp Neurol. 1996;55:549–62.

    Article CAS PubMed  Google Scholar 

  56. Olive M, Kley RA, Goldfarb MG. Myofibrillar myopathies: new developments. Curr Opin Neurol. 2013;26:527–35.

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Askansas V, Engel WK, Nogalska A. Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation. Brain Pathol. 2009;19:493–506.

    Article CAS  Google Scholar 

  58. Broccolini A, Mirabella M. Hereditary inclusion body myopathies. Biochim Biophys Acta. 1852;2015:644–50.

    Google Scholar 

  59. Sugie K, Yamamoto A, Murayama K, Oh SJ, Takahashi M, Mora M, et al. Clinicopathological features of genetically confirmed Danon disease. Neurology. 2002;58:1773–8.

    Article CAS PubMed  Google Scholar 

  60. Kalimo H, Savontaus ML, Lang H, Paljarvi L, Sonninen V, Dean PB, et al. X-linked myopathy with excessive autophagy: a new hereditary muscle disease. Ann Neurol. 1988;23:258–65.

    Article CAS PubMed  Google Scholar 

  61. Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ, Israelian N, et al. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol. 2013;25:439–57.

    Article CAS  Google Scholar 

  62. Le Roux K, Streichenberger N, Vial C, Petiot P, Feasson L, Bouhour F, et al. Granulomatous myositis: a clincial study of thirteen cases. Muscle Nerve. 2007;35:171–7.

    Article PubMed  Google Scholar 

  63. Prieto-Gonzalez S, Grau JM. Diagnosis and classification of granulomatous myositis. Autoimmun Rev. 2014;13:372–4.

    Article CAS PubMed  Google Scholar 

  64. Maed MH, Tsuji S, Shimizu J. Inflammatory myopathies associated with anti-mitochondrial antibodies. Brain. 2012;135:1767–77.

    Article  Google Scholar 

  65. Selva-O’Callaghan A, Trallero-Araguás E, Grau JM. Eosinophilic myositis: an updated review. Autoimmune Rev. 2014;13:375–8.

    Article CAS  Google Scholar 

  66. Vital A, Vital C, Viallard J-F, Ragnaud J-M, Canron MH, Lagueny A. Neuro-muscular biopsy in Churg-Strauss syndrome: 24 cases. J Neuropathol Exp Neurol. 2006;65:187–92.

    Article PubMed  Google Scholar 

  67. Amato A. Adults with eosinophilic myositis and calpain-3 mutations. Neurology. 2008;70:730–1.

    Article PubMed  Google Scholar 

  68. Baumeister SK, Todorovic S, Milać-Rašić V, Dekomien G, Lochmüller H, Walter MC. Eosinophilic myositis as presenting symptom in gamma-sarcoglycanopathy. Neuromuscul Disord. 2009;19:167–71.

    Google Scholar 

  69. Attias D, Laor R, Zuckermann E, Naschitz JE, Luria M, Misselevitch I, Boss JH. Acute neutrophilic myositis ins Sweet’s syndrome: late phase transformation into fibrosing myositis and panniculitis. Hum Pathol. 1995;26:687–90.

    Article CAS PubMed  Google Scholar 

  70. Schröder NWJ, Goebel H-H, Brandis A, Ladhoff A-M, Heppner FL, Stenzel W. Pipestem capillaries in necrotizing myopathy revisited. Neuromuscul Disord. 2013;23:66–74.

    Article PubMed  Google Scholar 

  71. Yell PC, Burns DK, Dittmar EG, White CL 3rd, Cai C. Diffuse microvascular C5b-9 deposition is a common feature in muscle and nerve biopsies from diabetic patients. Acta Neuropathol Commun. 2018;6(1):11.

    Article PubMed PubMed Central CAS  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges the many helpful suggestions from Drs. Lan Zhou and Chunyu Cai during the preparation of this chapter, and for special assistance provided by Dr. Zhou in the preparation of the section on muscle biopsy technique.

Author information

Authors and Affiliations

  1. Department of Pathology, Neuropathology Section, University of Texas Southwestern Medical Center, Dallas, TX, USA

    Dennis K. Burns

Authors
  1. Dennis K. Burns

Corresponding author

Correspondence toDennis K. Burns.

Editor information

Editors and Affiliations

  1. Departments of Neurology and Pathology, Boston University Medical Center, Boston, MA, USA

    Lan Zhou

  2. Department of Pathology, Neuropathology Section, University of Texas Southwestern Medical Center, Dallas, TX, USA

    Dennis K. Burns

  3. Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA

    Chunyu Cai

Rights and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burns, D.K. (2020). Skeletal Muscle Biopsy Evaluation. In: Zhou, L., Burns, D., Cai, C. (eds) A Case-Based Guide to Neuromuscular Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-25682-1_1

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp