Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Marinomyxa Gen. Nov. Accommodates Gall-Forming Parasites of the Tropical to Subtropical Seagrass GenusHalophila and Constitutes a Novel Deep-Branching Lineage Within Phytomyxea (Rhizaria: Endomyxa)

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Marine representatives of Phytomyxea (SAR: Rhizaria: Endomyxa), a peculiar class of obligate endobiotic parasites, are a greatly understudied ecological group of protists infecting many algal, diatom, and seagrass species. Very little is known about the actual diversity, ecology, and pathogenic potential of these organisms and their taxonomic treatment in many cases follows outdated morphotaxonomic concepts. Here we focused on resolving the phylogenetic relations of the phytomyxean parasites of the widespread seagrass genusHalophila. We report the first finding ofPlasmodiophora halophilae, the parasite of ovate-leafHalophila species, after more than 100 years since its original description in 1913. We provide additional information on its anatomy, morphology, distribution, and host range, together with a phylogenetic evidence that it is congeneric with the recently rediscovered species infecting the invasive seagrassHalophila stipulacea in the Mediterranean Sea. Despite the previously hypothesized affiliation of the latter toTetramyxa, our phylogenetic analyses of the 18S rRNA gene placeTetramyxa parasitica (a parasite of brackish water phanerogams and the type species of the genus) in the freshwater/terrestrial phytomyxean order Plasmodiophorida and reveal that phytomyxids associated withHalophila spp. form a separate deep-branching clade within the class proposed here asMarinomyxa gen. nov. We further argue thatM. marina infectingH. stipulacea is most likely a species-specific parasite and implies their comigration through the Suez Canal.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article PubMed CAS  Google Scholar 

  2. O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article CAS PubMed PubMed Central  Google Scholar 

  3. Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31

    Article CAS PubMed  Google Scholar 

  4. Marin B, Melkonian M (2010) Molecular phylogeny and classification of the Mamiellophyceae class. nov.(Chlorophyta) based on sequence comparisons of the nuclear-and plastid-encoded rRNA operons. Protist 161:304–336

    Article CAS PubMed  Google Scholar 

  5. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article CAS PubMed  Google Scholar 

  6. Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY (2017) Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5:42

    Article PubMed PubMed Central  Google Scholar 

  7. Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154

    Article CAS PubMed  Google Scholar 

  8. Neuhauser S, Kirchmair M, Gleason FH (2011) Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems–a review. Mar Freshw Res 62:365–371

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Neuhauser S, Kirchmair M, Bulman S, Bass D (2014) Cross-kingdom host shifts of phytomyxid parasites. BMC Evol Biol 14:33

    Article PubMed PubMed Central  Google Scholar 

  10. Bulman S, Braselton JP (2014) 4 Rhizaria: Phytomyxea. In: McLaughlin DJ, Spatafora JW (eds) The Mycota VII part a, systematics and evolution2nd edn. Springer-Verlag, Germany, pp 783–803

    Google Scholar 

  11. Bulman S, Neuhauser S (2017) Phytomyxea. In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman DJ et al (eds) Handbook of the Protists. Springer International Publishing, Switzerland, pp 1–21

    Google Scholar 

  12. Feldmann J (1940) Une nouvelle espece dePlasmodiophora (P. bicaudata) parasite duZostera nana Roth. Bull Soc Hist Nat Afr Nord 31:171–177

    Google Scholar 

  13. Ferdinandsen C, Winge Ö (1913)Plasmodiophora holophilae sp. n. Centralblatt fur Bakteriologie, Parasitenkunde, und Infektionskrankheiten 37:167

  14. Ferdinandsen C, Winge Ö (1914)Ostenfeldiella, a new genus of Plasmodiophoraceae. Ann Bot 28:643–649

    Article  Google Scholar 

  15. Elliott JK, Simpson H, Teesdale A, Replogle A, Elliott M, Coats K, Chastagner G (2019) A novel phagomyxid parasite produces sporangia in root hair galls of eelgrass (Zostera marina). Protist 170:64–81

    Article PubMed  Google Scholar 

  16. Murúa P, Goecke F, Westermeier R, van West P, Küpper FC, Neuhauser S (2017)Maullinia braseltonii sp. nov. (Rhizaria, Phytomyxea, Phagomyxida): a cyst-forming parasite of the bull kelpDurvillaea spp. (Stramenopila, Phaeophyceae Fucales). Protist 168:468–480

    Article PubMed PubMed Central  Google Scholar 

  17. Goecke F, Wiese J, Nunez A, Labes A, Imhoff JF, Neuhauser S (2012) A novel phytomyxean parasite associated with galls on the bull-kelp Durvillaea antarctica (Chamisso) Hariot. PLoS One 7(9)

  18. Blake C, Thiel M, López BA, Fraser CI (2017) Gall-forming protistan parasites infect southern bull kelp across the Southern Ocean, with prevalence increasing to the south. Mar Ecol Prog Ser 583:95–106

    Article  Google Scholar 

  19. Maier I, Parodi E, Westermeier R, Müller DG (2000)Maullinia ectocarpii gen. et sp. nov.(Plasmodiophorea), an intracellular parasite inEctocarpus siliculosus (Ectocarpales, Phaeophyceae) and other filamentous brown algae. Protist 151:225–238

    Article CAS PubMed  Google Scholar 

  20. Karling JS (1944)Phagomyxa algarum n. gen., n. sp., an unusual parasite with plasmodiophoralean and proteomyxean characteristics. Am J Bot 31:38–52

    Article  Google Scholar 

  21. Schnepf E, Kühn SF, Bulman S (2000)Phagomyxa bellerocheae sp. nov. andPhagomyxa odontellae sp. nov., Plasmodiophoromycetes feeding on marine diatoms. Helgol Mar Res 54:237–241

    Article  Google Scholar 

  22. Bulman SR, Kühn SF, Marshall JW, Schnepf E (2001) A phylogenetic analysis of the SSU rRNA from members of the Plasmodiophorida and Phagomyxida. Protist 152:43–51

    Article CAS PubMed  Google Scholar 

  23. Feldmann G (1958) Une nouvelle espece de plasmodiophorale parasite duTriglochin maritimum L.:Plasmodiophora maritima nov. sp. Rev Gen Bot 65:634–651

    Google Scholar 

  24. Lipkin Y, Avidor A (1974)Tetramyxa marina a new plasmodiophoracean marine parasite. Nova Hedwigia 72:799–810

    Google Scholar 

  25. Marziano F, Villari R, Tripodi G (1995) A plasmodiophorid fungal parasite of the seagrassHalophila stipulacea. Mycotaxon 55:165–170

    Google Scholar 

  26. Vohník M, Borovec O, Özgür Özbek E, Okudan Alsan E (2017) Rare phytomyxid infection on the alien seagrassHalophila stipulacea in the southeast Aegean Sea. Mediterr Mar Sci 18:433–442

    Article  Google Scholar 

  27. Kolátková V, Čepička I, Gargiulo GM, Vohník M (2020) Enigmatic phytomyxid parasite of the alien seagrassHalophila stipulacea: new insights into its ecology, phylogeny, and distribution in the Mediterranean Sea. Microb Ecol 79:631–643

    Article PubMed CAS  Google Scholar 

  28. Goebel K (1884) Tetramyxa parasitica. Flora 67:517–521

    Google Scholar 

  29. Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    Article CAS PubMed  Google Scholar 

  30. Jiang R, Wang JX, Yu KC, Liu MH, Shi G, Liu XZ (2016) Microeukaryotic diversity in the surface layer of sediments from the East China Sea. Evol Ecol Res 17:125–140

    Google Scholar 

  31. Braselton JP (2020) Plasmodiophorid home page.https://people.ohio.edu/braselto/plasmodiophorids/. Accessed on 1st July 2020

  32. Karling JS (1968) The Plasmodiophorales, second completelyrevised edn. Hafner Publishing Company, New York

  33. Luther H (1949) Beobachtunger überTetramyxa parasitica Goebel. Mem Soc Fauna Flora Fenn 25:88–96

    Google Scholar 

  34. den Hartog C (1963)Tetramyxa parasitica, een gal opRuppia. Gorteria 1:138–140

    Google Scholar 

  35. Tur NM, Vobis G, Gabellone NA (1984) Presencia deTetramyxa parasitica (Plasmodiophoraceae) en dos especies dePotamogeton (Potamogetonaceae). Revista del Museo de La Plata 13:239–246

    Google Scholar 

  36. Pazourková Z (1986) Botanická mikrotechnika (botanical microtechnique; in Czech). Charles University Press, Prague

    Google Scholar 

  37. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article CAS PubMed  Google Scholar 

  38. Marande W, López-García P, Moreira D (2009) Eukaryotic diversity and phylogeny using small- and large- subunit ribosomal RNA genes from environmental samples. Environ Microbiol 11:3179–3188

    Article PubMed  Google Scholar 

  39. Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliatesOxytricha nova andStylonychia pustulata. Mol Biol Evol 2:399–410

    CAS PubMed  Google Scholar 

  40. Nguyen XV, Höfler S, Glasenapp Y, Thangaradjou T, Lucas C, Papenbrock J (2015) New insights into DNA barcoding of seagrasses. Syst Biodivers 13:496–508

    Article  Google Scholar 

  41. White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  42. Bass D, Cavalier-Smith T (2004) Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int J Syst Evol Microbiol 54:2393–2404

    Article CAS PubMed  Google Scholar 

  43. Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D (2013) Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J 7:2387–2399

    Article CAS PubMed PubMed Central  Google Scholar 

  44. More K, Simpson AGB, Hess S (2019) Two new marine species ofPlacopus (Vampyrellida, Rhizaria) that perforate the theca ofTetraselmis (Chlorodendrales, Viridiplantae). J Eukaryot Microbiol 66:560–573

    Article PubMed  Google Scholar 

  45. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  47. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article PubMed PubMed Central  Google Scholar 

  49. Setchell WA (1924) Three new fungi. Mycologia 16:240–244

    Article  Google Scholar 

  50. Kornaś J (1953)Tetramyxa parasitica Goebel w zatoce Gdanśkiej. Fragm Flor et Geobot 1:12–15

    Google Scholar 

  51. Braselton JP (1990) Ultrastructure and karyology ofTetramyxa parasitica (Plasmodiophoromycetes). Can J Bot 68:594–598

    Article  Google Scholar 

  52. den Hartog C (1972) Range extension ofHalophila stipulacea (Hydrocharitaceae) in the Mediterranean. Blumea-Biodiversity, Evol Biogeogr Plants 20:154–156

    Google Scholar 

  53. Lipkin Y (1975)Halophila stipulacea, a review of a successful immigration. Aquat Bot 1:203–215

    Article  Google Scholar 

  54. Van der Velde G, den Hartog C (1992) Continuing range extension ofHalophila stipulacea (Forssk.) Aschers. (Hydrocharitaceae) in the Mediterranean – now found at Kefallinia and Ithaki (Ionian Sea). Acta Bot Neer 41:345–348

    Article  Google Scholar 

  55. Buczacki ST, Moxham SE (1983) Structure of the resting spore wall ofPlasmodiophora brassicae revealed by electron microscopy and chemical digestion. Trans Br Mycol Soc 81:221–231

    Article  Google Scholar 

  56. den Hartog C (1989) Distribution ofPlasmodiophora bicaudata, a parasitic fungus on smallZostera species. Dis Aquat Org 6:227–229

    Article  Google Scholar 

  57. den Hartog C (1965) Some notes on the distribution ofPlasmodiophora diplantherae, a parasitic fungus on species ofHalodule. Persoonia 4:15–18

    Google Scholar 

  58. Kuo J, Kanamoto Z, Iizumi H, Mukai H (2006) Seagrasses of the genusHalophila Thouars (Hydrocharitaceae) from Japan. Acta Phytotax Geobot 57:129–154

    Google Scholar 

  59. Kurniawan F, Imran Z, Darus RF, Anggraeni F, Damar A, Sunuddin A, Kamal MM, Murti Pratiwi NT, Ayu IP, Iswantari A (2020) RediscoveringHalophila major (Zollinger) Miquel (1855) in Indonesia. Aquat Bot 161:103171

    Article  Google Scholar 

  60. Nguyen XV, Kletschkus E, Rupp-Schröder SI, El Shaffai A, Papenbrock J (2018) rDNA analysis of the Red Sea seagrass,Halophila, reveals vicariant evolutionary diversification. Syst Biodivers 16:668–679

    Article  Google Scholar 

  61. Cook WRI (1933) A monograph of the Plasmodiophorales. Arch Protistenkd 80:179–254

    Google Scholar 

  62. Dick MW (2001) Straminopilous fungi: systematics of the peronsoporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. J Gen Virol 75:3585–3590

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Yaacov Lipkin for devoting his time to discussions over the research presented here. Acknowledgments also go to James P. Braselton for his valuable tips and advices, Carl-Adam Haeggström for his help during the search forTetramyxa parasitica in Åland, Patrick Chavel for collecting infested specimens ofHalophila stipulacea in Eilat in March 2018 and Nguyen Xuan Vy for his help withHalophila species determination.

Funding

This study was supported by the Grant Agency of Charles University (GAUK 1308218) and constitutes a part of the long-term research projects of the Czech Academy of Sciences, Institute of Botany (RVO 67985939) and Charles University, Faculty of Science (MŠMT LO1417).

Author information

Authors and Affiliations

  1. Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic

    Viktorie Kolátková

  2. Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic

    Ivan Čepička

  3. The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, Israel

    Razy Hoffman

  4. Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic

    Martin Vohník

  5. Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic

    Martin Vohník

Authors
  1. Viktorie Kolátková
  2. Ivan Čepička
  3. Razy Hoffman
  4. Martin Vohník

Corresponding author

Correspondence toViktorie Kolátková.

Electronic supplementary material

ESM 1

(FAS 96 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolátková, V., Čepička, I., Hoffman, R.et al.Marinomyxa Gen. Nov. Accommodates Gall-Forming Parasites of the Tropical to Subtropical Seagrass GenusHalophila and Constitutes a Novel Deep-Branching Lineage Within Phytomyxea (Rhizaria: Endomyxa).Microb Ecol81, 673–686 (2021). https://doi.org/10.1007/s00248-020-01615-5

Download citation

Keywords

Profiles

  1. Viktorie KolátkováView author profile
  2. Martin VohníkView author profile

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp