- Kevin Tian Xiang Tong1,
- Inn Shi Tan ORCID:orcid.org/0000-0003-1901-82111,
- Henry Chee Yew Foo1,
- Man Kee Lam2,3,
- Steven Lim4,5 &
- …
- Keat Teong Lee6
6931Accesses
37Citations
6 Altmetric
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players.
Graphical abstract

This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Benson NU, Bassey DE, Palanisami T (2021) COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon 7:e06343.https://doi.org/10.1016/J.HELIYON.2021.E06343
Tan IS, Lam MK, Foo HCY et al (2020) Advances of macroalgae biomass for the third generation of bioethanol production. Chinese J Chem Eng 28:502–517.https://doi.org/10.1016/J.CJCHE.2019.05.012
Balina K, Romagnoli F, Blumberga D (2017) Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 128:504–511.https://doi.org/10.1016/J.EGYPRO.2017.09.067
Cesário MT, da Fonseca MMR, Marques MM, de Almeida MCMD (2018) Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol Adv 36:798–817.https://doi.org/10.1016/J.BIOTECHADV.2018.02.006
Kim HM, Wi SG, Jung S et al (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134.https://doi.org/10.1016/J.BIORTECH.2014.10.050
Jambo SA, Abdulla R, Marbawi H, Gansau JA (2019) Response surface optimization of bioethanol production from third generation feedstock - Eucheuma cottonii. Renew Energy 132:1–10.https://doi.org/10.1016/J.RENENE.2018.07.133
Sirajunnisa AR, Surendhiran D (2016) Algae – A quintessential and positive resource of bioethanol production: A comprehensive review. Renew Sustain Energy Rev 66:248–267.https://doi.org/10.1016/J.RSER.2016.07.024
US Department of Energy (2021) Alternative Fuels Data Center: Maps and Data - Clean Cities Alternative Fuel Vehicle Inventory.https://afdc.energy.gov/data/10581. Accessed 3 Feb 2022
Kim SN, Choi BH, Kim HK, Bin CY (2019) Poly(lactic-co-glycolic acid) microparticles in fibrin glue for local, sustained delivery of bupivacaine. J Ind Eng Chem 75:86–92.https://doi.org/10.1016/J.JIEC.2019.02.028
Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenerg 92:70–75.https://doi.org/10.1016/J.BIOMBIOE.2016.03.038
Melikoglu M, Turkmen B (2019) Food waste to energy: Forecasting Turkey’s bioethanol generation potential from wasted crops and cereals till 2030. Sustain Energy Technol Assessments 36:100553.https://doi.org/10.1016/J.SETA.2019.100553
Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239.https://doi.org/10.1016/J.YMBEN.2014.12.007
Darwin C-R, Charles W (2018) Ethanol and lactic acid production from sugar and starch wastes by anaerobic acidification. Eng Life Sci 18:635–642.https://doi.org/10.1002/ELSC.201700178
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R (2018) Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 133:219–239.https://doi.org/10.1016/J.BEJ.2018.03.003
European Bioplastics (2020) Global production capacities of bioplastics 2019–2025
Bátori V, Åkesson D, Zamani A et al (2018) Anaerobic degradation of bioplastics: A review. Waste Manag 80:406–413.https://doi.org/10.1016/J.WASMAN.2018.09.040
Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegradation 117:215–223.https://doi.org/10.1016/J.IBIOD.2017.01.010
Cubas-Cano E, López-Gómez JP, González-Fernández C et al (2020) Towards sequential bioethanol and l-lactic acid co-generation: Improving xylose conversion to l-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans. Renew Energy 153:759–765.https://doi.org/10.1016/J.RENENE.2020.02.066
Tan IS, Lee KT (2016) Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study. Bioresour Technol 199:336–346.https://doi.org/10.1016/J.BIORTECH.2015.08.008
Mohd Azhar SH, Abdulla R, Jambo SA et al (2017) Yeasts in sustainable bioethanol production: A review. Biochem Biophys Reports 10:52–61.https://doi.org/10.1016/J.BBREP.2017.03.003
Alexandri M, Neu A-K, Schneider R et al (2019) Evaluation of various Bacillus coagulans isolates for the production of high purity L-lactic acid using defatted rice bran hydrolysates. Int J Food Sci Technol 54:1321–1329.https://doi.org/10.1111/IJFS.14086
Saravanan K, Duraisamy S, Ramasamy G et al (2018) Evaluation of the saccharification and fermentation process of two different seaweeds for an ecofriendly bioethanol production. Biocatal Agric Biotechnol 14:444–449.https://doi.org/10.1016/J.BCAB.2018.03.017
Maslova O, Stepanov N, Senko O, Efremenko E (2019) Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). Bioresour Technol 272:1–9.https://doi.org/10.1016/J.BIORTECH.2018.09.143
da Silva ARG, Ortega CET, Rong BG (2016) Effects of Bioethanol Pretreatments on the Broth Concentration and its Impacts in the Optimal Design of Product Separation and Purification Processes. Comput Aided Chem Eng 38:583–588.https://doi.org/10.1016/B978-0-444-63428-3.50102-8
Daful AG, Haigh K, Vaskan P, Görgens JF (2016) Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. Food Bioprod Process 99:58–70.https://doi.org/10.1016/J.FBP.2016.04.005
Abudi ZN, Hu Z, Sun N et al (2016) Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy 107:131–140.https://doi.org/10.1016/J.ENERGY.2016.03.141
Gavahian M, Munekata PES, Eş I et al (2019) Emerging techniques in bioethanol production: from distillation to waste valorization. Green Chem 21:1171–1185.https://doi.org/10.1039/C8GC02698J
Nazli RI (2020) Evaluation of different sweet sorghum cultivars for bioethanol yield potential and bagasse combustion characteristics in a semiarid Mediterranean environment. Biomass Bioenerg 139:105624.https://doi.org/10.1016/J.BIOMBIOE.2020.105624
Ayodele BV, Alsaffar MA, Mustapa SI (2020) An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod 245:118857.https://doi.org/10.1016/J.JCLEPRO.2019.118857
Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945.https://doi.org/10.1016/J.CEJ.2014.10.049
Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774.https://doi.org/10.1016/J.RSER.2016.08.038
Ma J, Shi S, Jia X et al (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86.https://doi.org/10.1016/J.JECHEM.2019.04.026
Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: Prospects and challenges. Renew Sustain Energy Rev 117:109479.https://doi.org/10.1016/J.RSER.2019.109479
Chen S, Xu Z, Li X et al (2018) Integrated bioethanol production from mixtures of corn and corn stover. Bioresour Technol 258:18–25.https://doi.org/10.1016/J.BIORTECH.2018.02.125
Mączyńska J, Krzywonos M, Kupczyk A et al (2019) Production and use of biofuels for transport in Poland and Brazil – The case of bioethanol. Fuel 241:989–996.https://doi.org/10.1016/J.FUEL.2018.12.116
Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392.https://doi.org/10.1016/J.RSER.2014.05.038
Renewable Fuels Association (2020) Focus Forward 2020 Ethanol Industry Outlook.https://ethanolrfa.org/wp-content/uploads/2020/02/2020-Outlook-Final-for-Website.pdf. Accessed 1 Sep 2021
Gómez-Monedero B, Pilar Ruiz M, Bimbela F, Faria J (2018) Selective depolymerization of industrial lignin-containing stillage obtained from cellulosic bioethanol processing. Fuel Process Technol 173:165–172.https://doi.org/10.1016/J.FUPROC.2018.01.021
Chen X, Che Q, Li S et al (2019) Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process Technol 196:106180.https://doi.org/10.1016/J.FUPROC.2019.106180
Kumar B, Bhardwaj N, Agrawal K et al (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process Technol 199:106244.https://doi.org/10.1016/J.FUPROC.2019.106244
Rajendran K, Drielak E, Sudarshan Varma V et al (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Convers Biorefinery 8:471–483.https://doi.org/10.1007/S13399-017-0269-3
Komesu A, Maciel MRW, Filho RM (2017) Separation and purification technologies for lactic acid - A brief review. BioResources 12:6885–6901.https://doi.org/10.15376/BIORES.12.3.6885-6901
Hebbale D, Chandran MDS, Joshi NV, Ramachandra TV (2017) Energy and Food Security from Macroalgae. J Biodivers 8:1–11.https://doi.org/10.1080/09766901.2017.1351511
Fisheries and Aquaculture (FAO) (2019) Fisheries and Aquaculture Department - Yearbook of Fishery and Aquaculture Statistics - Aquaculture production.http://www.fao.org/fishery/static/Yearbook/YB2017_USBcard/navigation/index_content_aquaculture_e.htm. Accessed 1 Sep 2021
Gajaria TK, Suthar P, Baghel RS et al (2017) Integration of protein extraction with a stream of byproducts from marine macroalgae: A model forms the basis for marine bioeconomy. Bioresour Technol 243:867–873.https://doi.org/10.1016/J.BIORTECH.2017.06.149
Mazur LP, Cechinel MAP, de Souza SMAGU et al (2018) Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. J Environ Manage 223:215–253.https://doi.org/10.1016/J.JENVMAN.2018.05.086
Gereniu CRN, Saravana PS, Chun BS (2018) Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Sep Purif Technol 196:309–317.https://doi.org/10.1016/J.SEPPUR.2017.06.055
T Poespowati A Riyanto Hazlan, et al 2018 Enzymatic hydrolysis of liquid hot water pre-treated macro-alga (Ulva lactuca) for fermentable sugar production MATEC Web Conf 156https://doi.org/10.1051/MATECCONF/201815601015
Kostas ET, White DA, Cook DJ (2017) Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. Algal Res 28:211–219.https://doi.org/10.1016/J.ALGAL.2017.10.022
Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of the micro and macro algae for biofuel production: A brief review. BioResources 9:.https://doi.org/10.15376/BIORES.9.1.1606-1633
Shukla R, Kumar M, Chakraborty S et al (2016) Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresour Technol 220:584–589.https://doi.org/10.1016/J.BIORTECH.2016.08.096
Tong KTX, Tan IS, Foo HCY et al (2021) Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. Bioresour Technol 342:125880.https://doi.org/10.1016/J.BIORTECH.2021.125880
Konda NVSNM, Singh S, Simmons BA, Klein-Marcuschamer D (2015) An Investigation on the Economic Feasibility of Macroalgae as a Potential Feedstock for Biorefineries. BioEnergy Res 8:1046–1056.https://doi.org/10.1007/S12155-015-9594-1
Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606.https://doi.org/10.1016/J.ALGAL.2019.101606
Aditiya HB, Mahlia TMI, Chong WT et al (2016) Second generation bioethanol production: A critical review. Renew Sustain Energy Rev 66:631–653.https://doi.org/10.1016/J.RSER.2016.07.015
Kwon O-M, Kim S-K, Jeong G-T (2016) Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa. Bioprocess Biosyst Eng 39:1173–1180.https://doi.org/10.1007/S00449-016-1593-X
Baghel RS, Reddy CRK, Jha B (2014) Characterization of agarophytic seaweeds from the biorefinery context. Bioresour Technol 159:280–285.https://doi.org/10.1016/J.BIORTECH.2014.02.083
Kulshreshtha G, Burlot A-S, Marty C et al (2015) Enzyme-Assisted Extraction of Bioactive Material from Chondrus crispus and Codium fragile and Its Effect on Herpes simplex Virus (HSV-1). Mar Drugs 13:558.https://doi.org/10.3390/MD13010558
Kim DH, Lee SB, Jeong GT (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 161:348–353.https://doi.org/10.1016/J.BIORTECH.2014.03.078
A Bayu T Handayani 2018 High-value chemicals from marine macroalgae: Opportunities and challenges for marine-based bioenergy development IOP Conf Ser Earth Environ Sci 209https://doi.org/10.1088/1755-1315/209/1/012046
Sudhakar MP, Merlyn R, Arunkumar K, Perumal K (2016) Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass Bioenerg 90:148–154.https://doi.org/10.1016/J.BIOMBIOE.2016.03.031
Chai CY, Tan IS, Foo HCY et al (2021) Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. Bioresour Technol 330:124930.https://doi.org/10.1016/J.BIORTECH.2021.124930
Lee SB, Kim JA, Lim HS (2016) Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl Microbiol Biotechnol 100:4109–4121.https://doi.org/10.1007/S00253-016-7346-6
Mohd Azhar SH, Abdulla R (2018) Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. Biocatal Agric Biotechnol 14:457–465.https://doi.org/10.1016/J.BCAB.2018.04.013
McKim JM (2014) Food additive carrageenan: Part I: A critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 44:211–243.https://doi.org/10.3109/10408444.2013.861797
Sasuga K, Yamanashi T, Nakayama S et al (2017) Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Res 26:123–130.https://doi.org/10.1016/J.ALGAL.2017.07.010
Xiao Q, Weng H, Ni H et al (2019) Physicochemical and gel properties of agar extracted by enzyme and enzyme-assisted methods. Food Hydrocoll 87:530–540.https://doi.org/10.1016/J.FOODHYD.2018.08.041
Martínez-Sanz M, Gómez-Mascaraque LG, Ballester AR et al (2019) Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res 38:101420.https://doi.org/10.1016/J.ALGAL.2019.101420
Catanzano O, D’Esposito V, Acierno S et al (2015) Alginate–hyaluronan composite hydrogels accelerate wound healing process. Carbohydr Polym 131:407–414.https://doi.org/10.1016/J.CARBPOL.2015.05.081
Mazumder A, Holdt SL, De Francisci D et al (2016) Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J Appl Phycol 28:3625–3634.https://doi.org/10.1007/S10811-016-0872-X
Das AK, Sharma M, Mondal D, Prasad K (2016) Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii. Carbohydr Polym 136:930–935.https://doi.org/10.1016/J.CARBPOL.2015.09.114
Rafiquzzaman SM, Ahmed R, Lee JM et al (2016) Improved methods for isolation of carrageenan from Hypnea musciformis and its antioxidant activity. J Appl Phycol 28:1265–1274.https://doi.org/10.1007/S10811-015-0605-6
Yang D, Yang H (2020) The temperature dependent extraction of polysaccharides from eucheuma and the rheological synergistic effect in their mixtures with kappa carrageenan. LWT 129:109515.https://doi.org/10.1016/J.LWT.2020.109515
Tran T, Truong H, Tran N et al (2018) Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Nat Prod Res 32:2291–2296.https://doi.org/10.1080/14786419.2017.1408098
JJ Chuang YY Huang SH Lo et al 2017 Effects of pH on the Shape of Alginate Particles and Its Release Behavior Int J Polym Scihttps://doi.org/10.1155/2017/3902704
M Garcia-Vaquero G Rajauria B Tiwari 2020 Conventional extraction techniques: Solvent extraction Sustain Seaweed Technol 171–189https://doi.org/10.1016/B978-0-12-817943-7.00006-8
M Garcia-Vaquero V Ummat B Tiwari G Rajauria 2020 Exploring Ultrasound, Microwave and Ultrasound-Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae Mar Drugs 18https://doi.org/10.3390/MD18030172
Gomez LP, Alvarez C, Zhao M et al (2020) Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr Polym 248:116784.https://doi.org/10.1016/J.CARBPOL.2020.116784
Yuan Y, Macquarrie D (2015) Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym 129:101–107.https://doi.org/10.1016/J.CARBPOL.2015.04.057
Vázquez-Delfín E, Robledo D, Freile-Pelegrín Y (2014) Microwave-assisted extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta). J Appl Phycol 26:901–907.https://doi.org/10.1007/S10811-013-0090-8
B Le KS Golokhvast SH Yang S Sun 2019 Optimization of Microwave-Assisted Extraction of Polysaccharides from Ulva pertusa and Evaluation of Their Antioxidant Activity Antioxidants 8https://doi.org/10.3390/ANTIOX8050129
M Garcia-Vaquero G Rajauria B Tiwari et al 2018 Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction Mar Drugs 16https://doi.org/10.3390/MD16080257
Flórez-Fernández N, Domínguez H, Torres MD (2019) A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int J Biol Macromol 124:451–459.https://doi.org/10.1016/J.IJBIOMAC.2018.11.232
W Jiao W Chen Y Mei et al 2019 Effects of Molecular Weight and Guluronic Acid/Mannuronic Acid Ratio on the Rheological Behavior and Stabilizing Property of Sodium Alginate Molecules 24https://doi.org/10.3390/MOLECULES24234374
A Pagarete AS Ramos P Puntervoll et al 2021 Antiviral Potential of Algal Metabolites—A Comprehensive Review Mar Drugs 19https://doi.org/10.3390/MD19020094
Vásquez V, Martínez R, Bernal C (2019) Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. J Appl Phycol 31:1999–2010.https://doi.org/10.1007/S10811-018-1712-Y
Chen J, Zeng W, Gan J et al (2021) Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Res 55:102269.https://doi.org/10.1016/J.ALGAL.2021.102269
Hardouin K, Bedoux G, Burlot AS et al (2016) Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res 16:233–239.https://doi.org/10.1016/J.ALGAL.2016.03.013
Borazjani NJ, Tabarsa M, You SG, Rezaei M (2017) Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. Int J Biol Macromol 101:703–711.https://doi.org/10.1016/J.IJBIOMAC.2017.03.128
Luo X, Duan Y, Yang W et al (2017) Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr Polym 157:794–802.https://doi.org/10.1016/J.CARBPOL.2016.10.066
Alboofetileh M, Rezaei M, Tabarsa M et al (2019) Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int J Biol Macromol 128:244–253.https://doi.org/10.1016/J.IJBIOMAC.2019.01.119
Youssouf L, Lallemand L, Giraud P et al (2017) Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydr Polym 166:55–63.https://doi.org/10.1016/J.CARBPOL.2017.01.041
Abka Khajouei R, Keramat J, Hamdami N et al (2021) Effect of high voltage electrode discharge on the physicochemical characteristics of alginate extracted from an Iranian brown seaweed (Nizimuddinia zanardini). Algal Res 56:102326.https://doi.org/10.1016/J.ALGAL.2021.102326
January GG, Naidoo RK, Kirby-McCullough B, Bauer R (2019) Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res 40:101517.https://doi.org/10.1016/J.ALGAL.2019.101517
Madany MA, Abdel-Kareem MS, Al-Oufy AK et al (2021) The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int J Biol Macromol 177:401–412.https://doi.org/10.1016/J.IJBIOMAC.2021.02.047
Bayu A, Warsito MF, Putra MY et al (2021) Macroalgae-derived rare sugars: Applications and catalytic synthesis. Carbon Resour Convers 4:150–163.https://doi.org/10.1016/J.CRCON.2021.04.002
Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609.https://doi.org/10.1007/S13205-015-0279-4
Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267.https://doi.org/10.1016/J.BEJ.2016.01.021
Venkateswar Rao L, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresour Technol 213:299–310.https://doi.org/10.1016/J.BIORTECH.2016.04.092
Jeong GT, Kim SK, Park DH (2015) Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars. Bioresour Technol 181:1–6.https://doi.org/10.1016/J.BIORTECH.2015.01.038
Hamouda RA, Sherif SA, Dawoud GTM, Ghareeb MM (2016) Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification. Rend Lincei 27:665–672.https://doi.org/10.1007/S12210-016-0546-2
Ra CH, Nguyen TH, Jeong GT, Kim SK (2016) Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour Technol 209:66–72.https://doi.org/10.1016/J.BIORTECH.2016.02.106
El Harchi M, Fakihi Kachkach FZ, El Mtili N (2018) Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. South African J Bot 115:161–169.https://doi.org/10.1016/J.SAJB.2018.01.021
Hessami MJ, Phang S-M, Salleh A, Rabiei R (2018) Evaluation of tropical seaweeds as feedstock for bioethanol production. Int J Environ Sci Technol 15:977–992.https://doi.org/10.1007/S13762-017-1455-3
Hessami MJ, Cheng SF, Ambati RR, et al (2019) Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech 9:1–8.https://doi.org/10.1007/S13205-018-1549-8
Sharma S, Horn SJ (2016) Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresour Technol 213:155–161.https://doi.org/10.1016/J.BIORTECH.2016.02.090
Jmel MA, Ben Messaoud G, Marzouki MN et al (2016) Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose. Carbohydr Polym 135:274–279.https://doi.org/10.1016/J.CARBPOL.2015.08.048
EL Rodrigues BC Fonseca VC Gelli et al 2019 Enzymatically and/or thermally treated Macroalgae biomass as feedstock for fermentative H2 production Matéria (Rio Janeiro) 24https://doi.org/10.1590/S1517-707620190002.0678
del Río PG, Domínguez E, Domínguez VD et al (2019) Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy 141:728–735.https://doi.org/10.1016/J.RENENE.2019.03.083
Gomes-Dias JS, Romaní A, Teixeira JA, Rocha CMR (2020) Valorization of Seaweed Carbohydrates: Autohydrolysis as a Selective and Sustainable Pretreatment. ACS Sustain Chem Eng 8:17143–17153.https://doi.org/10.1021/ACSSUSCHEMENG.0C05396
Ruangrit K, Chaipoot S, Phongphisutthinant R et al (2021) Environmental-friendly pretreatment and process optimization of macroalgal biomass for effective ethanol production as an alternative fuel using Saccharomyces cerevisiae. Biocatal Agric Biotechnol 31:101919.https://doi.org/10.1016/J.BCAB.2021.101919
Charoensiddhi S, Franco C, Su P, Zhang W (2015) Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction. J Appl Phycol 27:2049–2058.https://doi.org/10.1007/S10811-014-0476-2
Tsubaki S, Oono K, Hiraoka M et al (2016) Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem 210:311–316.https://doi.org/10.1016/J.FOODCHEM.2016.04.121
Lee JH, Kim HH, Ko JY et al (2016) Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system. Carbohydr Polym 153:512–517.https://doi.org/10.1016/J.CARBPOL.2016.07.122
Teh YY, Lee KT, Chen WH et al (2017) Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour Technol 246:20–27.https://doi.org/10.1016/J.BIORTECH.2017.07.101
Ravanal MC, Sharma S, Gimpel J et al (2017) The role of alginate lyases in the enzymatic saccharification of brown macroalgae, Macrocystis pyrifera and Saccharina latissima. Algal Res 26:287–293.https://doi.org/10.1016/J.ALGAL.2017.08.012
Park M-R, Kim S-K (2018) Jeong G-T (2018) Biosugar Production from Gracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis. Biotechnol Bioprocess Eng 233(23):302–310.https://doi.org/10.1007/S12257-018-0090-2
Cao L, Yu IKM, Cho DW et al (2019) Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol 273:251–258.https://doi.org/10.1016/J.BIORTECH.2018.11.013
Abeln F, Fan J, Budarin VL et al (2019) Lipid production through the single-step microwave hydrolysis of macroalgae using the oleaginous yeast Metschnikowia pulcherrima. Algal Res 38:101411.https://doi.org/10.1016/J.ALGAL.2019.101411
Onda A, Onda S, Koike M et al (2017) Catalytic Hydrolysis of Polysaccharides Derived from Fast-Growing Green Macroalgae. ChemCatChem 9:2638–2641.https://doi.org/10.1002/CCTC.201700100
Meinita MDN, Marhaeni B, Winanto T et al (2015) Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J Ind Eng Chem 27:108–114.https://doi.org/10.1016/J.JIEC.2014.12.024
Feldman D, Kowbel DJ, Glass NL et al (2015) (2015) Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnol Biofuels 81(8):1–11.https://doi.org/10.1186/S13068-015-0244-9
Shobana S, Kumar G, Bakonyi P et al (2017) A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour Technol 244:1341–1348.https://doi.org/10.1016/J.BIORTECH.2017.05.172
Ran H, Zhang J, Gao Q et al (2014) (2014) Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnol Biofuels 71(7):1–12.https://doi.org/10.1186/1754-6834-7-51
Ra CH, Jeong G-T, Kim S-K (2017) Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess Biosyst Eng 40:403–411.https://doi.org/10.1007/S00449-016-1708-4
Chae HR, Jang HJ, In YS et al (2015) Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis. J Microbiol Biotechnol 25:856–862.https://doi.org/10.4014/JMB.1409.09038
Yang CF, Huang CR (2016) Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate. Bioresour Technol 214:311–318.https://doi.org/10.1016/J.BIORTECH.2016.04.122
Yang CF, Huang CR (2018) Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate. J Biosci Bioeng 125:407–412.https://doi.org/10.1016/J.JBIOSC.2017.11.005
Hong Y, Wu YR (2020) Acidolysis as a biorefinery approach to producing advanced bioenergy from macroalgal biomass: A state-of-the-art review. Bioresour Technol 318:124080.https://doi.org/10.1016/J.BIORTECH.2020.124080
Jiménez Toro MJ, Dou X, Ajewole I et al (2017) (2017) Preparation and Optimization of Macroalgae-Derived Solid Acid Catalysts. Waste Biomass Valorization 104(10):805–816.https://doi.org/10.1007/S12649-017-0101-0
Lei Y, Zhang M, Li Q et al (2019) A Porous Polymer-Based Solid Acid Catalyst with Excellent Amphiphilicity: An Active and Environmentally Friendly Catalyst for the Hydration of Alkynes. Polymers (Basel) 11:2091.https://doi.org/10.3390/POLYM11122091
Ansanay Y, Kolar P, Sharma-Shivappa R et al (2017) Pre-treatment of biomasses using magnetised sulfonic acid catalysts. J Agric Eng 48:117–122.https://doi.org/10.4081/JAE.2017.594
Thompson TM, Young BR, Baroutian S (2019) Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process Technol 195:106151.https://doi.org/10.1016/J.FUPROC.2019.106151
Meinita MDN, Marhaeni B, Jeong G-T, Hong Y-K (2019) Sequential acid and enzymatic hydrolysis of carrageenan solid waste for bioethanol production: a biorefinery approach. J Appl Phycol 31:2507–2515.https://doi.org/10.1007/S10811-019-1755-8
Trivedi N, Reddy CRK, Lali AM (2016) Marine Microbes as a Potential Source of Cellulolytic Enzymes. Adv Food Nutr Res 79:27–41.https://doi.org/10.1016/BS.AFNR.2016.07.002
Singh A, Rodríguez Jasso RM, Gonzalez-Gloria KD et al (2019) The enzyme biorefinery platform for advanced biofuels production. Bioresour Technol Reports 7:100257.https://doi.org/10.1016/J.BITEB.2019.100257
S Jayasekara R Ratnayake 2019 Microbial Cellulases: An Overview and Applications Cellulosehttps://doi.org/10.5772/INTECHOPEN.84531
D Xue sheng, Zeng X, Lin D, Yao S, 2018 Ethanol tolerant endoglucanase from Aspergillus niger isolated from wine fermentation cellar Biocatal Agric Biotechnol 15 19 24https://doi.org/10.1016/J.BCAB.2018.04.016
Mandeep LH, Shukla P (2021) Synthetic Biology and Biocomputational Approaches for Improving Microbial Endoglucanases toward Their Innovative Applications. ACS Omega 6:6055–6063.https://doi.org/10.1021/ACSOMEGA.0C05744
Pathiraja D, Lee S, Choi I-G (2018) Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass. J Agric Food Chem 66:6814–6821.https://doi.org/10.1021/ACS.JAFC.8B01792
Zabed H, Sahu JN, Suely A et al (2017) Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501.https://doi.org/10.1016/J.RSER.2016.12.076
DE Cervantes-Cisneros D Arguello-Esparza A Cabello-Galindo et al 2017 Hydrothermal Processes for Extraction of Macroalgae High Value-Added Compounds Hydrothermal Process Biorefineries Prod Bioethanol High Added-Value Compd Second Third Gener Biomass 461–481https://doi.org/10.1007/978-3-319-56457-9_20
Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15:160–176.https://doi.org/10.1002/ELSC.201400191
Sadhukhan J, Gadkari S, Martinez-Hernandez E et al (2019) Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chem 21:2635–2655.https://doi.org/10.1039/C9GC00607A
del Río PG, Gomes-Dias JS, Rocha CMR et al (2020) Recent trends on seaweed fractionation for liquid biofuels production. Bioresour Technol 299:122613.https://doi.org/10.1016/J.BIORTECH.2019.122613
Wang T, Zhai Y, Zhu Y et al (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 90:223–247.https://doi.org/10.1016/J.RSER.2018.03.071
S Maneein JJ Milledge BV Nielsen PJ Harvey (2018) A Review of Seaweed Pre-Treatment Methods for Enhanced Biofuel Production by Anaerobic Digestion or Fermentation. Ferment, 2018 Vol 4 Page 100 4 100https://doi.org/10.3390/FERMENTATION4040100
J Baruah BK Nath R Sharma et al 2018 Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products Front Energy Res 141https://doi.org/10.3389/FENRG.2018.00141
D Özçimen B Inan 2015 An Overview of Bioethanol Production From Algae Biofuels - Status Perspecthttps://doi.org/10.5772/59305
Kostas ET, Beneroso D, Robinson JP (2017) The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renew Sustain Energy Rev 77:12–27.https://doi.org/10.1016/J.RSER.2017.03.135
Yuan Y, Xu X, Jing C et al (2018) Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr Polym 181:902–910.https://doi.org/10.1016/J.CARBPOL.2017.11.061
Ninomiya K, Yamauchi T, Ogino C et al (2014) Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification. Biochem Eng J 90:90–95.https://doi.org/10.1016/J.BEJ.2014.05.013
Li H, Qu Y, Yang Y et al (2016) Microwave irradiation – A green and efficient way to pretreat biomass. Bioresour Technol 199:34–41.https://doi.org/10.1016/J.BIORTECH.2015.08.099
Boulho R, Marty C, Freile-Pelegrín Y et al (2017) Antiherpetic (HSV-1) activity of carrageenans from the red seaweed Solieria chordalis (Rhodophyta, Gigartinales) extracted by microwave-assisted extraction (MAE). J Appl Phycol 29:2219–2228.https://doi.org/10.1007/S10811-017-1192-5
Kundu C, Lee JW (2015) Optimization conditions for oxalic acid pretreatment of deacetylated yellow poplar for ethanol production. J Ind Eng Chem 32:298–304.https://doi.org/10.1016/J.JIEC.2015.09.001
A Amini K Ohno ichiro, Maeda T, Kunitomo K, 2019 A kinetic comparison between microwave heating and conventional heating of FeS-CaO mixture during hydrogen-reduction Chem Eng J 374 648 657https://doi.org/10.1016/J.CEJ.2019.05.226
Dussán KJ, Silva DDV, Moraes EJC et al (2014) Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chem Eng Trans 38:433–438.https://doi.org/10.3303/CET1438073
Conesa C, Seguí L, Laguarda-Miró N, Fito P (2016) Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food Bioprod Process 100:203–213.https://doi.org/10.1016/J.FBP.2016.07.001
Kim SW, Hong CH, Jeon SW, Shin HJ (2015) High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour Technol 196:634–641.https://doi.org/10.1016/J.BIORTECH.2015.08.016
Azizi N, Najafpour G, Younesi H (2017) Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol 101:1029–1040.https://doi.org/10.1016/J.IJBIOMAC.2017.03.184
Kumar D, Juneja A, Singh V (2018) Fermentation technology to improve productivity in dry grind corn process for bioethanol production. Fuel Process Technol 173:66–74.https://doi.org/10.1016/J.FUPROC.2018.01.014
Chen Z, Ni D, Zhang W et al (2021) Lactic acid bacteria-derived α-glucans: From enzymatic synthesis to miscellaneous applications. Biotechnol Adv 47:107708.https://doi.org/10.1016/J.BIOTECHADV.2021.107708
Selim KA, El-Ghwas DE, Easa SM, Hassan MIA (2018) Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. Fermentation 4:16.https://doi.org/10.3390/FERMENTATION4010016
Perez-Samper G, Cerulus B, Jariani A et al (2018) The crabtree effect shapes the saccharomyces cerevisiae lag phase during the switch between different carbon sources. MBio 9:1–18.https://doi.org/10.1128/MBIO.01331-18
Majeed M, Nagabhushanam K, Natarajan S et al (2016) Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain. World J Microbiol Biotechnol 32:60.https://doi.org/10.1007/S11274-016-2027-2)
R Zhao R Zhao Y Tu et al 2018 A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity PLoS ONE 13https://doi.org/10.1371/JOURNAL.PONE.0197067
Aulitto M, Fusco S, Bartolucci S et al (2017) Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnol Biofuels 10:1–15.https://doi.org/10.1186/S13068-017-0896-8
Genzel Y, Vogel T, Buck J et al (2014) High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 32:2770–2781.https://doi.org/10.1016/J.VACCINE.2014.02.016
Cao J, Yu Z, Liu W et al (2020) Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J Funct Foods 64:103643.https://doi.org/10.1016/J.JFF.2019.103643
Laaziz SA, Raji M, Hilali E et al (2017) Bio-composites based on polylactic acid and argan nut shell: Production and properties. Int J Biol Macromol 104:30–42.https://doi.org/10.1016/J.IJBIOMAC.2017.05.184
Rahmayetty WY, Sukirno, et al (2018) Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatal Agric Biotechnol 16:683–691.https://doi.org/10.1016/J.BCAB.2018.09.015
Yu B, Cao Y, Sun H, Han J (2016) The Structure and Properties of Biodegradable PLLA/PDLA for Melt-Blown Nonwovens. J Polym Environ 25:510–517.https://doi.org/10.1007/S10924-016-0827-Y
M Pohanka 2020 D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection Biomed Res Int 2020https://doi.org/10.1155/2020/3419034
Ben Yahmed N, Jmel MA, Ben Alaya M et al (2016) A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Convers Manag 119:257–265.https://doi.org/10.1016/J.ENCONMAN.2016.04.046
Adams JMM, Bleathman G, Thomas D, Gallagher JA (2017) The effect of mechanical pre-processing and different drying methodologies on bioethanol production using the brown macroalga Laminaria digitata (Hudson) JV Lamouroux. J Appl Phycol 29:2463–2469.https://doi.org/10.1007/S10811-016-1039-5
Loaces I, Schein S, Noya F (2017) Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of a multifunctional glucanase and xylanase. Bioresour Technol 224:307–313.https://doi.org/10.1016/J.BIORTECH.2016.10.075
Nguyen TH, Ra CH, Sunwoo I et al (2017) Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess Biosyst Eng 40:529–536.https://doi.org/10.1007/S00449-016-1718-2
Rattanasaensri S, Nunraksa N, Muangmai N et al (2018) Ethanol production from Gracilaria fisheri using three marine epiphytic yeast species. J Appl Phycol 30:3311–3317.https://doi.org/10.1007/S10811-018-1527-X
Fernandes-Klajn F, Romero-García JM, Díaz MJ, Castro E (2018) Comparison of fermentation strategies for ethanol production from olive tree pruning biomass. Ind Crops Prod 122:98–106.https://doi.org/10.1016/J.INDCROP.2018.05.063
Zhu J, Chen L, Gleisner R, Zhu JY (2019) Co-production of bioethanol and furfural from poplar wood via low temperature (≤90 °C) acid hydrotropic fractionation (AHF). Fuel 254:115572.https://doi.org/10.1016/J.FUEL.2019.05.155
Aparicio E, Rodríguez-Jasso RM, Pinales-Márquez CD et al (2021) High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresour Technol 329:124935.https://doi.org/10.1016/J.BIORTECH.2021.124935
Ma K, Hu G, Pan L et al (2016) Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Bioresour Technol 219:114–122.https://doi.org/10.1016/J.BIORTECH.2016.07.100
Cabrita ARJ, Maia MRG, Sousa-Pinto I, Fonseca AJM (2017) Ensilage of seaweeds from an integrated multi-trophic aquaculture system. Algal Res 24:290–298.https://doi.org/10.1016/J.ALGAL.2017.04.024
Glaser R, Venus J (2018) Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnol Reports 18:e00245.https://doi.org/10.1016/J.BTRE.2018.E00245
Chen H, Huo W, Wang B et al (2019) L-lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw. Ind Crops Prod 141:111749.https://doi.org/10.1016/J.INDCROP.2019.111749
Alves de Oliveira R, Schneider R, Vaz Rossell CE et al (2019) Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresour Technol Reports 6:26–31.https://doi.org/10.1016/J.BITEB.2019.02.003
de la Torre I, Acedos MG, Ladero M, Santos VE (2019) On the use of resting L. delbrueckii spp. delbrueckii cells for D-lactic acid production from orange peel wastes hydrolysates. Biochem Eng J 145:162–169.https://doi.org/10.1016/J.BEJ.2019.02.012
Radosavljević M, Lević S, Belović M et al (2021) Encapsulation of Lactobacillus rhamnosus in Polyvinyl Alcohol for the production of L-(+)-Lactic Acid. Process Biochem 100:149–160.https://doi.org/10.1016/J.PROCBIO.2020.10.006
Campos J, Bao J, Lidén G (2021) Optically pure lactic acid production from softwood-derived mannose by Pediococcus acidilactici. J Biotechnol 335:1–8.https://doi.org/10.1016/J.JBIOTEC.2021.06.007
Trivedi N, Baghel RS, Bothwell J et al (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:1–8.https://doi.org/10.1038/srep30728
Lin TH, Guo GL, Hwang WS, Huang SL (2016) The addition of hydrolyzed rice straw in xylose fermentation by Pichia stipitis to increase bioethanol production at the pilot-scale. Biomass Bioenerg 91:204–209.https://doi.org/10.1016/J.BIOMBIOE.2016.05.012
Baeyens J, Kang Q, Appels L et al (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88.https://doi.org/10.1016/J.PECS.2014.10.003
Westman JO, Franzén CJ (2015) Current progress in high cell density yeast bioprocesses for bioethanol production. Biotechnol J 10:1185–1195.https://doi.org/10.1002/BIOT.201400581
MC Ravanal C Camus AH Buschmann et al 2019 Production of Bioethanol From Brown Algae Adv Feed Convers Technol Altern Fuels Bioprod New Technol Challenges Oppor 69–88https://doi.org/10.1016/B978-0-12-817937-6.00004-7
H-TV Lin M-Y Huang T-Y Kao (2020) Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation. Ferment, et al 2020 Vol 6 Page 37 6 37https://doi.org/10.3390/FERMENTATION6010037
Dahnum D, Tasum SO, Triwahyuni E et al (2015) Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. Energy Procedia 68:107–116.https://doi.org/10.1016/J.EGYPRO.2015.03.238
Rastogi M, Shrivastava S (2018) Current Methodologies and Advances in Bio-ethanol Production. J Biotechnol Bioresearch 1:.https://doi.org/10.31031/JBB.2018.01.000505
Ahmad A, Banat F, Taher H (2020) A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ Technol Innov 20:101138.https://doi.org/10.1016/J.ETI.2020.101138
Yun EJ, Kim HT, Cho KM et al (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318.https://doi.org/10.1016/J.BIORTECH.2015.08.001
Wu Z-Z, Li D-Y, Cheng Y-S (2018) Application of ensilage as a green approach for simultaneous preservation and pretreatment of macroalgae Ulva lactuca for fermentable sugar production. Clean Technol Environ Policy 20:2057–2065.https://doi.org/10.1007/S10098-018-1574-7
Bleakley S, Hayes M (2017) Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 6:1–34.https://doi.org/10.3390/FOODS6050033
Chisti Y (2019) Biorefinery: Integrated Sustainable Processes for Biomass Conversion to Biomaterials, Biofuels, and Fertilizers. Biotechnol Adv 37:107464.https://doi.org/10.1016/J.BIOTECHADV.2019.107464
Jeon W, Ban C, Park G et al (2016) Hydrothermal conversion of macroalgae-derived alginate to lactic acid catalyzed by metal oxides. Catal Sci Technol 6:1146–1156.https://doi.org/10.1039/C5CY00966A
Alfonsín V, Maceiras R, Gutiérrez C (2019) Bioethanol production from industrial algae waste. Waste Manag 87:791–797.https://doi.org/10.1016/J.WASMAN.2019.03.019
Szambelan K, Nowak J, Szwengiel A et al (2018) Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods in bioethanol production and formation of volatile by-products from selected corn cultivars. Ind Crops Prod 118:355–361.https://doi.org/10.1016/J.INDCROP.2018.03.059
Mithra MG, Jeeva ML, Sajeev MS, Padmaja G (2018) Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon 4:e00885.https://doi.org/10.1016/J.HELIYON.2018.E00885
Sharma P, Sharma N, Sharma N (2019) Exploration of Rhizoclonium sp. algae potential under different ethanol production strategies with SEM analysis of biomass and detoxification of hydrolysate. Life Sci J 16:.https://doi.org/10.7537/marslsj160619.12
Hakim A, Chasanah E, Uju U, Santoso J (2017) Bioethanol Production from Seaweed Processing Waste by Simultaneous Saccharification and Fermentation (SSF). Squalen Bull Mar Fish Postharvest Biotechnol 12:41.https://doi.org/10.15578/SQUALEN.V12I2.281
Lippi L, Bähr L, Wüstenberg A et al (2018) Exploring the potential of high-density cultivation of cyanobacteria for the production of cyanophycin. Algal Res 31:363–366.https://doi.org/10.1016/J.ALGAL.2018.02.028
Tapia F, Vázquez-Ramírez D, Genzel Y, Reichl U (2016) Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl Microbiol Biotechnol 100:2121–2132.https://doi.org/10.1007/S00253-015-7267-9
Bähr L, Wüstenberg A, Ehwald R (2016) Two-tier vessel for photoautotrophic high-density cultures. J Appl Phycol 28:783–793.https://doi.org/10.1007/S10811-015-0614-5
A Guljamow M Kreische K Ishida et al 2017 High-Density Cultivation of Terrestrial Nostoc Strains Leads to Reprogramming of Secondary Metabolome Appl Environ Microbiol 83https://doi.org/10.1128/AEM.01510-17
Sayed W, Cabrol A, Abdallah R et al (2018) Enhancement of ethanol production from synthetic medium model of hydrolysate of macroalgae. Renew Energy 124:3–10.https://doi.org/10.1016/J.RENENE.2017.10.094
Chemodanov A, Robin A, Golberg A (2017) Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresour Technol 241:1084–1093.https://doi.org/10.1016/J.BIORTECH.2017.06.061
Osman AI, Abdelkader A, Farrell C et al (2019) Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches. Fuel Process Technol 192:179–202.https://doi.org/10.1016/J.FUPROC.2019.04.026
GlobalPetrolPrices (2021) Ethanol prices around the world, 15-Aug-2021 | GlobalPetrolPrices.com.https://www.globalpetrolprices.com/ethanol_prices/. Accessed 17 Aug 2021
Pharmacompass (2021) Lactic Acid | API Reference Price .https://www.pharmacompass.com/active-pharmaceutical-ingredients/lactic-acid/api-price-information/api-reference-price. Accessed 17 Aug 2021
Ghayur A, Verheyen TV, Meuleman E (2019) Techno-economic analysis of a succinic acid biorefinery coproducing acetic acid and dimethyl ether. J Clean Prod 230:1165–1175.https://doi.org/10.1016/J.JCLEPRO.2019.05.180
Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sustain Energy Rev 54:473–481.https://doi.org/10.1016/J.RSER.2015.10.022
M Soleymani KA Rosentrater 2017 Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed) Bioengineering 4https://doi.org/10.3390/BIOENGINEERING4040092
Akila V, Manikandan A, Sahaya Sukeetha D et al (2019) Biogas and biofertilizer production of marine macroalgae: An effective anaerobic digestion of Ulva sp. Biocatal Agric Biotechnol 18:101035.https://doi.org/10.1016/J.BCAB.2019.101035
Cardoso S, Carvalho L, Silva P et al (2014) Bioproducts from Seaweeds: A Review with Special Focus on the Iberian Peninsula. Curr Org Chem 18:896–917.https://doi.org/10.2174/138527281807140515154116
Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. Energies 2014, Vol 7, Pages 7194–7222 7:7194–7222.https://doi.org/10.3390/EN7117194
Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, et al (2018) Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J 17:780–791.https://doi.org/10.18331/BRJ2018.5.1.5
Manhongo TT, Chimphango A, Thornley P, Röder M (2021) An economic viability and environmental impact assessment of mango processing waste-based biorefineries for co-producing bioenergy and bioactive compounds. Renew Sustain Energy Rev 148:111216.https://doi.org/10.1016/J.RSER.2021.111216
Tunå P, Hulteberg C (2014) Woody biomass-based transportation fuels – A comparative techno-economic study. Fuel 117:1020–1026.https://doi.org/10.1016/J.FUEL.2013.10.019
YN Barbot H Al-Ghaili R Benz 2016 A Review on the Valorization of Macroalgal Wastes for Biomethane Production Mar Drugs 14https://doi.org/10.3390/MD14060120
Ullah K, Ahmad M, Sofia, et al (2014) Algal biomass as a global source of transport fuels: Overview and development perspectives. Prog Nat Sci Mater Int 24:329–339.https://doi.org/10.1016/J.PNSC.2014.06.008
EIA USEIA (2021) Use of energy for transportation - U.S. Energy Information Administration (EIA).https://www.eia.gov/energyexplained/use-of-energy/transportation.php. Accessed 4 Jan 2022
Peng J, Xu H, Wang W et al (2021) Techno-economic analysis of bioethanol preparation process via deep eutectic solvent pretreatment. Ind Crops Prod 172:114036.https://doi.org/10.1016/J.INDCROP.2021.114036
Hossain MS, Theodoropoulos C, Yousuf A (2019) Techno-economic evaluation of heat integrated second generation bioethanol and furfural coproduction. Biochem Eng J 144:89–103.https://doi.org/10.1016/J.BEJ.2019.01.017
Munagala M, Shastri Y, Nalawade K et al (2021) Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid. Waste Manag 126:52–64.https://doi.org/10.1016/J.WASMAN.2021.02.052
Marchesan AN, Leal Silva JF, Maciel Filho R, Wolf Maciel MR (2021) Techno-Economic Analysis of Alternative Designs for Low-pH Lactic Acid Production. ACS Sustain Chem Eng 9:12120–12131.https://doi.org/10.1021/ACSSUSCHEMENG.1C03447/SUPPL_FILE/SC1C03447_SI_001.PDF
Chong TY, Cheah SA, Ong CT et al (2020) Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia. Energy 210:118491.https://doi.org/10.1016/J.ENERGY.2020.118491
Brigljević B, Liu JJ, Lim H (2019) Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle. Appl Energy 254:113704.https://doi.org/10.1016/J.APENERGY.2019.113704
Nazemi F, Karimi K, Denayer JFM, Shafiei M (2021) Techno-economic aspects of different process approaches based on brown macroalgae feedstock: A step toward commercialization of seaweed-based biorefineries. Algal Res 58:102366.https://doi.org/10.1016/J.ALGAL.2021.102366
Wong KH, Tan IS, Foo HCY, et al (2022) Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: Prospects of Industry 5.0 algae. Energy Convers Manag 253:115155.https://doi.org/10.1016/J.ENCONMAN.2021.115155
KD González-Gloria RM Rodríguez-Jasso Shiva, et al 2021 Macroalgal biomass in terms of third-generation biorefinery concept: Current status and techno-economic analysis – A review Bioresour Technol Reports 16 100863https://doi.org/10.1016/J.BITEB.2021.100863
Seghetta M, Hou X, Bastianoni S et al (2016) Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers – A step towards a regenerative bioeconomy. J Clean Prod 137:1158–1169.https://doi.org/10.1016/J.JCLEPRO.2016.07.195
Ghadge A, van der Werf S, Er Kara M et al (2020) Modelling the impact of climate change risk on bioethanol supply chains. Technol Forecast Soc Change 160:120227.https://doi.org/10.1016/J.TECHFORE.2020.120227
Peteiro C, Sánchez N, Dueñas-Liaño C, Martínez B (2014) Open-sea cultivation by transplanting young fronds of the kelp Saccharina latissima. J Appl Phycol 26:519–528.https://doi.org/10.1007/S10811-013-0096-2
Zhang X, Border A, Goosen N, Thomsen M (2021) Environmental life cycle assessment of cascade valorisation strategies of South African macroalga Ecklonia maxima using green extraction technologies. Algal Res 58:102348.https://doi.org/10.1016/J.ALGAL.2021.102348
Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91.https://doi.org/10.1016/J.BIORTECH.2015.08.029
Mhatre A, Gore S, Mhatre A et al (2019) Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renew Energy 132:742–751.https://doi.org/10.1016/J.RENENE.2018.08.012
Zollmann M, Robin A, Prabhu M et al (2019) Green technology in green macroalgal biorefineries. Phycologia 58:516–534.https://doi.org/10.1080/00318884.2019.1640516
Ocreto JB, Chen W-H, Ubando AT et al (2021) A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment. Renew Sustain Energy Rev 152:111679.https://doi.org/10.1016/J.RSER.2021.111679
Rajak RC, Jacob S, Kim BS (2020) A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. Sci Total Environ 716:137067.https://doi.org/10.1016/J.SCITOTENV.2020.137067
B Abdullah SAF Syed Muhammad ad, Shokravi Z, et al 2019 Fourth generation biofuel: A review on risks and mitigation strategies Renew Sustain Energy Rev 107 37 50https://doi.org/10.1016/J.RSER.2019.02.018
Jambo SA, Abdulla R, Mohd Azhar SH et al (2016) A review on third generation bioethanol feedstock. Renew Sustain Energy Rev 65:756–769.https://doi.org/10.1016/J.RSER.2016.07.064
Abinandan S, Shanthakumar S (2015) Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review. Renew Sustain Energy Rev 52:123–132.https://doi.org/10.1016/J.RSER.2015.07.086
Das B, Roy AP, Bhattacharjee S et al (2015) Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicol Environ Saf 121:244–252.https://doi.org/10.1016/J.ECOENV.2015.03.024
Cuevas-Castillo GA, Navarro-Pineda FS, Baz Rodríguez SA, Sacramento Rivero JC (2020) Advances on the processing of microalgal biomass for energy-driven biorefineries. Renew Sustain Energy Rev 125:109606.https://doi.org/10.1016/J.RSER.2019.109606
Acknowledgements
The authors would like to acknowledge Curtin University Malaysia for supporting this research through the Curtin Malaysia Postgraduate Research Scheme (CMPRS).
Funding
Financial supports were given by the Fundamental Research Grant Scheme (FRGS/1/2019/TK02/CURTIN/03/2 and FRGS/1/2018/TK10/CURTIN/03/2) from the Ministry of Higher Education (MOHE), Malaysia.
Author information
Authors and Affiliations
Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
Kevin Tian Xiang Tong, Inn Shi Tan & Henry Chee Yew Foo
Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Man Kee Lam
HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Man Kee Lam
Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
Steven Lim
Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
Steven Lim
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
Keat Teong Lee
- Kevin Tian Xiang Tong
Search author on:PubMed Google Scholar
- Inn Shi Tan
Search author on:PubMed Google Scholar
- Henry Chee Yew Foo
Search author on:PubMed Google Scholar
- Man Kee Lam
Search author on:PubMed Google Scholar
- Steven Lim
Search author on:PubMed Google Scholar
- Keat Teong Lee
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toInn Shi Tan.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Highlights
• 3G bioethanol and lactic acid were prepared by different techniques.
• High carbohydrate content offers a potential pathway for bioproduct generation.
• Combined acid and enzymatic hydrolysis offer a high yield of reducing sugars.
• Proving fast production rate of 3G bioproducts for high cell density culture
• Cascading biorefinery resolves the production, economic, and environmental issues.
Rights and permissions
About this article
Cite this article
Tong, K.T.X., Tan, I.S., Foo, H.C.Y.et al. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid.Biomass Conv. Bioref.14, 1443–1479 (2024). https://doi.org/10.1007/s13399-022-02561-7
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keyword
Profiles
- Inn Shi TanView author profile

