Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Abstract

If\( f(x) = \tfrac{1} {2}(Ax,x) - \operatorname{Re} (b,x), A = A^* \in \mathbb{C}^{n \times n} \), then the boundedness off from below is equivalent to the nonnegative definiteness ofA (prove this). Let us assume thatA > 0. In this case, a linear systemAx =b has a unique solutionz, and, for anyx,

$$f(x) - f(z) = \frac{1}{2}(A(x - z),x - z) \equiv E(x). \Rightarrow$$

z is the single minimum point forf (x). ⇒ A minimization method forf can equally serve as a method of solving a linear system with the Hermitian positively definite coefficient matrix.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.W. Chou. On the optimality of Krylov information.J. of Complexity 3: 26–40 (1987).

    Article MATH  Google Scholar 

  2. G. I. Marchuk and Yu. A. Kuznetsov. Iterative methods and quadratic functional.Methods of Numerical Mathematics. Novosibirsk, 1975, pp. 4–143.

    Google Scholar 

  3. Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Scientific and Stat. Comp. 7: 856–869 (1986).

    Article MathSciNet MATH  Google Scholar 

  4. I first heard about this striking relation from S. A. Goreinov.

    Google Scholar 

  5. L. Zhou and H. F. Walker. Residual smoothing techniques for iterative methods.SIAM 3. on Sci. Comput. 15(2): 297–312 (1994).

    Article MathSciNet MATH  Google Scholar 

  6. R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems.Numer. Math. 60: 315–339 (1991).

    Article MathSciNet MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Numerical Mathematics, Russian Academy of Sciences, Leninski Prospekt 32A, 117 334, Moscow, Russia

    Eugene E. Tyrtyshnikov

Authors
  1. Eugene E. Tyrtyshnikov

Rights and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tyrtyshnikov, E.E. (1997). Lecture 19. In: A Brief Introduction to Numerical Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8136-4_19

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp