Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Comprehensive phylogenetic analyses of theRuppia maritima complex focusing on taxa from the Mediterranean

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Recent molecular phylogenetic studies reported high diversity ofRuppia species in the Mediterranean. Multiple taxa, including apparent endemics, are known from that region, however, they have thus far not been exposed to phylogenetic analyses aimed at studying their relationships to taxa from other parts of the world. Here we present a comprehensive phylogenetic analyses of theR. maritima complex using data sets composed of DNA sequences of the plastid genome, the multi-copy nuclear ITS region, and the low-copy nuclearphyB gene with a primary focus on the Mediterranean representatives of the complex. As a result, a new lineage, “Drepanensis”, was identified as the seventh entity of the complex. This lineage is endemic to the Mediterranean. The accessions included in the former “Tetraploid” entity were reclassified into two entities: an Asia–Australia–Europe disjunct “Tetraploid_α” with a paternal “Diploid” origin, and a European “Tetraploid_γ” originating from a maternal “Drepanensis” lineage. Another entity, “Tetraploid_β”, is likely to have been originated as a result of chloroplast capture through backcrossing hybridization between paternal “Tetraploid_α” and maternal “Tetraploid_γ”. Additional discovery of multiple tetraploidizations as well as hybridization and chloroplast capture at the tetraploid level indicated that hybridization has been a significant factor in the diversification ofRuppia.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article PubMed CAS  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol 1:3–16

    Article PubMed CAS  Google Scholar 

  • Castroviejo S (1983) Números cromosomáticos de plantas occidentales, 211–222. Anales Jard Bot Madrid 39:525–531 (in Spanish)

    Google Scholar 

  • Chiang T-Y, Hong K-H, Peng C-I (2001) Experimental hybridization reveals biased inheritance of the internal transcribed spacer of the nuclear ribosomal DNA inBegonia × taipeiensis. J Plant Res 114:343–351

    Article CAS  Google Scholar 

  • Cirujano S (1982) Aportaciones a la flora de los saladares castellanos. Anales Jard Bot Madrid 39:167–173 (in Spanish)

    Google Scholar 

  • Cirujano S (1986) El géneroRuppia L. (Potamogetonaceae) en la mancha (España). Bol Soc Brot sér. 2, 59: 293–303 (in Spanish)

  • Clarke LA, Rebelo CS, Gonçalves J, Boavida MG, Jordan P (2001) PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Mol Pathol 54:351–353

    Article PubMed CAS  Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies- an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ito Y, Ohi-Toma T, Murata J, Tanaka N (2010) Hybridization and polyploidy of an aquatic plant,Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. Am J Bot 97:1156–1167

    PubMed CAS  Google Scholar 

  • Jacobs SWL, Brock MA (2011) Ruppiaceae. In: Wilson A (ed) Flora of Australia, volume 39, Alismatales to Arales. ABRS/CISRO, Melbourne, pp 95–98

    Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498

    Article  Google Scholar 

  • Kim S-T, Sultan SE, Donoghue MJ (2008) Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proc Natl Acad Sci USA 105:12370–12375

    Article PubMed CAS  Google Scholar 

  • Marchioni-Ortu A (1982) Numeri cromosomici per la Flora Italiana: 873–876. Inf Bot Ital 14:234–237 (in Italy)

    Google Scholar 

  • Marcussen T, Jakobsen KS, Danihelka J, Ballard HE, Blaxland K, Brysting AK, Oxelman B (2012) Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst Biol 61:107–126

    Article PubMed CAS  Google Scholar 

  • Mathews S, Tsai RC, Kellogg EA (2000) Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. Am J Bot 87:96–107

    Article PubMed CAS  Google Scholar 

  • Nylander JAA (2002) MrModeltest v.1.0. Program distributed by the author. Department of Systematic Zoology, Uppsala University, Uppsala.http://www.ebc.uu.se/systzoo/staff/nylander.html

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article PubMed CAS  Google Scholar 

  • Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol 37:121–147

    Article CAS  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817

    Article PubMed CAS  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography ofPaeonia (Paeoniaceae). Am J Bot 84:1120–1136

    Article PubMed CAS  Google Scholar 

  • Setchell WA (1946) The genusRuppia L. Proc Calif Acad Sci 25:469–478

    Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article PubMed CAS  Google Scholar 

  • Soltis DE, Mavrodiev EV, Doyle JJ, Rauscher J, Soltis PS (2008) ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Syst Bot 33:7–20

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b. Sinauer, Sunderland, Massachusetts, USA

  • Talavera S, Garcia-Murillo P, Herrera J (1993) Chromosome numbers and a new model for karyotype evolution inRuppia L. (Ruppiaceae). Aquat Bot 45:1–13

    Article  Google Scholar 

  • Triest L, Sierens T (2010) Chloroplast sequences reveal a diversity gradient in the MediterraneanRuppiacirrhosa species complex. Aquat Bot 93:68–74

    Article CAS  Google Scholar 

  • Triest L, Sierens T (2013) Is the genetic structure of MediterraneanRuppia shaped by bird-mediated dispersal or sea currents? Aquat Bot 104:176–184

    Article  Google Scholar 

  • Triest L, Symoens JJ (1991) Isozymes in populations of the submerged halophyteRuppia (Ruppiaceae). Op Bot Belg 4:117–134

    Google Scholar 

  • Van Vierssen W, van Wijk RJ, van der Zee JR (1981) Some additional notes on the cytotaxonomy ofRuppia taxa in western Europe. Aquat Bot 11:297–301

    Article  Google Scholar 

  • Weiss-Schneeweiss H, Blöch C, Turner B, Villaseñor JL, Stuessy TF, Schneeweiss GM (2012) The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect.Melampodium; Asteraceae). Evolution 66:211–228

    Article PubMed CAS  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following alloploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284

    Article PubMed CAS  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Biol Evol 14:717–724

    Article PubMed CAS  Google Scholar 

  • Zhao LC, Wu ZY (2008) A review of the taxonomy and evolution ofRuppia. J Syst Evol 46:467–478

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. P. Garcia-Murillo (Seville, Spain), Dr. S. Sciandrello (Sicily, Italy), Mr. S. Mifsud (Malta), Dr. H. Freitag (Kassel, Germany), Dr. S. R. Yadav (Kolhapur, India), Dr. J. J. Orth (Virginia, USA), Dr. H. J. Cho (Mississippi, USA), and Dr. S. W. L. Jacobs (Sydney, Australia) for their help with field research and Drs. D. Potter (California, USA) and P. B. Pelser (Christchurch, NZ) for revising the draft version of this manuscript.

Author information

Author notes
  1. Yu Ito

    Present address: School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8020, New Zealand

Authors and Affiliations

  1. Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, S7N 5E2, Canada

    Yu Ito

  2. Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo, 112-0001, Japan

    Tetsuo Ohi-Toma & Jin Murata

  3. Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan

    Norio Tanaka

Authors
  1. Yu Ito
  2. Tetsuo Ohi-Toma
  3. Jin Murata
  4. Norio Tanaka

Corresponding author

Correspondence toNorio Tanaka.

Appendices

Appendix 1

The 1st data set for Fig. 1. The taxonomic grouping of Triest and Sierens (2013); OTUs; GenBank accessions:psbAtrnH, and ITS; sample origins;Voucher specimens; haplotype of Triest and Sierens (2010); and ITS type of Triest and Sierens (2013). Note that Hybrid Spain has no specific haplotype and ITS accessions in Triest and Sierens (2010,2013); only haplotype and ITS type are shown. Samples from Triest and Sierens (2010,2013) are indicated by underlines. DNA accessions obtained in the present study are shown with asterisks.

R. maritimaR. maritimaS. Africa: JN113274, JN113282 + JN113285; S. Africa;LT-RH-20 (BRVU); haplotype d; ITS-a.R. maritimaFrance: JN113269, JN113282 + JN113285; France;LT-R-678 (BRVU); haplotype d; ITS-a.R.maritimaFinland: JN113272, JN113282 + JN113285; Finland;LT-R-2540 (BRVU); haplotype d; ITS-a.R. maritimaB: AB728718*, AB728734*; Anatom Island, Vanuatu;TNS9516725 (TNS).R. maritimaB’: AB728719*, AB728735*; Yuhong, Sanya, Hainan, China;YI00743 (TNS).R. maritimaB’’: AB728720*, AB728736*; Maharashtra, India;YI01209 (TNS).R. maritimaB’’’: AB728737*, AB728721*; Grand Bay, Gulf of Mexico, Jackson, Mississippi, USA;YI01233 (TNS).R. maritimaC: AB728722*, AB728738*; Chesapeake Bay, Maryland, USA;YI00958 (TNS).R. maritimaD: AB728723*, AB728739*; Cape Breton Island, Nova Scotia, Canada;CAN521697 (SAP).

R. cirrhosa_I”R. cirrhosaItaly: JN113271, JN113282 + JN113285; Italy;LT-R-1325 (BRVU); haplotype e; ITS-a.R. cirrhosaSpain_I: JN113270, JN113282 + JN113285; Spain;LT-R-199 (BRVU); haplotype e; ITS-a.R.cirrhosaEgypt: JN113273, JN113282 + JN113285; Egypt;LT-RH-18 (BRVU); haplotype e; ITS-a.R. maritimaE: AB728725*, AB728741*; Montecollina Bore, c. 218 km NE Lyndhurst, Strzelecki Track, South Australia, Australia;SJ9694 (TI, TNS, NSW).R. maritimaE’: AB728726*, AB728742*, AB728743*; Shiokawa River, Okinawa, Japan;YI00754 (TNS).R. maritimaH: AB728727*, AB728744*; Canatilla, Huelva, Spain;YI01552 (TNS).

R. cirrhosa_II”R. cirrhosaGreece: JN113267, JN113280 + JN113283; Greece;LT-R-750 (BRVU); haplotype b; ITS-b.R. cirrhosaSpain_II: JN113268, JN113280 + JN113283; Spain;LT-R-2328 (BRVU); haplotype b; ITS-b.R. cirrhosaA: AB728730*, AB728748*, AB728749*; Skye Island, U.K.;YI01299 (TNS).R. maritimaF: AB728731*, AB728750*; Dubrovnik, Croatia;YI00878 (TNS).R. maritimaK: AB728732*, AB728751*; Vendicari Natural Reserve, Noto, Sicily, Italy;YI01571 (TNS).R. maritimaL: AB728733*, AB728752*; Bonba, Huelva, Spain;YI01549 (TNS).

R. drepanensisR. drepanensisSpain: JN113266, JN113281 + JN113284; Spain;LT-R-91 (BRVU); haplotype a; ITS-c.R. cirrhosaB: AB728724*, AB728740*; Donana National Park, Sevilla, Spain;YI01567 (TNS).

“cp-capture”Hybrid Spain: Spain; haplotype b; ITS-a.R. maritimaI: AB728728*, AB728745*; Gozo Island, Malta;YI01491 (TNS).R. maritimaJ: AB728729*, AB728746*, AB728747*; Morgerra Salt Marsh, Marzanemi, Sicily, Italy;YI01575 (TNS).

Appendix 2

The 2nd data set for Fig. 2. The entities of theR. maritima complex; OTUs; GenBank accessions:matK,rbcL,rpoB,rpoC1, andphyB (a = partially obtained sequences); sample origins;Voucher specimens. DNA accessions obtained in the present study are shown with asterisks.

“Diploid”R. maritimaB: AB507905, AB507865, AB507945, AB507985, AB508028; Anatom Island, Vanuatu;TNS9516725 (TNS).R. maritimaB’: AB507914, AB507874, AB507954, AB507994, AB508037; Yuhong, Sanya, Hainan, China;YI00743 (TNS).R. maritimaB’’: AB507910, AB507870, AB507950, AB507990, AB508033; Maharashtra, India;YI01209 (TNS).R. maritimaB’’’: AB507908, AB507868, AB507948, AB507988, AB508031; Grand Bay, Gulf of Mexico, Jackson, Mississippi, USA;YI01233 (TNS).R. maritimaC: AB507911, AB507871, AB507951, AB507991, AB508034; Chesapeake Bay, Maryland, USA;YI00958 (TNS).R. maritimaD: AB507907, AB507867, AB507947, AB507987, AB508030; Cape Breton Island, Nova Scotia, Canada;CAN521697 (SAP).

“Drepanensis”R. cirrhosaB: AB728682*, AB728688*, AB728694*, AB728700*, AB728706*, AB728707*; Donana National Park, Sevilla, Spain;YI01567 (TNS).

“Filifolia”R. maritimaG; AB534779, AB534787, AB534793, AB534799, AB534808, AB534809; Port Stephens, West Falkland, Falklands, UK;YI01251 (TNS).

“Occidentalis”R. polycarpaB: AB507937, AB507897, AB507977, AB508017, AB508073; Redberry Lake, Saskatchewan, Canada;YI01264 (TNS).

“Tetraploid_α”R. maritimaE: AB507919, AB507879, AB507959, AB507999,aAB508046,aAB508047; Montecollina Bore, c. 218 km NE Lyndhurst, Strzelecki Track, South Australia, Australia;SJ9694 (TI, TNS, NSW).R. maritimaE’: AB507924, AB507884, AB507964, AB508004, AB508056, AB508057; Shiokawa River, Okinawa, Japan;YI00754 (TNS).R. maritimaH: AB728683*, AB728689*, AB728695*, AB728701*, AB728708*, AB728709*; Canatilla, Huelva, Spain;YI01552 (TNS).

“Tetraploid_β”R. maritimaI: AB728684*, AB728690*, AB728696*, AB728702*, AB728710*, AB728711*; Gozo Island, Malta;YI01491 (TNS).R. maritimaJ: AB728685*, AB728691*, AB728697*, AB728703*, AB728747*, AB728712*, AB728713*; Morgerra Salt Marsh, Marzanemi, Sicily, Italy;YI01575 (TNS).

“Tetraploid_γ”R. cirrhosaA: AB507925, AB507885, AB507965, AB508005, AB508058, AB508059*; Skye Island, U.K.;YI01299 (TNS).R. maritimaF: AB507915, AB507875, AB507955, AB507995, AB508038, AB508039; Dubrovnik, Croatia;YI00878 (TNS).R. maritimaK: AB728686*, AB728692*, AB728698*, AB728704*, AB728714*, AB728715*; Vendicari Natural Reserve, Noto, Sicily, Italy;YI01571 (TNS).R. maritimaL: AB728687*, AB728693*, AB728699*, AB728705*, AB728716*, AB728717*; Bonba, Huelva, Spain;YI01549 (TNS).

“Utahian”R. maritimaA; AB507928, AB507888, AB507968, AB508008, AB508064; Salt Lake City, Utah, U.S.A.;YI01274 (TNS).

R. polycarpa S. Mason—R. polycarpaA: AB507938, AB507898, AB507978, AB508018, AB508074; Coila Creek, S Moruya, New South Wales, Australia;SJ9719 (NSW).

Rights and permissions

About this article

Cite this article

Ito, Y., Ohi-Toma, T., Murata, J.et al. Comprehensive phylogenetic analyses of theRuppia maritima complex focusing on taxa from the Mediterranean.J Plant Res126, 753–762 (2013). https://doi.org/10.1007/s10265-013-0570-6

Download citation

Keywords

Profiles

  1. Yu ItoView author profile

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp