Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungiAspergillus niger andPenicillium chrysogenum

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Phenotypic and genotypic changes inAspergillus niger andPenicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation ofA. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stainedA. niger andP. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased inP. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integritygfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi,A. niger andP. chrysogenum.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad I, Khan MSA (2012) Microscopy in mycological research with especial reference to ultrastructures and biofilm studies. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex Research Center, Spain, pp 646–659

    Google Scholar 

  • Altenburg SD, Nielsen-Peiss SM, Hyman LE (2008) Increased filamentous growth ofCandida albicans in simulated microgravity. Genomics Proteomics Bioinform 6:42–50

    Article  Google Scholar 

  • Arunasri K, Adil M, Charan KV, Suvro C, Reddy SH et al (2013) Effect of simulated microgravity onE. coli K12 MG1655 growth and gene expression. PLoS One 8:e57860

    Article PubMed Central PubMed  Google Scholar 

  • Bohle K, Jungeblouda A, Gocke Y, Dalpiaza Y (2007) Selection of reference genes for normalization of specific gene quantification data ofAspergillus niger. J Biotechnol 132:353–358

    Article CAS PubMed  Google Scholar 

  • Czymmek KJ, Whallon JH, Klomparens KL (1994) Confocal microscopy in mycological research. Exp Mycol 18:275–293

    Article  Google Scholar 

  • Francis KO, Cockell CS (2010) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13

    Article  Google Scholar 

  • Gomoiu I, Chatzitheodoridis E, Vadrucci S, Walther I (2013) The effect of spaceflight on growth ofUlocladium chartarum colonies on the international space station. PLoS One 8:e62130

    Article CAS PubMed Central PubMed  Google Scholar 

  • Hernandez-Rodriguez Y, Hasting S, Momany M (2012) The septin aspB inAspergillus nidulans forms bars and filaments and plays roles in growth emergence and condition. Eukaryot Cell 11:311–323

    Article CAS PubMed Central PubMed  Google Scholar 

  • Johanson K, Allen PL, Lewis F, Cubano LS, Hyman LE, Hammond TG (2002)Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture. J Appl Physiol 93:2171–2180

    PubMed  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2004) Changes in neutrophil functions in astronauts. Brain Behav Immun 18:443–450

    Article CAS PubMed  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554

    Article CAS PubMed  Google Scholar 

  • Kumari R, Singh KP, DuMond JW Jr (2009) Simulated microgravity decreases DNA repair capacity and induce DNA damage in human lymphocytes. J Cellular Biochem 107:723–731

    Article CAS  Google Scholar 

  • Leys N, Baatout S, Rosier C, Dams A, Heeren C et al (2009) The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek 96:227–245

    Article CAS PubMed  Google Scholar 

  • Moore D, Hock B, Greening JP, Kern VD, Frazer LN, Monzerz J (1996) Gravimorphogenesis in agarics. Mycol Res 100:257–273

    Article PubMed  Google Scholar 

  • Murray SL, Hynes MJ (2010) Metabolic and developmental effects resulting from deletion of the citA gene encoding citrate synthase inAspergillus nidulans. Eukaryot Cell 9:656–666

    Article CAS PubMed Central PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L et al (2000) Microgravity as a novel environmental signal affectingSalmonella entericcaSerovar Typhimurium virulence. Infect Immun 68:3147–3152

    Article CAS PubMed Central PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL et al (2003) Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods 54:1–11

    Article CAS PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361

    Article CAS PubMed Central PubMed  Google Scholar 

  • Nobel HD, Ende HV, Klis FM (2000) Cell wall maintenance in fungi. Trends Microbiol 8:344–345

    Article PubMed  Google Scholar 

  • Purevdorj-Gage B, Sheehan KB, Hyman LE (2006) Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype inSaccharomyces cerevisiae. Appl Environ Microbiol 72:4569–4575

    Article CAS PubMed Central PubMed  Google Scholar 

  • Ram AF, Arentshorst M, Damveld RA, vanKuyk PA, Klis FM, van den Hondel CA (2004) The cell wall stress response inAspergillus niger involves increased expression of the glutamine: fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology 150:3315–3326

    Article CAS PubMed  Google Scholar 

  • Van Mulders SE, Stassen C, Daenen L, Devreese B, Siweres V et al (2011) The influence of microgravity on invasive growth inSaccharomyes cerevisiae. Astrobiology 11:45–55

    Article PubMed  Google Scholar 

  • Vesper SJ, Wong W, Kuo CM, Pierson DL (2008) Mold species in dust from the international space station identified and quantified by mold specific quantitative PCR. Res Microbiol 159:432–435

    Article CAS PubMed  Google Scholar 

  • Wang Y, An L, Jiang Y, Hang H (2011) Effects of simulated microgravity on embryonic stem cells. PLoS One 6:e29214

    Article CAS PubMed Central PubMed  Google Scholar 

  • Zhao C, Sun Y, Yi ZC, Rong L, Zhuang FY, Fan YB (2010) Simulated microgravity inhibits cell wall regeneration ofPenicillium decumbens protoplasts. Adv Space Res 46:701–706

    Article CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) Grant No. 1201002467 funded by the Korean Government. K. Rajagopal was supported by the Brain Pool Program funded by the Korean Federation of Science Technology Societies Grant by Korea Government (MEST, Basic Research Promotion Fund). Assistance by Ms. Eun-Jin Choi, Electron Microscopy Laboratory, Center for University Wide Research Facilities, Chonbuk National University for transmission electron microscopy is gratefully acknowledged.

Author information

Authors and Affiliations

  1. Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, 561-756, Republic of Korea

    Yesupatham Sathishkumar, Kalyanaraman Rajagopal, Chan Ki Im & Yang Soo Lee

  2. Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, 305-701, Republic of Korea

    Natarajan Velmurugan

  3. Department of Forest Resources Utilization, Korea Forest Research Institute, Seoul, 130-712, Republic of Korea

    Hyun Mi Lee

  4. Department of Biotechnology, Vels University, Chennai, 600 117, India

    Kalyanaraman Rajagopal

Authors
  1. Yesupatham Sathishkumar
  2. Natarajan Velmurugan
  3. Hyun Mi Lee
  4. Kalyanaraman Rajagopal
  5. Chan Ki Im
  6. Yang Soo Lee

Corresponding author

Correspondence toYang Soo Lee.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, Y., Velmurugan, N., Lee, H.M.et al. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungiAspergillus niger andPenicillium chrysogenum .Antonie van Leeuwenhoek106, 197–209 (2014). https://doi.org/10.1007/s10482-014-0181-9

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp