Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Particle creation by black holes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

ArticleOpen access24 April 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Isham, C.J.: Preprint (1973)

  2. Ashtekar, A., Geroch, R.P.: Quantum theory of gravity (preprint 1973)

  3. Penrose, R.: Phys. Rev. Lett.14, 57–59 (1965)

    Article ADS MATH MathSciNet  Google Scholar 

  4. Hawking, S.W.: Proc. Roy. Soc. Lond.A 300, 187–20 (1967)

    ADS MATH  Google Scholar 

  5. Hawking, S.W., Penrose, R.: Proc. Roy. Soc. Lond.A 314, 529–548 (1970)

    ADS MathSciNet  Google Scholar 

  6. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. London: Cambridge University Press 1973

    Google Scholar 

  7. Hawking, S.W.: The event horizon. In: Black holes. Ed. C.M. DeWitt, B.S. DeWitt. New York: Gordon and Breach 1973

    Google Scholar 

  8. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. math. Phys.31, 161–170 (1973)

    Article MathSciNet  Google Scholar 

  9. Hawking, S.W.: Mon, Not. Roy. astr. Soc.152, 75–78 (1971)

    ADS  Google Scholar 

  10. Carr, B.J., Hawking, S.W.: Monthly Notices Roy. Astron. Soc.168, 399–415 (1974)

    ADS  Google Scholar 

  11. Hagedorn, R.: Astron. Astrophys.5, 184 (1970)

    ADS MATH  Google Scholar 

  12. Hawking, S.W.: Commun. math. Phys.25, 152–166 (1972)

    MathSciNet  Google Scholar 

  13. Carter, B.: Black hole equilibrium states. In: Black holes. Ed. C.M. DeWitt, B.S. DeWitt. New York: Gordon and Breach 1973

    Google Scholar 

  14. Misner, C.W.: Bull. Amer. Phys. Soc.17, 472 (1972)

    Google Scholar 

  15. Press, W.M., Teukolsky, S.A.: Nature238, 211 (1972)

    Article ADS  Google Scholar 

  16. Starobinsky, A.A.: Zh.E.T.F.64, 48 (1973)

    Google Scholar 

  17. Starobinsky, A.A., Churilov, S.M.: Zh.E.T.F.65, 3 (1973)

    Google Scholar 

  18. Bjorken, T.D., Drell, S.D.: Relativistic quantum mechanics. New York: McGraw Hill 1965

    Google Scholar 

  19. Beckenstein, J.D.: Phys. Rev. D.7, 2333–2346 (1973)

    ADS MathSciNet  Google Scholar 

  20. Beckenstein, J.D.: Phys. Rev. D.9,

  21. Penrose, R.: Phys. Rev. Lett.10, 66–68 (1963)

    Article ADS MathSciNet  Google Scholar 

  22. Sachs, R.K.: Proc. Roy. Soc. Lond.A 270, 103 (1962)

    ADS MATH MathSciNet  Google Scholar 

  23. Eardley, D., Sachs, R.K.: J. Math. Phys.14 (1973)

  24. Schmidt, B.G.: Commun. Math. Phys.36, 73–90 (1974)

    Article MATH  Google Scholar 

  25. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Proc. Roy. Soc. Lond.A 269, 21 (1962)

    ADS  Google Scholar 

  26. Carter, B.: Commun. math. Phys.10, 280–310 (1968)

    MATH MathSciNet  Google Scholar 

  27. Teukolsky, S.A.: Ap. J.185, 635–647 (1973)

    Article ADS  Google Scholar 

  28. Unruh, W.: Phys. Rev. Lett.31, 1265 (1973)

    Article ADS  Google Scholar 

  29. Unruh, W.: Phys. Rev. D.10, 3194–3205 (1974)

    Article ADS  Google Scholar 

  30. Zeldovich, Ya.B., Starobinsky, A.A.: Zh. E.T.F.61, 2161 (1971), JETP34, 1159 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

    S. W. Hawking

  2. California Institute of Technology, W. K. Kellogg Radiation Lab. 106–38, 91125, Pasadena, California, USA

    S. W. Hawking

Authors
  1. S. W. Hawking

Additional information

Communicated by J. Ehlers

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp