Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Ecosystem Processes in Heterogeneous Landscapes

  • Chapter

Abstract

Understanding the patterns, causes, and consequences of spatial heterogeneity for ecosystem function remains a research frontier in both landscape and ecosystem ecology (Lovett et al. 2005; Chapin et al. 2012). The term,ecosystem, was introduced by Tansley (1935) to describe the characteristic and persistent interactions of organisms (plants, animals, and microbes) with their abiotic environment (e.g., water, temperature, radiation) within well-defined landscape boundaries (Likens 1995). Although ecosystems may appear to be discrete (e.g., ponds and watersheds), they do not exist in isolation. Interactions among ecosystems occur as a function of the heterogeneity of the landscape.Ecosystem ecology focuses on the flow of energy and matter between organisms and their environment, thus emphasizing pools (i.e., amounts or stocks), fluxes (i.e., rates), and the factors that control pools and fluxes. The spatial dimensions of ecosystem ecology may encompass bounded systems like watersheds, complex landscapes of diverse habitats, or even the biosphere itself; temporally, ecosystem science may cross scales ranging from seconds to millennia (Carpenter and Turner 1998). Ecosystem process rates vary across landscapes at multiple scales, and this variation can be difficult to quantify, explain, and predict. Transfers of matter and energy among patches (i.e., losses from donor ecosystems and subsidies to recipient ecosystems) are often important to long-term ecosystem sustainability (Polis and Hurd 1995; Naiman 1996; Carpenter et al. 1999; Chapin et al. 2012).

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  • Amundson R, Jenny H (1997) On a state factor model of ecosystems. Bioscience 47:536–543

    Article  Google Scholar 

  • Asner GP, Martin RE (2008) Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens Environ 112:3958–3970

    Article  Google Scholar 

  • Augustine DJ, Frank DA (2001) Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82:3149–3162

    Article  Google Scholar 

  • Belshe EF, Schuur EAG, Bolker BM, Bracho R (2012) Incorporating spatial heterogeneity created by permafrost thaw into a landscape carbon estimate. J Geophys Res Biogeosci 117:G01026. doi:10.1029/2011JG001836

    Article CAS  Google Scholar 

  • Bennett EM, Carpenter SR, Clayton MK (2005) Soil phosphorus variability: scale-dependence in an urbanizing agricultural landscape. Landsc Ecol 20:389–400

    Article  Google Scholar 

  • Bernhardt ES, Palmer MA (2007) Restoring streams in an urbanizing world. Freshw Biol 52:738–751

    Article  Google Scholar 

  • Billings SA, Gaydess EA (2008) Soil nitrogen and carbon dynamics in a fragmented landscape experiencing forest succession. Landsc Ecol 23:581–593

    Article  Google Scholar 

  • Bird MI, Boobyer EM, Bryant C, Lewis HA, Paz V, Stephens WE (2007) A long record of environmental change from bat guano deposits in Makangit Cave, Palawan, Philippines. Earth Environ Sci Trans R Soc Edinb 98(01):59–69

    Google Scholar 

  • Birge EA, Juday C (1911) The inland lakes of Wisconsin: the dissolved gases of the water and their biological significance. Wisconsin Geological and Natural History Bulletin No. 22

    Google Scholar 

  • Boerner REJ, Kooser JG (1989) Leaf litter redistribution among forest patches within an Allegheny Plateau watershed. Landsc Ecol 2:81–92

    Article  Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem. Springer, New York

    Book  Google Scholar 

  • Box EO (1978) Geographical dimensions of terrestrial net and gross primary productivity. Radiat Environ Biophys 15:305–322

    Article CAS PubMed  Google Scholar 

  • Boynton WR, Garber JH, Summers R, Kemp WM (1995) Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18:285–314

    Article CAS  Google Scholar 

  • Bradford JB, Birdsey RA, Joyce LA, Ryan MG (2008) Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests. Glob Chang Biol 14:2882–2897

    Article  Google Scholar 

  • Brock TD (1985) A eutrophic lake: Lake Mendota, Wisconsin. Springer, New York

    Book  Google Scholar 

  • Brown CD, Johnstone JF (2011) How does increased fire frequency affect carbon loss from fire? A case study in the northern boreal forest. Int J Wildland Fire 20:829–837

    Article  Google Scholar 

  • Brush GS (1984) Patterns of recent sediment accumulation in Chesapeake Bay (Virginia-Maryland, USA) tributaries. Chem Geol 44:227–242

    Article CAS  Google Scholar 

  • Brush GS (1986) Geology and paleoecology of the Chesapeake Bay: a long-term monitoring tool for management. J Wash Acad Sci 76(3):146–160

    CAS  Google Scholar 

  • Brush GS (1989) Rates and patterns of estuarine sediment accumulation. Limnol Oceanogr 34:1235–1246

    Article  Google Scholar 

  • Brush GS (1997) History and impact of human activities on the Chesapeake Bay. In: Simpson RD, Christensen NL (eds) Ecosystem function and human activities. Chapman and Hall, New York, pp 125–145

    Chapter  Google Scholar 

  • Buffam I, Turner MG, Desai A, Hanson PJ, Rusak J, Lottig N, Carpenter SR (2011) Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob Chang Biol 17:1193–1211

    Article  Google Scholar 

  • Bump JK, Peterson RO, Vucetich JA (2009a) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90:3159–3167

    Article PubMed  Google Scholar 

  • Bump JK, Webster CR, Vucetich JA, Peterson RO, Shields JM, Powers MD (2009b) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceious layers allowing trees a competitive advantage. Ecosystems 12:996–1007

    Article  Google Scholar 

  • Burcher CL, Valett HM, Benfield EF (2007) The land-cover cascade: relationships coupling land and water. Ecology 88:228–242

    Article CAS PubMed  Google Scholar 

  • Campbell JL, Harmon ME, Mitchell SR (2012) Can fuel-reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front Ecol Environ 10:83–90

    Article  Google Scholar 

  • Carpenter SR (1998) Ecosystem ecology. In: Dodson SI (ed) Ecology. Oxford University Press, New York, pp 123–162

    Google Scholar 

  • Carpenter SR, Turner MG (1998) At last: a journal devoted to ecosystem science. Ecosystems 1:1–5

    Article  Google Scholar 

  • Carpenter SR, Frost T, Persson L, Power M, Soto D (1995) Chapter 12: Freshwater ecosystems: linkages of complexity and processes. In: Mooney HA (ed) Functional roles of biodiversity: a global perspective. Wiley, New York

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771

    Article  Google Scholar 

  • Carpenter SR, Benson BJ, Biggs R, Chipman JW, Foley JA, Golding SA, Hammer RB, Hanson PC, Johnson PTJ, Kamarainen AM, Kratz TK, Lathrop RC, McMahon KD, Provencher B, Rusak JA, Solomon CT, Stanley EH, Turner MG, Vander Zanden MJ, Wu C-H, Yuan H (2007) Understanding regional change: comparison of two lake districts. Bioscience 57:323–335

    Article  Google Scholar 

  • Carter GA (1998) Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sens Environ 63:61–72

    Article  Google Scholar 

  • Chapin FS III, Torn MS, Tateno M (1996) Principles of ecosystem sustainability. Am Nat 148:1016–1037

    Article  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimen DS, Valentini R et al (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    Article CAS  Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM (2012) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Cheruvelil KS, Soranno PA, Webster KE, Bremigan MT (2013) Multi-scaled drivers of ecosystem state: quantifying the important of the regional spatial scale. Ecol Appl 23:1603–1618

    Article CAS PubMed  Google Scholar 

  • Chipman JW, Lillesand TM, Schmaltz JE, Leale JE, Nordheim MJ (2004) Mapping lake water clarity with Landsat images in Wisconsin, USA. Can J Remote Sens 30:1–7

    Article  Google Scholar 

  • Cirmo CP, McDonnell JJ (1997) Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate forested catchments: a review. J Hydrol 199:88–120

    Article CAS  Google Scholar 

  • Cole JJ, Peierls CL, Caraco NF, Pace ML (1993) Nitrogen loading of rivers as a human-driven process. In: McDonnell MJ, Pickett STA (eds) Humans as components of ecosystems. Springer, New York, pp 141–157

    Chapter  Google Scholar 

  • Correll DL, Jordan TE, Weller DE (1992) Nutrient flux in a landscape: effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries 15:431–442

    Article CAS  Google Scholar 

  • Craig LS, Palmer MA, Richardson DC, Filoso S, Bernhardt ES, Bledsoe BP, Doyle MW, Groffman PM, Hassett BA, Kaushal SS, Mayer PM, Smith SM, Wilcock PR (2008) Stream restoration strategies for reducing river nitrogen loads. Front Ecol Environ 6:529–538

    Article  Google Scholar 

  • Currie WS, Nadelhoffer KJ (2002) The imprint of land-use history: patterns of carbon and nitrogen in downed woody debris at the Harvard Forest. Ecosystems 5:446–460

    Article CAS  Google Scholar 

  • Danell K, Berteaux D, Brathen KA (2002) Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55:389–392

    Article  Google Scholar 

  • De Jager NR, Pastor J (2009) Declines in moose population density at Isle Royle National Park, MI, USA and accompanied changes in landscape patterns. Landsc Ecol 24:1389–1403

    Article  Google Scholar 

  • Delcourt HR, Harris WF (1980) Carbon budget of the southeastern US biota: analysis of historical change in trend from source to sink. Science 210:321–323

    Article CAS PubMed  Google Scholar 

  • DeLuca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ 6:18–24

    Article  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in forest ecosystems. Soil Sci Soc Am J 70:448–453

    Article CAS  Google Scholar 

  • Dodds WK (2006) Nutrients and the “dead zone”: the link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico. Front Ecol Environ 4:211–217

    Article  Google Scholar 

  • Dreyer J, Hoekman D, Gratton C (2012) Lake-derived midges increase abundance of shoreline terrestrial arthropods via multiple trophic pathways. Oikos 121:252–258

    Article  Google Scholar 

  • Duan SW, Kaushal SS, Groffman PM, Band LE, Belt KT (2012) Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed. J Geophys Res Biogeosci 117:G01025. doi:10.1029/2011JG001782

    Google Scholar 

  • Duncan DH, Dorrough J, White M, Moxham C (2008) Blowing in the wind? Nutrient enrichment of remnant woodlands in an agricultural landscape. Landsc Ecol 23:107–119

    Article  Google Scholar 

  • Emanuel RE, Riveros-Iregui DA, McGlynn BL, Epstein HE (2011) On the spatial heterogeneity of net ecosystem productivity in complex landscapes. Ecosphere 2(7):art86

    Article  Google Scholar 

  • Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507

    Article  Google Scholar 

  • Flinn KM, Marks PL (2007) Agricultural legacies in forest environments: tree communities, soil properties, and light availability. Ecol Appl 17:452–463

    Article PubMed  Google Scholar 

  • Forbes SA (1887) The lake as a microcosm. Bull Sci Assoc 1887:77–87

    Google Scholar 

  • Forel FA (1892) Lac Leman: monographie limnologique. Lausanne, Rouge

    Book  Google Scholar 

  • France RL, Peters RH (1995) Predictive model of the effects on lake metabolism of decreased airborne litterfall through riparian deforestation. Conserv Biol 9:1578–1586

    Article  Google Scholar 

  • Fraser R, Lantz T, Oithof I, Kokelj S, Sims R (2014) Warming-induced shrub expansion and lichen decline in the western Canadian Arctic. Ecosystems 17(7):1151–1168

    Article  Google Scholar 

  • Gao B-C, Goetz AFH (1994) Extraction of dry leaf spectral features from reflectance spectra of green vegetation. Remote Sens Environ 47:369–374

    Article  Google Scholar 

  • Gergel SE (2005) Spatial and non-spatial factors: when do they affect landscape indicators of watershed loading? Landsc Ecol 20:177–189

    Article  Google Scholar 

  • Gergel SE, Turner MG, Kratz TK (1999) Scale-dependent landscape effects on north temperate lakes and rivers. Ecol Appl 9:1377–1390

    Article  Google Scholar 

  • Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH (2002) Landscape indicators of human impacts to river-floodplain systems. Aquat Sci 64:118–128

    Article CAS  Google Scholar 

  • Golley FB (1993) A history of the ecosystem concept in ecology: more than the sum of its parts. Yale University Press, New Haven

    Google Scholar 

  • Goward SN, Tucker CJ, Dye DG (1985) North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64:3014

    Article  Google Scholar 

  • Goward SN, Kerber A, Dye DG, Kalb V (1987) Comparison of North and South American biomes from AVHRR observations. Geocarto Int 2:27–40

    Article  Google Scholar 

  • Gratton C, Vander Zanden MJ (2009) Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology 90:2689–2699

    Article PubMed  Google Scholar 

  • Gratton C, Donaldson J, Vander Zanden MJ (2008) Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland. Ecosystems 11:764–774

    Article  Google Scholar 

  • Gravel D, Guichard F, Loreau M, Mouquet N (2010) Source and sink dynamics in meta-ecosystems. Ecology 91:2172–2184

    Article PubMed  Google Scholar 

  • Grimm NB (1995) Why link species and ecosystems? In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and Hall, New York, pp 5–15

    Chapter  Google Scholar 

  • Groffman PM, Tiedje JM (1989) Denitrification in north temperate forest soils: spatial and temporal patterns at the landscape and seasonal scales. Soil Biol Biochem 21:613–620

    Article  Google Scholar 

  • Groffman PM, Tiedje JM, Mokma DL, Simkins S (1992) Regional scale analysis of denitrification in north temperate forest soils. Landsc Ecol 7:45–53

    Article  Google Scholar 

  • Groffman PM, Pouyat RV, Cadenasso ML et al (2006a) Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For Ecol Manage 236:177–192

    Article  Google Scholar 

  • Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, Levinson BM, Palmer MA, Paerl HW, Peterson GD, Poff NL, Rejeski DW, Reynolds JF, Turner MG, Weathers KC, Wiens JA (2006b) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9:1–13

    Article  Google Scholar 

  • Hansen AJ, Rotella JJ, Kraska MPV, Brown D (2000) Spatial patterns of primary productivity in the Greater Yellowstone Ecosystem. Landsc Ecol 15:505–522

    Article  Google Scholar 

  • Hanson PC, Bade DL, Carpenter SR, Kratz TK (2003) Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–11119

    Article CAS  Google Scholar 

  • Hanson PC, Carpenter SR, Cardille JA, Coes MT, Winslow LA (2007) Small lakes dominate a random sample of regional lake characteristics. Freshw Biol 52:814–822

    Article  Google Scholar 

  • Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hobb EH, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J (2012a) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Chang Biol 18:7–34

    Article  Google Scholar 

  • Hicke JA, Johnson MC, Hayes JL, Preisler HK (2012b) Effects of bark beetle-caused tree mortality on wildfire. For Ecol Manage 271:81–90

    Article  Google Scholar 

  • Hicks BJ, Stichbury GA, Brabyn LK, Allan MG, Ashraf S (2013) Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ Monit Assess 185:7245–7261

    Article CAS PubMed  Google Scholar 

  • Holtgrieve GW, Schindler DE, Jewett PK (2009) Large predators and biogeochemical hotspots: brown bear (Ursos arctos) predation on salmon alters nitrogen cycling in riparian soils. Ecol Res 24:1125–1135

    Article  Google Scholar 

  • Hynes HBN (1975) The stream and its valley. Verh Int Ver Theor Ang Limnol 19:1–15

    Google Scholar 

  • Jacobs SM, Bechtold JS, Biggs HC, Grimm NB, Lorentz S, McClain ME, Naiman RJ, Perakis SS, Pinay G, Scholes MC (2007) Nutrient vectors and riparian processing: a review with special reference to African semiarid savanna ecosystems. Ecosystems 10:1231–1249

    Article CAS  Google Scholar 

  • Jeffries RL, Klein DR, Shaver GR (1994) Vertebrate herbivores and northern plant communities: reciprocal influences and responses. Oikos 71:193–206

    Article  Google Scholar 

  • Jenerette DG, Wu J (2004) Interactions of ecosystem processes with spatial heterogeneity in the puzzle of nitrogen limitation. Oikos 107:273–282

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Jensen JR (1996) Introductory digital image processing: a remote sensing perspective. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Johnson LB, Richards C, Host G, Arthur JW (1997) Landscape influences on water chemistry in Midwestern streams. Freshw Biol 37:193–208

    Article CAS  Google Scholar 

  • Jones CG, Lawton JH (eds) (1995) Linking species and ecosystems. Chapman and Hall, New York

    Google Scholar 

  • Jones KB, Slonecker ET, Nash MS, Neale AC, Wade TG, Hamann S (2010) Riparian habitat changes across the continental United States (1972-2003) and potential implications for sustaining ecosystem services. Landsc Ecol 25:1261–1275

    Article  Google Scholar 

  • Jordan TE, Correll DL, Weller DE (1997a) Nonpoint source discharges of nutrients from Piedmont watersheds of Chesapeake Bay. J Am Water Resour Assoc 33(3):631–645

    Article CAS  Google Scholar 

  • Jordan TE, Correll DL, Weller DE (1997b) Relating nutrient discharges from watersheds to land use and streamflow variability. Water Resour Res 33:2579–2590

    Article CAS  Google Scholar 

  • Justice C, Townshend J, Holben B, Tucker C (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int J Remote Sens 6:1271–1318

    Article  Google Scholar 

  • Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG (2006) Carbon storage on landscapes with stand-replacing fires. Bioscience 56:598–606

    Article  Google Scholar 

  • Kaushal SS, Groffman PM, Mayer PM, Striz E, Gold AJ (2008) Effects of stream restoration on denitrification in an urbanizing watershed. Ecol Appl 18:789–804

    Article PubMed  Google Scholar 

  • Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199

    Article PubMed  Google Scholar 

  • Kesner BT, Meentemeyer B (1989) A regional analysis of total nitrogen in an agricultural landscape. Landsc Ecol 2:151–164

    Article  Google Scholar 

  • Kitchell JF (ed) (1992) Food web management: a case study of Lake Mendota, Wisconsin. Springer, New York

    Google Scholar 

  • Knapp AK, Carter GA (1998) Variability in leaf optical properties among 26 species from a broad range of habitats. Am J Bot 85:940–946

    Article CAS PubMed  Google Scholar 

  • Kratz TK, Webster KE, Bowser CJ, Magnuson JJ, Benson BJ (1997) The influence of landscape position on lakes in northern Wisconsin. Freshw Biol 37:209–217

    Article  Google Scholar 

  • Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci U S A 105:1551–1555

    Article CAS PubMed PubMed Central  Google Scholar 

  • Lee H, Schuur EAG, Vogel JG, Lavoie M, Bhadra D, Staudhammer CL (2011) A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob Chang Biol 17:1379–1393

    Article  Google Scholar 

  • Leith H, Whittaker RH (eds) (1975) Primary productivity of the biosphere. Springer, New York

    Google Scholar 

  • Leroux S, Loreau M (2012) Dynamics of reciprocal pulsed subsidies in local and meta-ecosystems. Ecosystems 15:48–59

    Article  Google Scholar 

  • Levy PE, Friend AD, White A, Cannell MGR (2004) The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems. Clim Change 67:185–209

    Article CAS  Google Scholar 

  • Likens GE (1995) The ecosystem approach: its use and abuse. Ecology Institute, Oldendorf

    Google Scholar 

  • Loreau M, Holt RD (2004) Spatial flows and the regulation of ecosystems. Am Nat 163:606–615

    Article PubMed  Google Scholar 

  • Loreau M, Mouguet N, Holt RD (2003) Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol Lett 6:673–679

    Article  Google Scholar 

  • Lovett GM, Jones CG, Turner MG, Weathers KC (eds) (2005) Ecosystem function in heterogeneous landscapes. Springer, New York

    Google Scholar 

  • Ludwig JA, Wiens JA, Tongway DJ (2000) A scaling rule for landscape patches and how it applies to conserving soil resources in savannas. Ecosystems 3:84–97

    Article  Google Scholar 

  • Lundberg J, Moberg F (2003) Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6:87–98

    Article  Google Scholar 

  • Magnuson JJ, Kratz TK, Frost TM, Bowser CJ, Benson BJ, Nero R (1991) Expanding the temporal and spatial scales of ecological research and comparison of divergent ecosystems: roles for LTER in the United States. In: Risser PG (ed) Long-term ecological research. Wiley, New York, pp 45–70

    Google Scholar 

  • Martin ME, Aber JD (1997) High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecol Appl 7:431–443

    Article  Google Scholar 

  • Massol F, Gravel D, Mouquet N, Cadotte MW, Fukami T, Liebold MA (2011) Linking community and ecosystem dynamics through spatial ecology. Ecol Lett 14:313–323

    Article PubMed  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinnay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article CAS  Google Scholar 

  • McCullough IM, Loftin CS, Sader SA (2012) Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens Environ 123:109–115

    Article  Google Scholar 

  • McInnes PF, Naiman RJ, Pastor J, Cohen Y (1992) Effects of moose browsing on vegetation and litter of the boreal forest, Isle Royale, Michigan, USA. Ecology 75:478–488

    Google Scholar 

  • McNaughton SJ, Reuss RW, Seagle SW (1988) Large mammals and process dynamics in African ecosystems. Bioscience 38:794–800

    Article  Google Scholar 

  • Moen RJP, Cohen Y (1997) A spatially explicit model of moose foraging and energetics. Ecology 78:505–521

    Google Scholar 

  • Moen R, Pastor J, Cohen Y (1998) Linking moose population and plant growth models with a moose energetics model. Ecosystems 1:52–63

    Article  Google Scholar 

  • Mooney HAP, Vitousek M, Matson PA (1987) Exchange of materials between terrestrial ecosystems and the atmosphere. Science 238:926–932

    Article CAS PubMed  Google Scholar 

  • Morris SJ, Boerner REJ (1998) Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hardwood forests. Landsc Ecol 13:215–224

    Article  Google Scholar 

  • Mueller DK, Helsel DR (1996) Nutrients in the nation’s waters: too much of a good thing? U.S. Geological Survey Circular 1136

    Google Scholar 

  • Murray BD, Webster CB, Bump JK (2013) Broadening the ecological context of ungulate-ecosystem interactions: the importance of space, seasonality, and nitrogen. Ecology 94:1317–1326

    Article PubMed  Google Scholar 

  • Naiman RJ (1996) Water, society and landscape ecology. Landsc Ecol 11:193–196

    Article  Google Scholar 

  • Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • Naiman RJ, Magnuson JJ, McKnight DM, Stanford JA (eds) (1995) The freshwater imperative: a research agenda. Island Press, Washington

    Google Scholar 

  • Nielsen A, Trolle D, Sondergaard M, Lauridsen TL, Bierring R, Olesen JE, Jeppesen E (2012) Watershed land use effects on lake water quality in Denmark. Ecol Appl 22:1187–1200

    Article PubMed  Google Scholar 

  • Ollinger SV, Smith ML (2005) Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data. Ecosystems 8:760–778

    Article CAS  Google Scholar 

  • Ollinger SV, Smith ML, Martin ME, Hallett RA, Goodale CL, Aber JD (2002) Regional variation in foliar chemistry and N cycling among forests of diverse history and composition. Ecology 83:339–355

    Google Scholar 

  • Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-yr Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens Environ 112:4086–4097

    Article  Google Scholar 

  • Omernik JM, Abernathy AR, Male LM (1981) Stream nutrient levels and proximity of agricultural and forest land to streams: some relationships. J Soil Water Conserv 36:227–231

    Google Scholar 

  • Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water quality restoration and stream management. Freshw Biol 29:243–258

    Article  Google Scholar 

  • Osborne LL, Wiley MJ (1988) Empirical relationships between land use/land cover and stream water quality in an agricultural watershed. J Environ Manage 26:9–27

    Google Scholar 

  • Pace ML, Groffman PM (eds) (1998) Successes, limitations and frontiers in ecosystem science. Springer, New York

    Google Scholar 

  • Parsons WFJ, Knight DH, Miller SL (1994) Root gap dynamics in lodgepole pine forest: nitrogen transformation in gaps of different size. Ecol Appl 4:354–362

    Article  Google Scholar 

  • Pastor J, Moen R, Cohen Y (1997) Spatial heterogeneities, carrying capacity, and feedbacks in animal–landscape interactions. J Mammal 78:1040–1052

    Article  Google Scholar 

  • Pastor J, Cohen Y, Moen R (1999) Generation of spatial patterns in boreal forest landscapes. Ecosystems 2:439–450

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365

    Article  Google Scholar 

  • Perry KD, Cahill TA, Eldred RA, Dutcher DD (1997) Long-range transport of North African dust to the eastern United States. J Geophys Res Atmos 102:11225–11238

    Article CAS  Google Scholar 

  • Peterjohn WT, Correll DL (1984) Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65:1466–1475

    Article CAS  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Groffman PM, Band LE, Boone CG, Burch WR, Grimmond CSB, Hom J, Jenkins JC et al (2008) Beyond urban legends: an emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study. Bioscience 58:139–150

    Article  Google Scholar 

  • Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci U S A 92:4382–4386

    Article CAS PubMed PubMed Central  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Prospero JM (1999) Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci U S A 96:3396–3403

    Article CAS PubMed PubMed Central  Google Scholar 

  • Rabalais NN, Turner JE, Wiseman WJ (2002) Gulf of Mexico hypoxia, A.K.A. “The dead zone”. Annu Rev Ecol Syst 33:235–263

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2009) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006

    Article  Google Scholar 

  • Reich PB, Grigal DF, Aber JD, Gower ST (1997) Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78:335–347

    Article  Google Scholar 

  • Reiners WA, Driese KL (2001) The propagation of ecological influences through heterogeneous environmental space. Bioscience 51:939–950

    Article  Google Scholar 

  • Reiners WA, Driese KL (2004) Transport processes in nature: propagation of ecologica influences through environmental space. Cambridge University Press, Cambridge

    Google Scholar 

  • Riera JL, Magnuson JJ, Vande Castle JR, MacKenzie MD (1998) Analysis of large-scale spatial heterogeneity in vegetation indices among North American landscapes. Ecosystems 1:268–282

    Article  Google Scholar 

  • Robinson DT, Brown DG, Currie WS (2009) Modelling carbon storage in highly fragmented and human-dominated landscapes: linking land-cover patterns and ecosystem models. Ecol Model 220:1325–1338

    Article CAS  Google Scholar 

  • Running SW (1990) Remote sensing of terrestrial primary productivity. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Springer, New York, pp 65–85

    Chapter  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    Article CAS  Google Scholar 

  • Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:1090–1101

    Article  Google Scholar 

  • Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Seagle SW (2003) Can deer foraging in multiple-use landscapes alter forest nitrogen budgets? Oikos 103:230–234

    Article CAS  Google Scholar 

  • Seagle SW, McNaughton SJ (1992) Spatial variation in forage nutrient concentrations and the distribution of Serengeti grazing ungulates. Landsc Ecol 7:229–241

    Article  Google Scholar 

  • Sedell JR, Froggatt JL (1984) Importance of streamside forests to large rivers: the isolation of the Willamette River, Oregon, USA, from its floodplain by snagging and streamside forest removal. Verhandlungen des Internationalen Vereins der Limnologie

    Google Scholar 

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372

    Article  Google Scholar 

  • Sellers PJ (1987) Canopy reflectance, photosynthesis and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sens Environ 21:143–183

    Article  Google Scholar 

  • Shaver GR, Knadelhoffer KJ, Giblin AE (1991) Biogeochemical diversity and element transport in a heterogeneous landscape, the north slope of Alaska. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New York, pp 105–125

    Chapter  Google Scholar 

  • Shen W, Lin Y, Jenerett GD, Wu J (2011) Blowing litter across a landscape: effects on ecosystem nutrient flux and implications for landscape management. Landsc Ecol 26:629–644

    Article  Google Scholar 

  • Smith ML, Martin ME, Plourde L, Ollinger SV (2003) Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Trans Geosci Remote Sens 41:1332–1337

    Article  Google Scholar 

  • Smithwick EAH (2006) Editorial: role of microbial communities in mediating ecosystem response to disturbance. Plant Soil 289:1–3

    Article CAS  Google Scholar 

  • Smithwick EAH, Harmon ME, Domingo JB (2003) Modeling multiscale effects of light limitations and edge-induced mortality on carbon stored in forest landscapes. Landsc Ecol 18:701–721

    Article  Google Scholar 

  • Smithwick EAH, Mack MC, Turner MG, Chapin FS III, Zhu J, Balser TC (2005) Spatial heterogeneity and soil nitrogen dynamics in a burned black spruce forest stand: distinct controls at different scales. Biogeochemistry 76:517–537

    Article CAS  Google Scholar 

  • Smithwick EAH, Ryan MG, Kashian DM, Romme WH, Tinker DB, Turner MG (2009) Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands. Glob Chang Biol 15:535–548

    Article  Google Scholar 

  • Soranno PA, Hubler SL, Carpenter SR, Lathrop RC (1996) Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecol Appl 6:865–878

    Article  Google Scholar 

  • Soranno PA, Webster KE, Riera JL, Kratz TK, Baron JS, Bukaveckas PA, Kling GW, White DS, Caine N, Lathrop RC, Leavitt PR (1999) Spatial variation among lakes within landscapes: ecological organization along lake chains. Ecosystems 2:395–410

    Article CAS  Google Scholar 

  • Soranno PA, Cheruvelil KS, Webster KE, Bremigan MT, Wagner T, Stow CA (2010) Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation. Bioscience 60:440–454

    Article  Google Scholar 

  • Stanford JA (1998) Rivers in the landscape: introduction to the special issue on riparian and groundwater ecology. Freshw Biol 40:402–406

    Article  Google Scholar 

  • Stoker TI (1926) Bats, bat towers and mosquitoes. J Mammal 7:85–90

    Article  Google Scholar 

  • Strayer DL, Ewing HA, Bigelow S (2003a) What kind of spatial and temporal details are required in models of heterogeneous systems? Oikos 102:654–662

    Article  Google Scholar 

  • Strayer DL, Beighley RE, Thompson LC, Brooks S, Nilsson C, Pinay G, Naiman RJ (2003b) Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6:407–423

    Article  Google Scholar 

  • Sturtevant CS, Oechel WC (2013) Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. Glob Chang Biol 19:2853–2866

    Article PubMed  Google Scholar 

  • Swift BL (1974) Status of riparian ecosystems in the United States. Water Resour Bull 20:223–228

    Article  Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Article  Google Scholar 

  • Townsend PA, Foster JR, Chastain RA, Currie WS (2003) Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. IEEE Trans Geosci Remote Sens 41:1347–1354

    Article  Google Scholar 

  • Tucker DJ, Townshend JRG, Goff TE (1985) African land cover classification using satellite data. Science 227:369–374

    Article CAS PubMed  Google Scholar 

  • Turetsky MR (2004) Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past. Ecosystems 7:740–750

    Article CAS  Google Scholar 

  • Turner MG (1987b) Land use changes and net primary production in the Georgia, USA, landscape: 1935-1982. Environ Manage 11:237–247

    Article  Google Scholar 

  • Turner MG, Chapin FS III (2005) Causes and consequences of spatial heterogeneity in ecosystem function. In: Lovett GM, Jones CG, Turner MG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, New York, pp 9–30

    Chapter  Google Scholar 

  • Turner MG, Baker WL, Peterson C, Peet RK (1998a) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523

    Article  Google Scholar 

  • Turner MG, Tinker DB, Romme WH, Kashian DM, Litton CM (2004b) Landscape patterns of sapling density, leaf area, and aboveground net primary production in postfire lodgepole pine forests, Yellowstone National Park (USA). Ecosystems 7:751–775

    Article  Google Scholar 

  • Turner MG, Romme WH, Smithwick EAH, Tinker DB, Zhu J (2011) Variation in aboveground cover influences soil nitrogen availability at fine spatial scales following severe fire in subalpine conifer forests. Ecosystems 14:1081–1095

    Article CAS  Google Scholar 

  • Uriarte M, Yackulic CB, Lim Y, Arce-Nazario JA (2011) Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landsc Ecol 26:1151–1164

    Article PubMed PubMed Central  Google Scholar 

  • Van Tuyl S, Law BE, Turner DP, Gitelman AI (2005) Variability in net primary production and carbon storage in biomass across Oregon forests—an assessment integrating data from forest inventories, intensive sites, and remote sensing. For Ecol Manage 209:273–291

    Article  Google Scholar 

  • Vander Zanden MJ, Gratton C (2011) Blowin’ in the wind: reciprocal airborne carbon fluxes between lakes and land. Can J Fish Aquat Sci 68:170–182

    Article CAS  Google Scholar 

  • Vasquez GM, Grunwald S, Myers DB (2012) Associations between soil carbon and ecological landscape variables at escalating spatial scales in Florida, USA. Landsc Ecol 27:355–367

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Melillo JM (1979) Nitrate losses from disturbed forests: patterns and mechanisms. Forest Sci 25:605–619

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997a) Human domination of earth’s ecosystems. Science 277:494–499

    Article CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997b) Human alteration of the global nitrogen cycles: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitousek P, Asner GP, Chadwick OA, Hotchkiss S (2009) Landscape-level variation in forest structure and biogeochemistry across a substrate age gradient in Hawaii. Ecology 90:3074–3086

    Article PubMed  Google Scholar 

  • Wagner T, Soranno PA, Webster KE, Cheruvelil KS (2011) Landscape drivers of regional variation in the relationship between total phosphorus and chlorophyll in lakes. Freshw Biol 56:1811–1824

    Article  Google Scholar 

  • Wassen MJ, de Boer HJ, Fleischer K, Rebel KT, Dekker SC (2013) Vegetation-mediated feedback in water, carbon, nitrogen and phosphorus cycles. Landsc Ecol 28:599–614

    Article  Google Scholar 

  • Weathers KC, Strayer DL, Likens GE (2013) Fundamentals of ecosystem science. Academic, New York

    Google Scholar 

  • Webster KE, Kratz TK, Bowser CJ, Magnuson JJ, Rose WJ (1996) The influence of landscape position on lake chemical response to drought in northern Wisconsin, USA. Limnol Oceanogr 41:977–984

    Article CAS  Google Scholar 

  • Weller DE, Jordan TE, Correll DL (1998) Heuristic models for material discharge from landscapes with riparian buffers. Ecol Appl 8:1156–1169

    Article  Google Scholar 

  • Weller DE, Baker ME, Jordan TE (2011) Effects of riparian buffers on nitrate concentrations in watershed discharges: new models and management implications. Ecol Appl 21:1679–1695

    Article PubMed  Google Scholar 

  • Wessman CA, Aber JD, Peterson DL (1989) An evaluation of imaging spectrometry for estimating forest canopy chemistry. Int J Remote Sens 10:1293–1316

    Article  Google Scholar 

  • Wessman CA, Aber JD, Peterson DL, Melillo JM (1998) Remote-sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature 335:154–156

    Article  Google Scholar 

  • Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515

    Article  Google Scholar 

  • Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics—a conceptual framework for studying landscape ecosystems. Oikos 45:421–427

    Article  Google Scholar 

  • Williamson J, Bestelmeyer B, Peters DC (2012) Spatiotemporal patterns of production can be used to detect state change across an arid landscape. Ecosystems 15:34–47

    Article  Google Scholar 

  • Willson MF, Gende SM, Marston BH (1998) Fishes and the forest. Bioscience 48:455–462

    Article  Google Scholar 

  • Zhang N, Yu Z, Yu G, Wu J (2007) Scaling up ecosystem productivity from patch to landscape: a case study of Changbai Mountain Nature Reserve, China. Landsc Ecol 22:303–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA

    Monica G. Turner

  2. Center for Environmental Science, University of Maryland, Frostburg, MD, USA

    Robert H. Gardner

Authors
  1. Monica G. Turner
  2. Robert H. Gardner

Further Reading

Further Reading

  • Buffam I, Turner MG, Desai A, Hanson PJ, Rusak J, Lottig N, Carpenter SR (2011) Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob Chang Biol 17:1193–1211

  • Bump JK, Peterson RO, Vucetich JA (2009) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90:3159–3167

  • Emanuel RE, Riveros-Iregui DA, McGlynn BL, Epstein HE (2011) On the spatial heterogeneity of net ecosystem productivity in complex landscapes. Ecosphere 2(7). Article 86

  • Gergel SE (2005) Spatial and non-spatial factors: when do they affect landscape indicators of watershed loading? Landsc Ecol 20:177–189

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77

  • Lovett GM, Jones CG, Turner MG, Weathers KC (eds) (2005) Ecosystem function in heterogeneous landscapes. Springer, New York

  • Nielsen A, Trolle D, Sondergaard M, Lauridsen TL, Bierring R, Olesen JE, Jeppesen E (2012) Watershed land use effects on lake water quality in Denmark. Ecol Appl 22:1187–1200

  • Strayer DL, Ewing HA, Bigelow S (2003) What kind of spatial and temporal details are required in models of heterogeneous systems? Oikos 102:654–662

Rights and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Turner, M.G., Gardner, R.H. (2015). Ecosystem Processes in Heterogeneous Landscapes. In: Landscape Ecology in Theory and Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2794-4_8

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp