Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Volatile (Cl, F and S) and major element constraints on subduction-related mantle metasomatism along the alkaline basaltic backarc, Payenia, Argentina

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present data on volatile (S, F and Cl) and major element contents in olivine-hosted melt inclusions (MIs) from alkaline basaltic tephras along the Quaternary Payenia backarc volcanic province (~34°S–38°S) of the Andean Southern Volcanic Zone (SVZ). The composition of Cr-spinel inclusions and host olivines in Payenia are also included to constrain any variations in oxygen fugacity. The variation of potassium, fluorine and chlorine in MIs in Payenia can be modelled by partial melting (1–10%) of a variously metasomatised mantle. The high chlorine contents in MIs (up to 3200 ppm) from Northern Payenia require addition of subduction-related fluids to a mantle wedge, whereas volatile signatures in the southern Payenia are consistent with derivation from an enriched OIB source. Cl and Cl/K ratios define positive correlations with host olivine fosterite content (Fo80-90) that cannot be explained by olivine fractionation, degassing and/or degree of mantle melting. Neither can the correlation between SiO2 and TiO2 in the MIs and host olivine Fo-content be explained by magmatic differentiation processes. Instead these correlations essentially require a south to north mantle source transition from a low Mg# pyroxenite (from recycled eclogite) to a high Mg# fluid metasomatised peridotite. The Cl/K and S/K ratios in Payenia MIs extend from enriched OIB-like signatures (south) to Andean SVZ arc like signatures (north). We show that the northward increase in S, Cl and S/K is coupled to a northward increase in melt oxidation states and thus in Fe3+/Fetot ratios in the magmas. The increase in oxidation state also correlates with an increase of Mn/Fe (olivine) ratios. We calculate that 25% of the apparent north–south pyroxenite–peridotite source variation in Payenia (based on olivine Mn/Fe ratios) can be explained by the south to north variation in melt oxidation states.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Alt JC, Garrido CJ, Shanks WC III, Turchyn A, Padrón-Navarta JA, Sánchez-Vizcaíno VL, Pugnaire MTG, Marchesi C (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett 327–328:50–60

    Article  Google Scholar 

  • Alt JC, Schwarzenbach EM, Früh-Green GL, Shanks WC, Bernasconi SM, Garrido CJ, Crispini L, Gaggero L, Padrón-Navarta JA, Marchesi C (2013) The role of serpentinites in cycling of carbon and sulphur: seafloor serpentinization and subduction metamorphism. Lithos 178:40–54

    Article  Google Scholar 

  • Ayers JC, Eggler DH (1995) Partitioning of elements between silicate melt and H2O-NaCl fluids at 1.5 and 2.0 GPa pressure—implications for mantle metasomatism. Geochim Cosmochim Acta 59:4237–4246

    Article  Google Scholar 

  • Baker DR, Moretti R (2011) Modeling the solubility of sulfur in magmas: a 50-year old geochemical challenge. Rev Miner Geochem 73:167–213. doi:10.2138/rmg.2011.73.7

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the Earth’s upper mantle. Nature 348:437–440. doi:10.1038/348437a0

    Article  Google Scholar 

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109:212–224

    Article  Google Scholar 

  • Beermann O, Botcharnikov RE, Holtz F, Diedrich O, Nowak M (2011) Temperature dependence of sulfide and sulfate solubility in olivine-saturated basaltic magmas. Geochim Cosmochim Acta 75:7612–7631. doi:10.1016/j.gca.2011.09.024

    Article  Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46(1):135–167

    Article  Google Scholar 

  • Blundy J., Cashman K. (2008). Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239

  • Bouvier AS, Métrich N, Deloule E (2008) Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. J Petrol 49:1427–1448

    Article  Google Scholar 

  • Bouvier AS, Metrich N, Deloule E (2010) Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: inferences for magma genesis. Geochem Geophys Geosyst 11:Q09004

    Article  Google Scholar 

  • Brandt FE, Holm PM, Søager N (2017) South-to-north pyroxenite-peridotite source variation correlated with an OIB-type to arc-type enrichment of magmas from the Payenia backarc of the Andean Southern Volcanic Zone (SVZ). Contrib Mineral Petrol 172:1. doi:10.1007/s00410-016-1318-9

    Article  Google Scholar 

  • Burd AI, Booker JR, Mackie R, Favetto A, Pomposiello MC (2014) Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophys J Int 198:812–827

    Article  Google Scholar 

  • Cabral RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, Price AA, Day JMD, Shimizu N, Kelley KA (2014) Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochem Geophys Geosyst 15:4445–4467. doi:10.1002/2014GC005473

    Article  Google Scholar 

  • Cahill TA, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97(B12):17503–17529. doi:10.1029/92JB00493

    Article  Google Scholar 

  • Contreras-Reyes E, Grevemeyer I, Flueh ER, Scherwath M, Heesemann M (2007) Alteration of the subducting oceanic lithosphere at the southern central Chile trench—outer rise. Geochem Geophys Geosys 8(7):1525–2027. doi:10.1029/2007GC001632

    Article  Google Scholar 

  • Contreras-Reyes E, Grevemeyer I, Watts AB, Flueh ER, Peirce C, Moeller S, Papenberg C (2011) Deep seismic structure of the Tonga subduction zone: implications for mantle hydration, tectonic erosion, and arc magmatism. J Geophys Res 116:B10103. doi:10.1029/2011JB008434

    Article  Google Scholar 

  • Dalou C, Koga KT, Le Voyer M, Shimizu N (2014) Contrasting partition behavior of F and Cl during hydrous mantle melting: implications for Cl/F signature in arc magmas. Prog Earth Planet Sci 1:26

    Article  Google Scholar 

  • Danyushevsky LV, Plechov P (2011) Petrolog 3: integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12:Q07021. doi:10.1029/2011GC003516

    Article  Google Scholar 

  • Danyushevsky LV, Sobolev AV (1996) Ferric-ferrous ratio and oxygen fugacity calculations for primitive mantle-derived melts: calibration of an empirical technique. Mineral Petrol 57(3):229–241. doi:10.1007/BF01162360

    Article  Google Scholar 

  • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Debret B, Koga KT, Nicollet C, Anreani M, Schwartz S (2014a) F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depths. Terra Nova 26:96–101. doi:10.1111/ter.12074

    Article  Google Scholar 

  • Debret B, Andreani M, Muñoz M, Bolfan-Casanova N, Carlut J, Nicollet C, Schwartz S, Trcera N (2014b) Evolution of Fe redox state in serpentine during subduction. Earth Planet Sci Lett 400:206–218

    Article  Google Scholar 

  • Dyhr CT, Holm PM, Llabías EJ, Scherstén A (2013a) Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza Region, Argentina. Lithos 179:67–83. doi:10.1016/j.lithos.2013.08.007

    Article  Google Scholar 

  • Dyhr CT, Holm PM, Llambías EJ (2013b) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Mendoza Region, Argentina; new insights from 40Ar/39Ar dating, Sr-Nd-Pb isotopes and trace elements. J Volcanol Geoth Res 266:50–68. doi:10.1016/j.jvolgeores.2013.08.005

    Article  Google Scholar 

  • Elburg MA, Kamenetsky VS, Foden JD, Sobolev A (2007) The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): mineral and melt inclusion evidence. Chem Geol 240:260–279

    Article  Google Scholar 

  • Evans KA, Elburg MA, Kamenetsky VS (2012) Oxidation state of subarc mantle. Geology 40:783–786. doi:10.1130/G33037.1

    Article  Google Scholar 

  • Fabbrizio A, Roland S, Hametner K, Günther D (2013) Experimental chlorine partitioning between forsterite, enstatite and aqueous fluid at upper mantle conditions. Geochim Cosmochim Acta 121:684–700. doi:10.1016/j.gca.2013.05.026

    Article  Google Scholar 

  • Falloon TJ, Danyushevsky LV, Ariskin A, Green DH, Ford CE (2007) The application of olivine geothermometry to infer crystallization temperatures of parental liquids: implication for the temperature of MORB magmas. Chem Geol 241:207–233

    Article  Google Scholar 

  • Folguera A, Naranjo JA, Orihashi Y, Sumino H, Nagao K, Polanco E, Ramos VA (2009) Retroarc volcanism in the northern San Rafael block (34–35 30′S), southern Central Andes: occurrence, age and tectonic setting. J Volcanol Geoth Res 186:169–185

    Article  Google Scholar 

  • Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine–liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24(3):256–265. doi:10.1093/petrology/24.3.256

    Article  Google Scholar 

  • Fortin MA, Riddle J, Desjardins-Langlais Y, Baker DR (2015) The effect of water on the sulfur concentration at sulphide saturation (SCSS) in natural melts. Geochim Cosmochim Acta 160:100–116. doi:10.1016/j.gca.2015.03.022

    Article  Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578. doi:10.1093/petrology/egh088

    Article  Google Scholar 

  • Gaetani GA (2016) The behavior of Fe3+/ΣFe during partial melting of spinel lherzolite. Geochim Cosmochim Acta 185:64–77. doi:10.1016/j.gca.2016.03.019

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131(4):323–346. doi:10.1007/s004100050396

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2000) Open-system behaviour of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2002) Modeling the major-element evolution of olivine-hosted melt inclusions. Chem Geol 183:25–41

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Gudnason J, Holm PM, Søager N, Llambías EJ (2012) Geochronology of the late Pliocene to recent volcanic activity in the Payenia backarc volcanic province, Mendoza, Argetina. J S Am Earth Sci 37:191–201

    Article  Google Scholar 

  • Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke HU (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524

    Article  Google Scholar 

  • Hattori KH, Guillot S (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geol Soc Am 31(6):525–528

    Google Scholar 

  • Herzberg C (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444:605–609. doi:10.1038/nature05254

    Article  Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146. doi:10.1093/petrology/egq075

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated Ultramafic magmas of phanerozoic age. J Petrol 43:1857–1883. doi:10.1093/petrology/43.10.1857

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Holm PM, Søager N, Dyhr CT, Nielsen MR (2014) Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust. Contrib Mineral Petrol 167:1004. doi:10.1007/s00410-014-1004-8

    Article  Google Scholar 

  • Holm PM, Søager N, Alfastsen M, Bertotto GW (2016) Subduction zone mantle enrichment by fluids and Zr-Hf-depleted crustal melts as indicated by Backarc basalts of the southern volcanic zone, Argentina. Lithos 262:135–152. doi:10.1016/j.lithos.2016.06.029

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548. doi:10.1139/e71-055

    Article  Google Scholar 

  • Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schönberg D, van den Bogaard P, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and slab input compositions. Geochim Cosmochim Acta 123:218–243. doi:10.1016/j.gca.2013.05.016

    Article  Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418. doi:10.1130/G25527A.1

    Article  Google Scholar 

  • Jugo PJ, Luth RW, Richards JP (2005a) An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 °C and 1.0 GPa. J Petrol 46:783–798

    Article  Google Scholar 

  • Jugo PJ, Luth RW, Richards JP (2005b) Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim Cosmochim Acta 69:497–503

    Article  Google Scholar 

  • Kay SM, Copeland P (2006) Early to middle Miocene backarc magmas of the Neuquén basin: geochemical consequences of slab shallowing and the westward drift of South America. Geol Soc Am Spec Pap 407:185–213

    Google Scholar 

  • Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat slab. J S Am Earth Sci 15:39–57. doi:10.1016/S0895-9811(02)00005-6

    Article  Google Scholar 

  • Kay SM, Burns W, Copeland P, Mancilla O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquen Basin. In: Kay SM, Ramos VA (eds) Evolution of the Andean Margin: a tectonic and magmatic view from the Andes to the Neuquen Basin (35–39S lat), vol. 407. Geological Society of America, pp 19–60

  • Kay SM, Jones HA, Kay RW (2013) Origin of tertiary to recent EM- and subduction-like chemical and isotopic signatures in Auca Mahuida region (37–38) and other Patagonian plateau lavas. Contrib Mineral Petrol 166(1):165–192

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607. doi:10.1126/science.1174156

    Article  Google Scholar 

  • Kendrick E, Bevis M, Smalley R Jr, Brooks B, Vargas RB, Lauria E, Souto LP (2003) The Nazca-South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131

    Article  Google Scholar 

  • Kendrick MA, Scambelluri M, Honda M, Philips D (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci. doi:10.1038/NGEO1270

    Google Scholar 

  • Kendrick MA, Jackson MG, Kent AJR, Hauri EH, Wallace PJ, Woodhead J (2014) Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem Geol 370:69–81. doi:10.1016/j.chemgeo.2014.01.019

    Article  Google Scholar 

  • Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. Rev Mineral Geochem 69:273–331

    Article  Google Scholar 

  • Kent AJR, Peate DW, Newmann S, Stolper EM, Pearce JA (2002) Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids. Earth Planet Sci Lett 202:361–377

    Article  Google Scholar 

  • Keppler H (1996) Constrains from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727. doi:10.1038/nature03971

    Article  Google Scholar 

  • Kilinc IA, Burnham CW (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kbars. Econ Geol 67:231–235

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102(B1):853–874

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422. doi:10.1093/petrology/egh057

    Article  Google Scholar 

  • Kushiro I (1972) Effect of water on the composition of magmas formed at high pressures. J Petrol 13:311–334

    Article  Google Scholar 

  • Laubier M, Schiano P, Doucelance R, Ottolini L, Laporte D (2007) Olivine-hosted melt inclusions and melting processes beneath the FAMOUS zone (Mid-Atlantic Ridge). Chem Geol 240:129–150

    Article  Google Scholar 

  • Le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10 N and 12–14 N): evidence for volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231

    Article  Google Scholar 

  • Le Roux VL, Dasgupta R, Lee C-T (2011) Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth Planet Sci Lett 307:395–408

    Article  Google Scholar 

  • Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595. doi:10.1093/petrology/egq030

    Article  Google Scholar 

  • Maurel C, Maurel P (1982) Etude experimcntale de l'equilibre Fe2+–Fe3+ dans les spinelles chromiferes et les liquides silicates basiques coexistants, a 1 arm. C R Acad Sci Paris 285:209–215

    Google Scholar 

  • Mavrogenes JA, O’Neill H, St C (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Reviews in Mineralogy and Geochemistry. Rev Mineral Geochem 69:363–402

    Article  Google Scholar 

  • Moune S, Holtz F, Botcharnikov RE (2009) Sulphur solubility in andesitic to basaltic melts: implications for Hekla volcano. Contrib Mineral Petrol 157:691–707. doi:10.1007/s00410-008-0359-0

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral—melt partitioning of major elements at 2–3 GPa. J Petrol 44(12):2173–2201

    Article  Google Scholar 

  • Philippot P, Argrinier P, Scambelluri M (1998) Chlorine cycling during subduction of altered oceanic crust. Earth Planet Sci Lett 161:33–44

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69

    Article  Google Scholar 

  • Ramos VA, Folguera A (2011) Payenia volcanic province in the Southern Andes: an appraisal of an exceptional Quaternary tectonic setting. J Volcanol Geotherm Res 201(1–4):53–64. doi:10.1016/j.jvolgeores.2010.09.008

    Article  Google Scholar 

  • Ramos VA, Kay SM (2006) Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39°S latitude) In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S latitude). Geological society of america special paper, vol 407, pp 1–17. doi:10.1130/2006.2407(01)

  • Roeder LP, Emslie FR (1970) Olivine-Liquid Equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Carlson RW, Holland HD, Turekian KK (eds) Treatise on geochemistry: the crust. Elsevier, pp 1–64

  • Ruscitto DM, Wallace PJ, Cooper LB, Plank T (2012) Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem Geophys Geosys 13(3):1525–2027

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455. doi:10.1038/nature01073

    Article  Google Scholar 

  • Sadofsky S, Portnyagin MV, Hoernle K, van den Bogaard P (2008) Subduction cycling of trace elements and volatiles through the Central American volcanic arc: evidence from melt inclusions. Chem Geol 240(3–4):260–279

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst. doi:10.1029/2003GC000597

    Google Scholar 

  • Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46(7):595–613. doi:10.2747/0020-6814.46.7.595

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Sharp ZD, Barnes JD (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226:243–254

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shaw AM, Behn MD, Humphris SE, Sohn RA, Gregg PM (2010) Deep pooling of low degree melts and volatile fluxes at the 85 E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289:311–322. doi:10.1016/j.epsl.2009.11.018

    Article  Google Scholar 

  • Søager N, Holm PM (2013) Melt-peridotite reactions in upwelling eclogite bodies: constraints from EM1-type alkaline basalts in Payenia, Argentina. Chem Geol 360–361:204–219. doi:10.1016/j.chemgeo.2013.10.024

    Article  Google Scholar 

  • Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem Geol 349–350:36–53. doi:10.1016/j.chemgeo.2013.04.007

    Article  Google Scholar 

  • Søager N, Holm PM, Thirlwall MF (2015a) Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina. Lithos 212–215:368–378

    Article  Google Scholar 

  • Søager N, Portnyagin M, Hoernle K, Holm PM, Hauff F, Garbe-schönberg D (2015b) Olivine major and trace element compositions in southern Payenia basalts, Argentina: evidence for pyroxenite-peridotite melt mixing in a backarc setting. J Petrol 56(8):1495–1518

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597. doi:10.1038/nature03411

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Tekley M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. doi:10.1126/science.1138113

    Article  Google Scholar 

  • Sorbadere F, Schiano P, Métrich N, Garaebiti E (2011) Insights into the origin of primitive silica-undersaturated arc magmas of Aoba volcano (Vanuatu arc). Contrib Mineral Petrol 162:995–1009

    Article  Google Scholar 

  • Spagnuolo MG, Orts DL, Gimenez M, Folguera A, Ramos VA (2016) Payenia Quaternary flood basalts (southern Mendoza, Argentina): Geophysical constraints on their volume. Geosci Front 7(5):775–782. doi:10.1016/j.gsf.2015.10.004

    Article  Google Scholar 

  • Spandler C, Hermann J, Arculus R, Mavrogenes J (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies: Implications for deep subduction-zone processes. Contrib Mineral Petrol 146:205–222

    Article  Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67(21):4179–4203

    Article  Google Scholar 

  • Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosyst 9:Q03007. doi:10.1029/2007GC001583

    Article  Google Scholar 

  • Straub SM, Gómez-Tuena A, Stuart FM, Zellmer GF, Espinasa-Perena R, Cai Y, Iizuka T (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth Planet Sci Lett 303:337–347. doi:10.1016/S0016-7037(00)00307-7

    Article  Google Scholar 

  • Straub SM, Zellmer GF, Gómez-Tuena A, Perena-Espinasa R, Martin-Del Pozzo AL, Stuart FM, Langmuir CH (2014) A genetic link between silicic slab components and calc-alkaline arc volcanism in central Mexico. Geol Soc Lond Spec Publ 385:31–64. doi:10.1144/SP385.14

    Article  Google Scholar 

  • Sun WD, Binns RA, Fan AC, Kamenetsky VS, Wysoczanski R, Wei GJ, Hu YH, Arculus RJ (2007) Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochim Cosmochim Acta 71:1542–1552

    Article  Google Scholar 

  • Tassara A, Götze H-J, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111:B9

    Article  Google Scholar 

  • Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y, Ishizuka O (2010) Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochem Geophys Geosyst 11:Q01X10. doi:10.1029/2009GC002847

  • Tsay A, Zajacz Z, Sanchez-Valle C (2014) Efficient mobilization and fractionation of rare-earth elements by aqueous fluids upon slab dehydration. Earth Planet Sci Lett 398:101–112

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Am Assoc Adv Sci 268(5212):858–861

    Google Scholar 

  • Van den Bleeken G, Koga KT (2015) Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F-Cl cycling through subduction zones. Geochim Cosmochim Acta 171:353–373

    Article  Google Scholar 

  • Vigouroux N, Wallace PJ, Kent AJR (2008) Volatiles in high-K magmas from the Western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49:1589–1618

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res 140:217–240

    Article  Google Scholar 

  • Wallace PJ, Carmichael ISE (1992) Sulfur in basaltic magmas. Geochim Cosmochim Acta 56:1863–1874

    Article  Google Scholar 

  • Wallace PJ, Edmonds M (2011) The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev Mineral Geochem 73:215–246. doi:10.2138/rmg.2011.73.8

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60. doi:10.1093/petroj/39.1.29

    Article  Google Scholar 

  • Webster JD, Kinzler RJ, Mathez EA (1999) Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim Cosmochim Acta 63(5):729–738

    Article  Google Scholar 

  • Wehrmann H, Hoernle K, Jacques G, Garbe-Schönberg D, Schumann K, Mahlke J, Lara L (2014a) Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43 S). Int J Earth Sci 103(7):1945–1962

    Article  Google Scholar 

  • Wehrmann H, Hoernle K, Garbe-Schönberg D, Jacques G, Mahlke J, Scgumann K (2014b) Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. Int J Earth Sci 103:1929–1944

    Article  Google Scholar 

  • Yáñez G, Cembrano J, Pardo M, Ranero C, Selles D (2002) The Challenger-Juan Fernández Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34°S: geodynamic evidence and implications. J S Am Earth Sci 15:23–38

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the help from Mario Thöner with Electron Microprobe measurements. We thank Heidi Wehrmann and Nina Søager for providing additional tephra samples for analysis as well as for good discussions. We are thankful for the grant from the Carlsberg foundation (Grant No. 2013_01_0313) and the Danish Council for Independent Research (DFF)/Nature and Universe (Grant No. 0602-02709B) to P.M. Holm. We enjoyed the company in the field of Natali Thorup, Anne Krull Pedersen, Josephine Persson and for shorter period Kaj Hoernle and Edurado Llambias.

Author information

Authors and Affiliations

  1. Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350, Copenahagen, Denmark

    Frederik Ejvang Brandt & Paul Martin Holm

  2. GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany

    Thor H. Hansteen

Authors
  1. Frederik Ejvang Brandt
  2. Paul Martin Holm
  3. Thor H. Hansteen

Corresponding author

Correspondence toFrederik Ejvang Brandt.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, F.E., Holm, P.M. & Hansteen, T.H. Volatile (Cl, F and S) and major element constraints on subduction-related mantle metasomatism along the alkaline basaltic backarc, Payenia, Argentina.Contrib Mineral Petrol172, 48 (2017). https://doi.org/10.1007/s00410-017-1359-8

Download citation

Keywords

Profiles

  1. Thor H. HansteenView author profile

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp