Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players.

Graphical abstract

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Benson NU, Bassey DE, Palanisami T (2021) COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon 7:e06343.https://doi.org/10.1016/J.HELIYON.2021.E06343

    Article  Google Scholar 

  2. Tan IS, Lam MK, Foo HCY et al (2020) Advances of macroalgae biomass for the third generation of bioethanol production. Chinese J Chem Eng 28:502–517.https://doi.org/10.1016/J.CJCHE.2019.05.012

    Article  Google Scholar 

  3. Balina K, Romagnoli F, Blumberga D (2017) Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 128:504–511.https://doi.org/10.1016/J.EGYPRO.2017.09.067

    Article  Google Scholar 

  4. Cesário MT, da Fonseca MMR, Marques MM, de Almeida MCMD (2018) Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol Adv 36:798–817.https://doi.org/10.1016/J.BIOTECHADV.2018.02.006

    Article  Google Scholar 

  5. Kim HM, Wi SG, Jung S et al (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134.https://doi.org/10.1016/J.BIORTECH.2014.10.050

    Article  Google Scholar 

  6. Jambo SA, Abdulla R, Marbawi H, Gansau JA (2019) Response surface optimization of bioethanol production from third generation feedstock - Eucheuma cottonii. Renew Energy 132:1–10.https://doi.org/10.1016/J.RENENE.2018.07.133

    Article  Google Scholar 

  7. Sirajunnisa AR, Surendhiran D (2016) Algae – A quintessential and positive resource of bioethanol production: A comprehensive review. Renew Sustain Energy Rev 66:248–267.https://doi.org/10.1016/J.RSER.2016.07.024

    Article  Google Scholar 

  8. US Department of Energy (2021) Alternative Fuels Data Center: Maps and Data - Clean Cities Alternative Fuel Vehicle Inventory.https://afdc.energy.gov/data/10581. Accessed 3 Feb 2022

  9. Kim SN, Choi BH, Kim HK, Bin CY (2019) Poly(lactic-co-glycolic acid) microparticles in fibrin glue for local, sustained delivery of bupivacaine. J Ind Eng Chem 75:86–92.https://doi.org/10.1016/J.JIEC.2019.02.028

    Article  Google Scholar 

  10. Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenerg 92:70–75.https://doi.org/10.1016/J.BIOMBIOE.2016.03.038

    Article  Google Scholar 

  11. Melikoglu M, Turkmen B (2019) Food waste to energy: Forecasting Turkey’s bioethanol generation potential from wasted crops and cereals till 2030. Sustain Energy Technol Assessments 36:100553.https://doi.org/10.1016/J.SETA.2019.100553

    Article  Google Scholar 

  12. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239.https://doi.org/10.1016/J.YMBEN.2014.12.007

    Article  Google Scholar 

  13. Darwin C-R, Charles W (2018) Ethanol and lactic acid production from sugar and starch wastes by anaerobic acidification. Eng Life Sci 18:635–642.https://doi.org/10.1002/ELSC.201700178

    Article  Google Scholar 

  14. Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R (2018) Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 133:219–239.https://doi.org/10.1016/J.BEJ.2018.03.003

    Article  Google Scholar 

  15. European Bioplastics (2020) Global production capacities of bioplastics 2019–2025

  16. Bátori V, Åkesson D, Zamani A et al (2018) Anaerobic degradation of bioplastics: A review. Waste Manag 80:406–413.https://doi.org/10.1016/J.WASMAN.2018.09.040

    Article  Google Scholar 

  17. Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegradation 117:215–223.https://doi.org/10.1016/J.IBIOD.2017.01.010

    Article  Google Scholar 

  18. Cubas-Cano E, López-Gómez JP, González-Fernández C et al (2020) Towards sequential bioethanol and l-lactic acid co-generation: Improving xylose conversion to l-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans. Renew Energy 153:759–765.https://doi.org/10.1016/J.RENENE.2020.02.066

    Article  Google Scholar 

  19. Tan IS, Lee KT (2016) Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study. Bioresour Technol 199:336–346.https://doi.org/10.1016/J.BIORTECH.2015.08.008

    Article  Google Scholar 

  20. Mohd Azhar SH, Abdulla R, Jambo SA et al (2017) Yeasts in sustainable bioethanol production: A review. Biochem Biophys Reports 10:52–61.https://doi.org/10.1016/J.BBREP.2017.03.003

    Article  Google Scholar 

  21. Alexandri M, Neu A-K, Schneider R et al (2019) Evaluation of various Bacillus coagulans isolates for the production of high purity L-lactic acid using defatted rice bran hydrolysates. Int J Food Sci Technol 54:1321–1329.https://doi.org/10.1111/IJFS.14086

    Article  Google Scholar 

  22. Saravanan K, Duraisamy S, Ramasamy G et al (2018) Evaluation of the saccharification and fermentation process of two different seaweeds for an ecofriendly bioethanol production. Biocatal Agric Biotechnol 14:444–449.https://doi.org/10.1016/J.BCAB.2018.03.017

    Article  Google Scholar 

  23. Maslova O, Stepanov N, Senko O, Efremenko E (2019) Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). Bioresour Technol 272:1–9.https://doi.org/10.1016/J.BIORTECH.2018.09.143

    Article  Google Scholar 

  24. da Silva ARG, Ortega CET, Rong BG (2016) Effects of Bioethanol Pretreatments on the Broth Concentration and its Impacts in the Optimal Design of Product Separation and Purification Processes. Comput Aided Chem Eng 38:583–588.https://doi.org/10.1016/B978-0-444-63428-3.50102-8

    Article  Google Scholar 

  25. Daful AG, Haigh K, Vaskan P, Görgens JF (2016) Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. Food Bioprod Process 99:58–70.https://doi.org/10.1016/J.FBP.2016.04.005

    Article  Google Scholar 

  26. Abudi ZN, Hu Z, Sun N et al (2016) Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy 107:131–140.https://doi.org/10.1016/J.ENERGY.2016.03.141

    Article  Google Scholar 

  27. Gavahian M, Munekata PES, Eş I et al (2019) Emerging techniques in bioethanol production: from distillation to waste valorization. Green Chem 21:1171–1185.https://doi.org/10.1039/C8GC02698J

    Article  Google Scholar 

  28. Nazli RI (2020) Evaluation of different sweet sorghum cultivars for bioethanol yield potential and bagasse combustion characteristics in a semiarid Mediterranean environment. Biomass Bioenerg 139:105624.https://doi.org/10.1016/J.BIOMBIOE.2020.105624

    Article  Google Scholar 

  29. Ayodele BV, Alsaffar MA, Mustapa SI (2020) An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod 245:118857.https://doi.org/10.1016/J.JCLEPRO.2019.118857

    Article  Google Scholar 

  30. Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945.https://doi.org/10.1016/J.CEJ.2014.10.049

    Article  Google Scholar 

  31. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774.https://doi.org/10.1016/J.RSER.2016.08.038

    Article  Google Scholar 

  32. Ma J, Shi S, Jia X et al (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86.https://doi.org/10.1016/J.JECHEM.2019.04.026

    Article  Google Scholar 

  33. Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: Prospects and challenges. Renew Sustain Energy Rev 117:109479.https://doi.org/10.1016/J.RSER.2019.109479

    Article  Google Scholar 

  34. Chen S, Xu Z, Li X et al (2018) Integrated bioethanol production from mixtures of corn and corn stover. Bioresour Technol 258:18–25.https://doi.org/10.1016/J.BIORTECH.2018.02.125

    Article  Google Scholar 

  35. Mączyńska J, Krzywonos M, Kupczyk A et al (2019) Production and use of biofuels for transport in Poland and Brazil – The case of bioethanol. Fuel 241:989–996.https://doi.org/10.1016/J.FUEL.2018.12.116

    Article  Google Scholar 

  36. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392.https://doi.org/10.1016/J.RSER.2014.05.038

    Article  Google Scholar 

  37. Renewable Fuels Association (2020) Focus Forward 2020 Ethanol Industry Outlook.https://ethanolrfa.org/wp-content/uploads/2020/02/2020-Outlook-Final-for-Website.pdf. Accessed 1 Sep 2021

  38. Gómez-Monedero B, Pilar Ruiz M, Bimbela F, Faria J (2018) Selective depolymerization of industrial lignin-containing stillage obtained from cellulosic bioethanol processing. Fuel Process Technol 173:165–172.https://doi.org/10.1016/J.FUPROC.2018.01.021

    Article  Google Scholar 

  39. Chen X, Che Q, Li S et al (2019) Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process Technol 196:106180.https://doi.org/10.1016/J.FUPROC.2019.106180

    Article  Google Scholar 

  40. Kumar B, Bhardwaj N, Agrawal K et al (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process Technol 199:106244.https://doi.org/10.1016/J.FUPROC.2019.106244

    Article  Google Scholar 

  41. Rajendran K, Drielak E, Sudarshan Varma V et al (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Convers Biorefinery 8:471–483.https://doi.org/10.1007/S13399-017-0269-3

    Article  Google Scholar 

  42. Komesu A, Maciel MRW, Filho RM (2017) Separation and purification technologies for lactic acid - A brief review. BioResources 12:6885–6901.https://doi.org/10.15376/BIORES.12.3.6885-6901

  43. Hebbale D, Chandran MDS, Joshi NV, Ramachandra TV (2017) Energy and Food Security from Macroalgae. J Biodivers 8:1–11.https://doi.org/10.1080/09766901.2017.1351511

    Article  Google Scholar 

  44. Fisheries and Aquaculture (FAO) (2019) Fisheries and Aquaculture Department - Yearbook of Fishery and Aquaculture Statistics - Aquaculture production.http://www.fao.org/fishery/static/Yearbook/YB2017_USBcard/navigation/index_content_aquaculture_e.htm. Accessed 1 Sep 2021

  45. Gajaria TK, Suthar P, Baghel RS et al (2017) Integration of protein extraction with a stream of byproducts from marine macroalgae: A model forms the basis for marine bioeconomy. Bioresour Technol 243:867–873.https://doi.org/10.1016/J.BIORTECH.2017.06.149

    Article  Google Scholar 

  46. Mazur LP, Cechinel MAP, de Souza SMAGU et al (2018) Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. J Environ Manage 223:215–253.https://doi.org/10.1016/J.JENVMAN.2018.05.086

    Article  Google Scholar 

  47. Gereniu CRN, Saravana PS, Chun BS (2018) Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Sep Purif Technol 196:309–317.https://doi.org/10.1016/J.SEPPUR.2017.06.055

    Article  Google Scholar 

  48. T Poespowati A Riyanto Hazlan, et al 2018 Enzymatic hydrolysis of liquid hot water pre-treated macro-alga (Ulva lactuca) for fermentable sugar production MATEC Web Conf 156https://doi.org/10.1051/MATECCONF/201815601015

  49. Kostas ET, White DA, Cook DJ (2017) Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. Algal Res 28:211–219.https://doi.org/10.1016/J.ALGAL.2017.10.022

    Article  Google Scholar 

  50. Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of the micro and macro algae for biofuel production: A brief review. BioResources 9:.https://doi.org/10.15376/BIORES.9.1.1606-1633

  51. Shukla R, Kumar M, Chakraborty S et al (2016) Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresour Technol 220:584–589.https://doi.org/10.1016/J.BIORTECH.2016.08.096

    Article  Google Scholar 

  52. Tong KTX, Tan IS, Foo HCY et al (2021) Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. Bioresour Technol 342:125880.https://doi.org/10.1016/J.BIORTECH.2021.125880

    Article  Google Scholar 

  53. Konda NVSNM, Singh S, Simmons BA, Klein-Marcuschamer D (2015) An Investigation on the Economic Feasibility of Macroalgae as a Potential Feedstock for Biorefineries. BioEnergy Res 8:1046–1056.https://doi.org/10.1007/S12155-015-9594-1

    Article  Google Scholar 

  54. Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606.https://doi.org/10.1016/J.ALGAL.2019.101606

    Article  Google Scholar 

  55. Aditiya HB, Mahlia TMI, Chong WT et al (2016) Second generation bioethanol production: A critical review. Renew Sustain Energy Rev 66:631–653.https://doi.org/10.1016/J.RSER.2016.07.015

    Article  Google Scholar 

  56. Kwon O-M, Kim S-K, Jeong G-T (2016) Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa. Bioprocess Biosyst Eng 39:1173–1180.https://doi.org/10.1007/S00449-016-1593-X

    Article  Google Scholar 

  57. Baghel RS, Reddy CRK, Jha B (2014) Characterization of agarophytic seaweeds from the biorefinery context. Bioresour Technol 159:280–285.https://doi.org/10.1016/J.BIORTECH.2014.02.083

    Article  Google Scholar 

  58. Kulshreshtha G, Burlot A-S, Marty C et al (2015) Enzyme-Assisted Extraction of Bioactive Material from Chondrus crispus and Codium fragile and Its Effect on Herpes simplex Virus (HSV-1). Mar Drugs 13:558.https://doi.org/10.3390/MD13010558

    Article  Google Scholar 

  59. Kim DH, Lee SB, Jeong GT (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 161:348–353.https://doi.org/10.1016/J.BIORTECH.2014.03.078

    Article  Google Scholar 

  60. A Bayu T Handayani 2018 High-value chemicals from marine macroalgae: Opportunities and challenges for marine-based bioenergy development IOP Conf Ser Earth Environ Sci 209https://doi.org/10.1088/1755-1315/209/1/012046

  61. Sudhakar MP, Merlyn R, Arunkumar K, Perumal K (2016) Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass Bioenerg 90:148–154.https://doi.org/10.1016/J.BIOMBIOE.2016.03.031

    Article  Google Scholar 

  62. Chai CY, Tan IS, Foo HCY et al (2021) Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. Bioresour Technol 330:124930.https://doi.org/10.1016/J.BIORTECH.2021.124930

    Article  Google Scholar 

  63. Lee SB, Kim JA, Lim HS (2016) Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl Microbiol Biotechnol 100:4109–4121.https://doi.org/10.1007/S00253-016-7346-6

    Article  Google Scholar 

  64. Mohd Azhar SH, Abdulla R (2018) Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. Biocatal Agric Biotechnol 14:457–465.https://doi.org/10.1016/J.BCAB.2018.04.013

    Article  Google Scholar 

  65. McKim JM (2014) Food additive carrageenan: Part I: A critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 44:211–243.https://doi.org/10.3109/10408444.2013.861797

    Article  Google Scholar 

  66. Sasuga K, Yamanashi T, Nakayama S et al (2017) Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Res 26:123–130.https://doi.org/10.1016/J.ALGAL.2017.07.010

    Article  Google Scholar 

  67. Xiao Q, Weng H, Ni H et al (2019) Physicochemical and gel properties of agar extracted by enzyme and enzyme-assisted methods. Food Hydrocoll 87:530–540.https://doi.org/10.1016/J.FOODHYD.2018.08.041

    Article  Google Scholar 

  68. Martínez-Sanz M, Gómez-Mascaraque LG, Ballester AR et al (2019) Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res 38:101420.https://doi.org/10.1016/J.ALGAL.2019.101420

    Article  Google Scholar 

  69. Catanzano O, D’Esposito V, Acierno S et al (2015) Alginate–hyaluronan composite hydrogels accelerate wound healing process. Carbohydr Polym 131:407–414.https://doi.org/10.1016/J.CARBPOL.2015.05.081

    Article  Google Scholar 

  70. Mazumder A, Holdt SL, De Francisci D et al (2016) Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J Appl Phycol 28:3625–3634.https://doi.org/10.1007/S10811-016-0872-X

    Article  Google Scholar 

  71. Das AK, Sharma M, Mondal D, Prasad K (2016) Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii. Carbohydr Polym 136:930–935.https://doi.org/10.1016/J.CARBPOL.2015.09.114

    Article  Google Scholar 

  72. Rafiquzzaman SM, Ahmed R, Lee JM et al (2016) Improved methods for isolation of carrageenan from Hypnea musciformis and its antioxidant activity. J Appl Phycol 28:1265–1274.https://doi.org/10.1007/S10811-015-0605-6

    Article  Google Scholar 

  73. Yang D, Yang H (2020) The temperature dependent extraction of polysaccharides from eucheuma and the rheological synergistic effect in their mixtures with kappa carrageenan. LWT 129:109515.https://doi.org/10.1016/J.LWT.2020.109515

    Article  Google Scholar 

  74. Tran T, Truong H, Tran N et al (2018) Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Nat Prod Res 32:2291–2296.https://doi.org/10.1080/14786419.2017.1408098

    Article  Google Scholar 

  75. JJ Chuang YY Huang SH Lo et al 2017 Effects of pH on the Shape of Alginate Particles and Its Release Behavior Int J Polym Scihttps://doi.org/10.1155/2017/3902704

  76. M Garcia-Vaquero G Rajauria B Tiwari 2020 Conventional extraction techniques: Solvent extraction Sustain Seaweed Technol 171–189https://doi.org/10.1016/B978-0-12-817943-7.00006-8

  77. M Garcia-Vaquero V Ummat B Tiwari G Rajauria 2020 Exploring Ultrasound, Microwave and Ultrasound-Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae Mar Drugs 18https://doi.org/10.3390/MD18030172

  78. Gomez LP, Alvarez C, Zhao M et al (2020) Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr Polym 248:116784.https://doi.org/10.1016/J.CARBPOL.2020.116784

    Article  Google Scholar 

  79. Yuan Y, Macquarrie D (2015) Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym 129:101–107.https://doi.org/10.1016/J.CARBPOL.2015.04.057

    Article  Google Scholar 

  80. Vázquez-Delfín E, Robledo D, Freile-Pelegrín Y (2014) Microwave-assisted extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta). J Appl Phycol 26:901–907.https://doi.org/10.1007/S10811-013-0090-8

    Article  Google Scholar 

  81. B Le KS Golokhvast SH Yang S Sun 2019 Optimization of Microwave-Assisted Extraction of Polysaccharides from Ulva pertusa and Evaluation of Their Antioxidant Activity Antioxidants 8https://doi.org/10.3390/ANTIOX8050129

  82. M Garcia-Vaquero G Rajauria B Tiwari et al 2018 Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction Mar Drugs 16https://doi.org/10.3390/MD16080257

  83. Flórez-Fernández N, Domínguez H, Torres MD (2019) A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int J Biol Macromol 124:451–459.https://doi.org/10.1016/J.IJBIOMAC.2018.11.232

    Article  Google Scholar 

  84. W Jiao W Chen Y Mei et al 2019 Effects of Molecular Weight and Guluronic Acid/Mannuronic Acid Ratio on the Rheological Behavior and Stabilizing Property of Sodium Alginate Molecules 24https://doi.org/10.3390/MOLECULES24234374

  85. A Pagarete AS Ramos P Puntervoll et al 2021 Antiviral Potential of Algal Metabolites—A Comprehensive Review Mar Drugs 19https://doi.org/10.3390/MD19020094

  86. Vásquez V, Martínez R, Bernal C (2019) Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. J Appl Phycol 31:1999–2010.https://doi.org/10.1007/S10811-018-1712-Y

    Article  Google Scholar 

  87. Chen J, Zeng W, Gan J et al (2021) Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Res 55:102269.https://doi.org/10.1016/J.ALGAL.2021.102269

    Article  Google Scholar 

  88. Hardouin K, Bedoux G, Burlot AS et al (2016) Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res 16:233–239.https://doi.org/10.1016/J.ALGAL.2016.03.013

    Article  Google Scholar 

  89. Borazjani NJ, Tabarsa M, You SG, Rezaei M (2017) Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. Int J Biol Macromol 101:703–711.https://doi.org/10.1016/J.IJBIOMAC.2017.03.128

    Article  Google Scholar 

  90. Luo X, Duan Y, Yang W et al (2017) Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr Polym 157:794–802.https://doi.org/10.1016/J.CARBPOL.2016.10.066

    Article  Google Scholar 

  91. Alboofetileh M, Rezaei M, Tabarsa M et al (2019) Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int J Biol Macromol 128:244–253.https://doi.org/10.1016/J.IJBIOMAC.2019.01.119

    Article  Google Scholar 

  92. Youssouf L, Lallemand L, Giraud P et al (2017) Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydr Polym 166:55–63.https://doi.org/10.1016/J.CARBPOL.2017.01.041

    Article  Google Scholar 

  93. Abka Khajouei R, Keramat J, Hamdami N et al (2021) Effect of high voltage electrode discharge on the physicochemical characteristics of alginate extracted from an Iranian brown seaweed (Nizimuddinia zanardini). Algal Res 56:102326.https://doi.org/10.1016/J.ALGAL.2021.102326

    Article  Google Scholar 

  94. January GG, Naidoo RK, Kirby-McCullough B, Bauer R (2019) Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res 40:101517.https://doi.org/10.1016/J.ALGAL.2019.101517

    Article  Google Scholar 

  95. Madany MA, Abdel-Kareem MS, Al-Oufy AK et al (2021) The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int J Biol Macromol 177:401–412.https://doi.org/10.1016/J.IJBIOMAC.2021.02.047

    Article  Google Scholar 

  96. Bayu A, Warsito MF, Putra MY et al (2021) Macroalgae-derived rare sugars: Applications and catalytic synthesis. Carbon Resour Convers 4:150–163.https://doi.org/10.1016/J.CRCON.2021.04.002

    Article  Google Scholar 

  97. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609.https://doi.org/10.1007/S13205-015-0279-4

  98. Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267.https://doi.org/10.1016/J.BEJ.2016.01.021

    Article  Google Scholar 

  99. Venkateswar Rao L, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresour Technol 213:299–310.https://doi.org/10.1016/J.BIORTECH.2016.04.092

    Article  Google Scholar 

  100. Jeong GT, Kim SK, Park DH (2015) Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars. Bioresour Technol 181:1–6.https://doi.org/10.1016/J.BIORTECH.2015.01.038

    Article  Google Scholar 

  101. Hamouda RA, Sherif SA, Dawoud GTM, Ghareeb MM (2016) Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification. Rend Lincei 27:665–672.https://doi.org/10.1007/S12210-016-0546-2

    Article  Google Scholar 

  102. Ra CH, Nguyen TH, Jeong GT, Kim SK (2016) Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour Technol 209:66–72.https://doi.org/10.1016/J.BIORTECH.2016.02.106

    Article  Google Scholar 

  103. El Harchi M, Fakihi Kachkach FZ, El Mtili N (2018) Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. South African J Bot 115:161–169.https://doi.org/10.1016/J.SAJB.2018.01.021

    Article  Google Scholar 

  104. Hessami MJ, Phang S-M, Salleh A, Rabiei R (2018) Evaluation of tropical seaweeds as feedstock for bioethanol production. Int J Environ Sci Technol 15:977–992.https://doi.org/10.1007/S13762-017-1455-3

    Article  Google Scholar 

  105. Hessami MJ, Cheng SF, Ambati RR, et al (2019) Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech 9:1–8.https://doi.org/10.1007/S13205-018-1549-8

  106. Sharma S, Horn SJ (2016) Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresour Technol 213:155–161.https://doi.org/10.1016/J.BIORTECH.2016.02.090

    Article  Google Scholar 

  107. Jmel MA, Ben Messaoud G, Marzouki MN et al (2016) Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose. Carbohydr Polym 135:274–279.https://doi.org/10.1016/J.CARBPOL.2015.08.048

    Article  Google Scholar 

  108. EL Rodrigues BC Fonseca VC Gelli et al 2019 Enzymatically and/or thermally treated Macroalgae biomass as feedstock for fermentative H2 production Matéria (Rio Janeiro) 24https://doi.org/10.1590/S1517-707620190002.0678

  109. del Río PG, Domínguez E, Domínguez VD et al (2019) Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy 141:728–735.https://doi.org/10.1016/J.RENENE.2019.03.083

    Article  Google Scholar 

  110. Gomes-Dias JS, Romaní A, Teixeira JA, Rocha CMR (2020) Valorization of Seaweed Carbohydrates: Autohydrolysis as a Selective and Sustainable Pretreatment. ACS Sustain Chem Eng 8:17143–17153.https://doi.org/10.1021/ACSSUSCHEMENG.0C05396

    Article  Google Scholar 

  111. Ruangrit K, Chaipoot S, Phongphisutthinant R et al (2021) Environmental-friendly pretreatment and process optimization of macroalgal biomass for effective ethanol production as an alternative fuel using Saccharomyces cerevisiae. Biocatal Agric Biotechnol 31:101919.https://doi.org/10.1016/J.BCAB.2021.101919

    Article  Google Scholar 

  112. Charoensiddhi S, Franco C, Su P, Zhang W (2015) Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction. J Appl Phycol 27:2049–2058.https://doi.org/10.1007/S10811-014-0476-2

    Article  Google Scholar 

  113. Tsubaki S, Oono K, Hiraoka M et al (2016) Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem 210:311–316.https://doi.org/10.1016/J.FOODCHEM.2016.04.121

    Article  Google Scholar 

  114. Lee JH, Kim HH, Ko JY et al (2016) Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system. Carbohydr Polym 153:512–517.https://doi.org/10.1016/J.CARBPOL.2016.07.122

    Article  Google Scholar 

  115. Teh YY, Lee KT, Chen WH et al (2017) Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour Technol 246:20–27.https://doi.org/10.1016/J.BIORTECH.2017.07.101

    Article  Google Scholar 

  116. Ravanal MC, Sharma S, Gimpel J et al (2017) The role of alginate lyases in the enzymatic saccharification of brown macroalgae, Macrocystis pyrifera and Saccharina latissima. Algal Res 26:287–293.https://doi.org/10.1016/J.ALGAL.2017.08.012

    Article  Google Scholar 

  117. Park M-R, Kim S-K (2018) Jeong G-T (2018) Biosugar Production from Gracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis. Biotechnol Bioprocess Eng 233(23):302–310.https://doi.org/10.1007/S12257-018-0090-2

    Article  Google Scholar 

  118. Cao L, Yu IKM, Cho DW et al (2019) Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol 273:251–258.https://doi.org/10.1016/J.BIORTECH.2018.11.013

    Article  Google Scholar 

  119. Abeln F, Fan J, Budarin VL et al (2019) Lipid production through the single-step microwave hydrolysis of macroalgae using the oleaginous yeast Metschnikowia pulcherrima. Algal Res 38:101411.https://doi.org/10.1016/J.ALGAL.2019.101411

    Article  Google Scholar 

  120. Onda A, Onda S, Koike M et al (2017) Catalytic Hydrolysis of Polysaccharides Derived from Fast-Growing Green Macroalgae. ChemCatChem 9:2638–2641.https://doi.org/10.1002/CCTC.201700100

    Article  Google Scholar 

  121. Meinita MDN, Marhaeni B, Winanto T et al (2015) Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J Ind Eng Chem 27:108–114.https://doi.org/10.1016/J.JIEC.2014.12.024

    Article  Google Scholar 

  122. Feldman D, Kowbel DJ, Glass NL et al (2015) (2015) Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnol Biofuels 81(8):1–11.https://doi.org/10.1186/S13068-015-0244-9

    Article  Google Scholar 

  123. Shobana S, Kumar G, Bakonyi P et al (2017) A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour Technol 244:1341–1348.https://doi.org/10.1016/J.BIORTECH.2017.05.172

    Article  Google Scholar 

  124. Ran H, Zhang J, Gao Q et al (2014) (2014) Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnol Biofuels 71(7):1–12.https://doi.org/10.1186/1754-6834-7-51

    Article  Google Scholar 

  125. Ra CH, Jeong G-T, Kim S-K (2017) Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess Biosyst Eng 40:403–411.https://doi.org/10.1007/S00449-016-1708-4

    Article  Google Scholar 

  126. Chae HR, Jang HJ, In YS et al (2015) Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis. J Microbiol Biotechnol 25:856–862.https://doi.org/10.4014/JMB.1409.09038

    Article  Google Scholar 

  127. Yang CF, Huang CR (2016) Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate. Bioresour Technol 214:311–318.https://doi.org/10.1016/J.BIORTECH.2016.04.122

    Article  Google Scholar 

  128. Yang CF, Huang CR (2018) Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate. J Biosci Bioeng 125:407–412.https://doi.org/10.1016/J.JBIOSC.2017.11.005

    Article  Google Scholar 

  129. Hong Y, Wu YR (2020) Acidolysis as a biorefinery approach to producing advanced bioenergy from macroalgal biomass: A state-of-the-art review. Bioresour Technol 318:124080.https://doi.org/10.1016/J.BIORTECH.2020.124080

    Article  Google Scholar 

  130. Jiménez Toro MJ, Dou X, Ajewole I et al (2017) (2017) Preparation and Optimization of Macroalgae-Derived Solid Acid Catalysts. Waste Biomass Valorization 104(10):805–816.https://doi.org/10.1007/S12649-017-0101-0

    Article  Google Scholar 

  131. Lei Y, Zhang M, Li Q et al (2019) A Porous Polymer-Based Solid Acid Catalyst with Excellent Amphiphilicity: An Active and Environmentally Friendly Catalyst for the Hydration of Alkynes. Polymers (Basel) 11:2091.https://doi.org/10.3390/POLYM11122091

    Article  Google Scholar 

  132. Ansanay Y, Kolar P, Sharma-Shivappa R et al (2017) Pre-treatment of biomasses using magnetised sulfonic acid catalysts. J Agric Eng 48:117–122.https://doi.org/10.4081/JAE.2017.594

    Article  Google Scholar 

  133. Thompson TM, Young BR, Baroutian S (2019) Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process Technol 195:106151.https://doi.org/10.1016/J.FUPROC.2019.106151

    Article  Google Scholar 

  134. Meinita MDN, Marhaeni B, Jeong G-T, Hong Y-K (2019) Sequential acid and enzymatic hydrolysis of carrageenan solid waste for bioethanol production: a biorefinery approach. J Appl Phycol 31:2507–2515.https://doi.org/10.1007/S10811-019-1755-8

    Article  Google Scholar 

  135. Trivedi N, Reddy CRK, Lali AM (2016) Marine Microbes as a Potential Source of Cellulolytic Enzymes. Adv Food Nutr Res 79:27–41.https://doi.org/10.1016/BS.AFNR.2016.07.002

    Article  Google Scholar 

  136. Singh A, Rodríguez Jasso RM, Gonzalez-Gloria KD et al (2019) The enzyme biorefinery platform for advanced biofuels production. Bioresour Technol Reports 7:100257.https://doi.org/10.1016/J.BITEB.2019.100257

    Article  Google Scholar 

  137. S Jayasekara R Ratnayake 2019 Microbial Cellulases: An Overview and Applications Cellulosehttps://doi.org/10.5772/INTECHOPEN.84531

  138. D Xue sheng, Zeng X, Lin D, Yao S, 2018 Ethanol tolerant endoglucanase from Aspergillus niger isolated from wine fermentation cellar Biocatal Agric Biotechnol 15 19 24https://doi.org/10.1016/J.BCAB.2018.04.016

  139. Mandeep LH, Shukla P (2021) Synthetic Biology and Biocomputational Approaches for Improving Microbial Endoglucanases toward Their Innovative Applications. ACS Omega 6:6055–6063.https://doi.org/10.1021/ACSOMEGA.0C05744

    Article  Google Scholar 

  140. Pathiraja D, Lee S, Choi I-G (2018) Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass. J Agric Food Chem 66:6814–6821.https://doi.org/10.1021/ACS.JAFC.8B01792

    Article  Google Scholar 

  141. Zabed H, Sahu JN, Suely A et al (2017) Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501.https://doi.org/10.1016/J.RSER.2016.12.076

    Article  Google Scholar 

  142. DE Cervantes-Cisneros D Arguello-Esparza A Cabello-Galindo et al 2017 Hydrothermal Processes for Extraction of Macroalgae High Value-Added Compounds Hydrothermal Process Biorefineries Prod Bioethanol High Added-Value Compd Second Third Gener Biomass 461–481https://doi.org/10.1007/978-3-319-56457-9_20

  143. Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15:160–176.https://doi.org/10.1002/ELSC.201400191

    Article  Google Scholar 

  144. Sadhukhan J, Gadkari S, Martinez-Hernandez E et al (2019) Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chem 21:2635–2655.https://doi.org/10.1039/C9GC00607A

    Article  Google Scholar 

  145. del Río PG, Gomes-Dias JS, Rocha CMR et al (2020) Recent trends on seaweed fractionation for liquid biofuels production. Bioresour Technol 299:122613.https://doi.org/10.1016/J.BIORTECH.2019.122613

    Article  Google Scholar 

  146. Wang T, Zhai Y, Zhu Y et al (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 90:223–247.https://doi.org/10.1016/J.RSER.2018.03.071

    Article  Google Scholar 

  147. S Maneein JJ Milledge BV Nielsen PJ Harvey (2018) A Review of Seaweed Pre-Treatment Methods for Enhanced Biofuel Production by Anaerobic Digestion or Fermentation. Ferment, 2018 Vol 4 Page 100 4 100https://doi.org/10.3390/FERMENTATION4040100

  148. J Baruah BK Nath R Sharma et al 2018 Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products Front Energy Res 141https://doi.org/10.3389/FENRG.2018.00141

  149. D Özçimen B Inan 2015 An Overview of Bioethanol Production From Algae Biofuels - Status Perspecthttps://doi.org/10.5772/59305

  150. Kostas ET, Beneroso D, Robinson JP (2017) The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renew Sustain Energy Rev 77:12–27.https://doi.org/10.1016/J.RSER.2017.03.135

    Article  Google Scholar 

  151. Yuan Y, Xu X, Jing C et al (2018) Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr Polym 181:902–910.https://doi.org/10.1016/J.CARBPOL.2017.11.061

    Article  Google Scholar 

  152. Ninomiya K, Yamauchi T, Ogino C et al (2014) Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification. Biochem Eng J 90:90–95.https://doi.org/10.1016/J.BEJ.2014.05.013

    Article  Google Scholar 

  153. Li H, Qu Y, Yang Y et al (2016) Microwave irradiation – A green and efficient way to pretreat biomass. Bioresour Technol 199:34–41.https://doi.org/10.1016/J.BIORTECH.2015.08.099

    Article  Google Scholar 

  154. Boulho R, Marty C, Freile-Pelegrín Y et al (2017) Antiherpetic (HSV-1) activity of carrageenans from the red seaweed Solieria chordalis (Rhodophyta, Gigartinales) extracted by microwave-assisted extraction (MAE). J Appl Phycol 29:2219–2228.https://doi.org/10.1007/S10811-017-1192-5

    Article  Google Scholar 

  155. Kundu C, Lee JW (2015) Optimization conditions for oxalic acid pretreatment of deacetylated yellow poplar for ethanol production. J Ind Eng Chem 32:298–304.https://doi.org/10.1016/J.JIEC.2015.09.001

    Article  Google Scholar 

  156. A Amini K Ohno ichiro, Maeda T, Kunitomo K, 2019 A kinetic comparison between microwave heating and conventional heating of FeS-CaO mixture during hydrogen-reduction Chem Eng J 374 648 657https://doi.org/10.1016/J.CEJ.2019.05.226

  157. Dussán KJ, Silva DDV, Moraes EJC et al (2014) Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chem Eng Trans 38:433–438.https://doi.org/10.3303/CET1438073

    Article  Google Scholar 

  158. Conesa C, Seguí L, Laguarda-Miró N, Fito P (2016) Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food Bioprod Process 100:203–213.https://doi.org/10.1016/J.FBP.2016.07.001

    Article  Google Scholar 

  159. Kim SW, Hong CH, Jeon SW, Shin HJ (2015) High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour Technol 196:634–641.https://doi.org/10.1016/J.BIORTECH.2015.08.016

    Article  Google Scholar 

  160. Azizi N, Najafpour G, Younesi H (2017) Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol 101:1029–1040.https://doi.org/10.1016/J.IJBIOMAC.2017.03.184

    Article  Google Scholar 

  161. Kumar D, Juneja A, Singh V (2018) Fermentation technology to improve productivity in dry grind corn process for bioethanol production. Fuel Process Technol 173:66–74.https://doi.org/10.1016/J.FUPROC.2018.01.014

    Article  Google Scholar 

  162. Chen Z, Ni D, Zhang W et al (2021) Lactic acid bacteria-derived α-glucans: From enzymatic synthesis to miscellaneous applications. Biotechnol Adv 47:107708.https://doi.org/10.1016/J.BIOTECHADV.2021.107708

    Article  Google Scholar 

  163. Selim KA, El-Ghwas DE, Easa SM, Hassan MIA (2018) Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. Fermentation 4:16.https://doi.org/10.3390/FERMENTATION4010016

    Article  Google Scholar 

  164. Perez-Samper G, Cerulus B, Jariani A et al (2018) The crabtree effect shapes the saccharomyces cerevisiae lag phase during the switch between different carbon sources. MBio 9:1–18.https://doi.org/10.1128/MBIO.01331-18

    Article  Google Scholar 

  165. Majeed M, Nagabhushanam K, Natarajan S et al (2016) Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain. World J Microbiol Biotechnol 32:60.https://doi.org/10.1007/S11274-016-2027-2)

    Article  Google Scholar 

  166. R Zhao R Zhao Y Tu et al 2018 A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity PLoS ONE 13https://doi.org/10.1371/JOURNAL.PONE.0197067

  167. Aulitto M, Fusco S, Bartolucci S et al (2017) Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnol Biofuels 10:1–15.https://doi.org/10.1186/S13068-017-0896-8

    Article  Google Scholar 

  168. Genzel Y, Vogel T, Buck J et al (2014) High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 32:2770–2781.https://doi.org/10.1016/J.VACCINE.2014.02.016

    Article  Google Scholar 

  169. Cao J, Yu Z, Liu W et al (2020) Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J Funct Foods 64:103643.https://doi.org/10.1016/J.JFF.2019.103643

    Article  Google Scholar 

  170. Laaziz SA, Raji M, Hilali E et al (2017) Bio-composites based on polylactic acid and argan nut shell: Production and properties. Int J Biol Macromol 104:30–42.https://doi.org/10.1016/J.IJBIOMAC.2017.05.184

    Article  Google Scholar 

  171. Rahmayetty WY, Sukirno, et al (2018) Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatal Agric Biotechnol 16:683–691.https://doi.org/10.1016/J.BCAB.2018.09.015

    Article  Google Scholar 

  172. Yu B, Cao Y, Sun H, Han J (2016) The Structure and Properties of Biodegradable PLLA/PDLA for Melt-Blown Nonwovens. J Polym Environ 25:510–517.https://doi.org/10.1007/S10924-016-0827-Y

    Article  Google Scholar 

  173. M Pohanka 2020 D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection Biomed Res Int 2020https://doi.org/10.1155/2020/3419034

  174. Ben Yahmed N, Jmel MA, Ben Alaya M et al (2016) A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Convers Manag 119:257–265.https://doi.org/10.1016/J.ENCONMAN.2016.04.046

    Article  Google Scholar 

  175. Adams JMM, Bleathman G, Thomas D, Gallagher JA (2017) The effect of mechanical pre-processing and different drying methodologies on bioethanol production using the brown macroalga Laminaria digitata (Hudson) JV Lamouroux. J Appl Phycol 29:2463–2469.https://doi.org/10.1007/S10811-016-1039-5

    Article  Google Scholar 

  176. Loaces I, Schein S, Noya F (2017) Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of a multifunctional glucanase and xylanase. Bioresour Technol 224:307–313.https://doi.org/10.1016/J.BIORTECH.2016.10.075

    Article  Google Scholar 

  177. Nguyen TH, Ra CH, Sunwoo I et al (2017) Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess Biosyst Eng 40:529–536.https://doi.org/10.1007/S00449-016-1718-2

    Article  Google Scholar 

  178. Rattanasaensri S, Nunraksa N, Muangmai N et al (2018) Ethanol production from Gracilaria fisheri using three marine epiphytic yeast species. J Appl Phycol 30:3311–3317.https://doi.org/10.1007/S10811-018-1527-X

    Article  Google Scholar 

  179. Fernandes-Klajn F, Romero-García JM, Díaz MJ, Castro E (2018) Comparison of fermentation strategies for ethanol production from olive tree pruning biomass. Ind Crops Prod 122:98–106.https://doi.org/10.1016/J.INDCROP.2018.05.063

    Article  Google Scholar 

  180. Zhu J, Chen L, Gleisner R, Zhu JY (2019) Co-production of bioethanol and furfural from poplar wood via low temperature (≤90 °C) acid hydrotropic fractionation (AHF). Fuel 254:115572.https://doi.org/10.1016/J.FUEL.2019.05.155

    Article  Google Scholar 

  181. Aparicio E, Rodríguez-Jasso RM, Pinales-Márquez CD et al (2021) High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresour Technol 329:124935.https://doi.org/10.1016/J.BIORTECH.2021.124935

    Article  Google Scholar 

  182. Ma K, Hu G, Pan L et al (2016) Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Bioresour Technol 219:114–122.https://doi.org/10.1016/J.BIORTECH.2016.07.100

    Article  Google Scholar 

  183. Cabrita ARJ, Maia MRG, Sousa-Pinto I, Fonseca AJM (2017) Ensilage of seaweeds from an integrated multi-trophic aquaculture system. Algal Res 24:290–298.https://doi.org/10.1016/J.ALGAL.2017.04.024

    Article  Google Scholar 

  184. Glaser R, Venus J (2018) Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnol Reports 18:e00245.https://doi.org/10.1016/J.BTRE.2018.E00245

    Article  Google Scholar 

  185. Chen H, Huo W, Wang B et al (2019) L-lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw. Ind Crops Prod 141:111749.https://doi.org/10.1016/J.INDCROP.2019.111749

    Article  Google Scholar 

  186. Alves de Oliveira R, Schneider R, Vaz Rossell CE et al (2019) Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresour Technol Reports 6:26–31.https://doi.org/10.1016/J.BITEB.2019.02.003

    Article  Google Scholar 

  187. de la Torre I, Acedos MG, Ladero M, Santos VE (2019) On the use of resting L. delbrueckii spp. delbrueckii cells for D-lactic acid production from orange peel wastes hydrolysates. Biochem Eng J 145:162–169.https://doi.org/10.1016/J.BEJ.2019.02.012

    Article  Google Scholar 

  188. Radosavljević M, Lević S, Belović M et al (2021) Encapsulation of Lactobacillus rhamnosus in Polyvinyl Alcohol for the production of L-(+)-Lactic Acid. Process Biochem 100:149–160.https://doi.org/10.1016/J.PROCBIO.2020.10.006

    Article  Google Scholar 

  189. Campos J, Bao J, Lidén G (2021) Optically pure lactic acid production from softwood-derived mannose by Pediococcus acidilactici. J Biotechnol 335:1–8.https://doi.org/10.1016/J.JBIOTEC.2021.06.007

    Article  Google Scholar 

  190. Trivedi N, Baghel RS, Bothwell J et al (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:1–8.https://doi.org/10.1038/srep30728

    Article  Google Scholar 

  191. Lin TH, Guo GL, Hwang WS, Huang SL (2016) The addition of hydrolyzed rice straw in xylose fermentation by Pichia stipitis to increase bioethanol production at the pilot-scale. Biomass Bioenerg 91:204–209.https://doi.org/10.1016/J.BIOMBIOE.2016.05.012

    Article  Google Scholar 

  192. Baeyens J, Kang Q, Appels L et al (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88.https://doi.org/10.1016/J.PECS.2014.10.003

    Article  Google Scholar 

  193. Westman JO, Franzén CJ (2015) Current progress in high cell density yeast bioprocesses for bioethanol production. Biotechnol J 10:1185–1195.https://doi.org/10.1002/BIOT.201400581

    Article  Google Scholar 

  194. MC Ravanal C Camus AH Buschmann et al 2019 Production of Bioethanol From Brown Algae Adv Feed Convers Technol Altern Fuels Bioprod New Technol Challenges Oppor 69–88https://doi.org/10.1016/B978-0-12-817937-6.00004-7

  195. H-TV Lin M-Y Huang T-Y Kao (2020) Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation. Ferment, et al 2020 Vol 6 Page 37 6 37https://doi.org/10.3390/FERMENTATION6010037

  196. Dahnum D, Tasum SO, Triwahyuni E et al (2015) Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. Energy Procedia 68:107–116.https://doi.org/10.1016/J.EGYPRO.2015.03.238

    Article  Google Scholar 

  197. Rastogi M, Shrivastava S (2018) Current Methodologies and Advances in Bio-ethanol Production. J Biotechnol Bioresearch 1:.https://doi.org/10.31031/JBB.2018.01.000505

  198. Ahmad A, Banat F, Taher H (2020) A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ Technol Innov 20:101138.https://doi.org/10.1016/J.ETI.2020.101138

    Article  Google Scholar 

  199. Yun EJ, Kim HT, Cho KM et al (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318.https://doi.org/10.1016/J.BIORTECH.2015.08.001

    Article  Google Scholar 

  200. Wu Z-Z, Li D-Y, Cheng Y-S (2018) Application of ensilage as a green approach for simultaneous preservation and pretreatment of macroalgae Ulva lactuca for fermentable sugar production. Clean Technol Environ Policy 20:2057–2065.https://doi.org/10.1007/S10098-018-1574-7

    Article  Google Scholar 

  201. Bleakley S, Hayes M (2017) Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 6:1–34.https://doi.org/10.3390/FOODS6050033

    Article  Google Scholar 

  202. Chisti Y (2019) Biorefinery: Integrated Sustainable Processes for Biomass Conversion to Biomaterials, Biofuels, and Fertilizers. Biotechnol Adv 37:107464.https://doi.org/10.1016/J.BIOTECHADV.2019.107464

    Article  Google Scholar 

  203. Jeon W, Ban C, Park G et al (2016) Hydrothermal conversion of macroalgae-derived alginate to lactic acid catalyzed by metal oxides. Catal Sci Technol 6:1146–1156.https://doi.org/10.1039/C5CY00966A

    Article  Google Scholar 

  204. Alfonsín V, Maceiras R, Gutiérrez C (2019) Bioethanol production from industrial algae waste. Waste Manag 87:791–797.https://doi.org/10.1016/J.WASMAN.2019.03.019

    Article  Google Scholar 

  205. Szambelan K, Nowak J, Szwengiel A et al (2018) Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods in bioethanol production and formation of volatile by-products from selected corn cultivars. Ind Crops Prod 118:355–361.https://doi.org/10.1016/J.INDCROP.2018.03.059

    Article  Google Scholar 

  206. Mithra MG, Jeeva ML, Sajeev MS, Padmaja G (2018) Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon 4:e00885.https://doi.org/10.1016/J.HELIYON.2018.E00885

    Article  Google Scholar 

  207. Sharma P, Sharma N, Sharma N (2019) Exploration of Rhizoclonium sp. algae potential under different ethanol production strategies with SEM analysis of biomass and detoxification of hydrolysate. Life Sci J 16:.https://doi.org/10.7537/marslsj160619.12

  208. Hakim A, Chasanah E, Uju U, Santoso J (2017) Bioethanol Production from Seaweed Processing Waste by Simultaneous Saccharification and Fermentation (SSF). Squalen Bull Mar Fish Postharvest Biotechnol 12:41.https://doi.org/10.15578/SQUALEN.V12I2.281

  209. Lippi L, Bähr L, Wüstenberg A et al (2018) Exploring the potential of high-density cultivation of cyanobacteria for the production of cyanophycin. Algal Res 31:363–366.https://doi.org/10.1016/J.ALGAL.2018.02.028

    Article  Google Scholar 

  210. Tapia F, Vázquez-Ramírez D, Genzel Y, Reichl U (2016) Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl Microbiol Biotechnol 100:2121–2132.https://doi.org/10.1007/S00253-015-7267-9

    Article  Google Scholar 

  211. Bähr L, Wüstenberg A, Ehwald R (2016) Two-tier vessel for photoautotrophic high-density cultures. J Appl Phycol 28:783–793.https://doi.org/10.1007/S10811-015-0614-5

    Article  Google Scholar 

  212. A Guljamow M Kreische K Ishida et al 2017 High-Density Cultivation of Terrestrial Nostoc Strains Leads to Reprogramming of Secondary Metabolome Appl Environ Microbiol 83https://doi.org/10.1128/AEM.01510-17

  213. Sayed W, Cabrol A, Abdallah R et al (2018) Enhancement of ethanol production from synthetic medium model of hydrolysate of macroalgae. Renew Energy 124:3–10.https://doi.org/10.1016/J.RENENE.2017.10.094

    Article  Google Scholar 

  214. Chemodanov A, Robin A, Golberg A (2017) Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresour Technol 241:1084–1093.https://doi.org/10.1016/J.BIORTECH.2017.06.061

    Article  Google Scholar 

  215. Osman AI, Abdelkader A, Farrell C et al (2019) Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches. Fuel Process Technol 192:179–202.https://doi.org/10.1016/J.FUPROC.2019.04.026

    Article  Google Scholar 

  216. GlobalPetrolPrices (2021) Ethanol prices around the world, 15-Aug-2021 | GlobalPetrolPrices.com.https://www.globalpetrolprices.com/ethanol_prices/. Accessed 17 Aug 2021

  217. Pharmacompass (2021) Lactic Acid | API Reference Price .https://www.pharmacompass.com/active-pharmaceutical-ingredients/lactic-acid/api-price-information/api-reference-price. Accessed 17 Aug 2021

  218. Ghayur A, Verheyen TV, Meuleman E (2019) Techno-economic analysis of a succinic acid biorefinery coproducing acetic acid and dimethyl ether. J Clean Prod 230:1165–1175.https://doi.org/10.1016/J.JCLEPRO.2019.05.180

    Article  Google Scholar 

  219. Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sustain Energy Rev 54:473–481.https://doi.org/10.1016/J.RSER.2015.10.022

    Article  Google Scholar 

  220. M Soleymani KA Rosentrater 2017 Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed) Bioengineering 4https://doi.org/10.3390/BIOENGINEERING4040092

  221. Akila V, Manikandan A, Sahaya Sukeetha D et al (2019) Biogas and biofertilizer production of marine macroalgae: An effective anaerobic digestion of Ulva sp. Biocatal Agric Biotechnol 18:101035.https://doi.org/10.1016/J.BCAB.2019.101035

    Article  Google Scholar 

  222. Cardoso S, Carvalho L, Silva P et al (2014) Bioproducts from Seaweeds: A Review with Special Focus on the Iberian Peninsula. Curr Org Chem 18:896–917.https://doi.org/10.2174/138527281807140515154116

    Article  Google Scholar 

  223. Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. Energies 2014, Vol 7, Pages 7194–7222 7:7194–7222.https://doi.org/10.3390/EN7117194

  224. Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, et al (2018) Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J 17:780–791.https://doi.org/10.18331/BRJ2018.5.1.5

  225. Manhongo TT, Chimphango A, Thornley P, Röder M (2021) An economic viability and environmental impact assessment of mango processing waste-based biorefineries for co-producing bioenergy and bioactive compounds. Renew Sustain Energy Rev 148:111216.https://doi.org/10.1016/J.RSER.2021.111216

    Article  Google Scholar 

  226. Tunå P, Hulteberg C (2014) Woody biomass-based transportation fuels – A comparative techno-economic study. Fuel 117:1020–1026.https://doi.org/10.1016/J.FUEL.2013.10.019

    Article  Google Scholar 

  227. YN Barbot H Al-Ghaili R Benz 2016 A Review on the Valorization of Macroalgal Wastes for Biomethane Production Mar Drugs 14https://doi.org/10.3390/MD14060120

  228. Ullah K, Ahmad M, Sofia, et al (2014) Algal biomass as a global source of transport fuels: Overview and development perspectives. Prog Nat Sci Mater Int 24:329–339.https://doi.org/10.1016/J.PNSC.2014.06.008

    Article  Google Scholar 

  229. EIA USEIA (2021) Use of energy for transportation - U.S. Energy Information Administration (EIA).https://www.eia.gov/energyexplained/use-of-energy/transportation.php. Accessed 4 Jan 2022

  230. Peng J, Xu H, Wang W et al (2021) Techno-economic analysis of bioethanol preparation process via deep eutectic solvent pretreatment. Ind Crops Prod 172:114036.https://doi.org/10.1016/J.INDCROP.2021.114036

    Article  Google Scholar 

  231. Hossain MS, Theodoropoulos C, Yousuf A (2019) Techno-economic evaluation of heat integrated second generation bioethanol and furfural coproduction. Biochem Eng J 144:89–103.https://doi.org/10.1016/J.BEJ.2019.01.017

    Article  Google Scholar 

  232. Munagala M, Shastri Y, Nalawade K et al (2021) Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid. Waste Manag 126:52–64.https://doi.org/10.1016/J.WASMAN.2021.02.052

    Article  Google Scholar 

  233. Marchesan AN, Leal Silva JF, Maciel Filho R, Wolf Maciel MR (2021) Techno-Economic Analysis of Alternative Designs for Low-pH Lactic Acid Production. ACS Sustain Chem Eng 9:12120–12131.https://doi.org/10.1021/ACSSUSCHEMENG.1C03447/SUPPL_FILE/SC1C03447_SI_001.PDF

    Article  Google Scholar 

  234. Chong TY, Cheah SA, Ong CT et al (2020) Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia. Energy 210:118491.https://doi.org/10.1016/J.ENERGY.2020.118491

    Article  Google Scholar 

  235. Brigljević B, Liu JJ, Lim H (2019) Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle. Appl Energy 254:113704.https://doi.org/10.1016/J.APENERGY.2019.113704

  236. Nazemi F, Karimi K, Denayer JFM, Shafiei M (2021) Techno-economic aspects of different process approaches based on brown macroalgae feedstock: A step toward commercialization of seaweed-based biorefineries. Algal Res 58:102366.https://doi.org/10.1016/J.ALGAL.2021.102366

    Article  Google Scholar 

  237. Wong KH, Tan IS, Foo HCY, et al (2022) Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: Prospects of Industry 5.0 algae. Energy Convers Manag 253:115155.https://doi.org/10.1016/J.ENCONMAN.2021.115155

  238. KD González-Gloria RM Rodríguez-Jasso Shiva, et al 2021 Macroalgal biomass in terms of third-generation biorefinery concept: Current status and techno-economic analysis – A review Bioresour Technol Reports 16 100863https://doi.org/10.1016/J.BITEB.2021.100863

  239. Seghetta M, Hou X, Bastianoni S et al (2016) Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers – A step towards a regenerative bioeconomy. J Clean Prod 137:1158–1169.https://doi.org/10.1016/J.JCLEPRO.2016.07.195

    Article  Google Scholar 

  240. Ghadge A, van der Werf S, Er Kara M et al (2020) Modelling the impact of climate change risk on bioethanol supply chains. Technol Forecast Soc Change 160:120227.https://doi.org/10.1016/J.TECHFORE.2020.120227

    Article  Google Scholar 

  241. Peteiro C, Sánchez N, Dueñas-Liaño C, Martínez B (2014) Open-sea cultivation by transplanting young fronds of the kelp Saccharina latissima. J Appl Phycol 26:519–528.https://doi.org/10.1007/S10811-013-0096-2

    Article  Google Scholar 

  242. Zhang X, Border A, Goosen N, Thomsen M (2021) Environmental life cycle assessment of cascade valorisation strategies of South African macroalga Ecklonia maxima using green extraction technologies. Algal Res 58:102348.https://doi.org/10.1016/J.ALGAL.2021.102348

    Article  Google Scholar 

  243. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91.https://doi.org/10.1016/J.BIORTECH.2015.08.029

    Article  Google Scholar 

  244. Mhatre A, Gore S, Mhatre A et al (2019) Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renew Energy 132:742–751.https://doi.org/10.1016/J.RENENE.2018.08.012

    Article  Google Scholar 

  245. Zollmann M, Robin A, Prabhu M et al (2019) Green technology in green macroalgal biorefineries. Phycologia 58:516–534.https://doi.org/10.1080/00318884.2019.1640516

    Article  Google Scholar 

  246. Ocreto JB, Chen W-H, Ubando AT et al (2021) A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment. Renew Sustain Energy Rev 152:111679.https://doi.org/10.1016/J.RSER.2021.111679

    Article  Google Scholar 

  247. Rajak RC, Jacob S, Kim BS (2020) A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. Sci Total Environ 716:137067.https://doi.org/10.1016/J.SCITOTENV.2020.137067

    Article  Google Scholar 

  248. B Abdullah SAF Syed Muhammad ad, Shokravi Z, et al 2019 Fourth generation biofuel: A review on risks and mitigation strategies Renew Sustain Energy Rev 107 37 50https://doi.org/10.1016/J.RSER.2019.02.018

  249. Jambo SA, Abdulla R, Mohd Azhar SH et al (2016) A review on third generation bioethanol feedstock. Renew Sustain Energy Rev 65:756–769.https://doi.org/10.1016/J.RSER.2016.07.064

    Article  Google Scholar 

  250. Abinandan S, Shanthakumar S (2015) Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review. Renew Sustain Energy Rev 52:123–132.https://doi.org/10.1016/J.RSER.2015.07.086

    Article  Google Scholar 

  251. Das B, Roy AP, Bhattacharjee S et al (2015) Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicol Environ Saf 121:244–252.https://doi.org/10.1016/J.ECOENV.2015.03.024

    Article  Google Scholar 

  252. Cuevas-Castillo GA, Navarro-Pineda FS, Baz Rodríguez SA, Sacramento Rivero JC (2020) Advances on the processing of microalgal biomass for energy-driven biorefineries. Renew Sustain Energy Rev 125:109606.https://doi.org/10.1016/J.RSER.2019.109606

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Curtin University Malaysia for supporting this research through the Curtin Malaysia Postgraduate Research Scheme (CMPRS).

Funding

Financial supports were given by the Fundamental Research Grant Scheme (FRGS/1/2019/TK02/CURTIN/03/2 and FRGS/1/2018/TK10/CURTIN/03/2) from the Ministry of Higher Education (MOHE), Malaysia.

Author information

Authors and Affiliations

  1. Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia

    Kevin Tian Xiang Tong, Inn Shi Tan & Henry Chee Yew Foo

  2. Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

    Man Kee Lam

  3. HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

    Man Kee Lam

  4. Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia

    Steven Lim

  5. Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia

    Steven Lim

  6. School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia

    Keat Teong Lee

Authors
  1. Kevin Tian Xiang Tong
  2. Inn Shi Tan
  3. Henry Chee Yew Foo
  4. Man Kee Lam
  5. Steven Lim
  6. Keat Teong Lee

Corresponding author

Correspondence toInn Shi Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• 3G bioethanol and lactic acid were prepared by different techniques.

• High carbohydrate content offers a potential pathway for bioproduct generation.

• Combined acid and enzymatic hydrolysis offer a high yield of reducing sugars.

• Proving fast production rate of 3G bioproducts for high cell density culture

• Cascading biorefinery resolves the production, economic, and environmental issues.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, K.T.X., Tan, I.S., Foo, H.C.Y.et al. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid.Biomass Conv. Bioref.14, 1443–1479 (2024). https://doi.org/10.1007/s13399-022-02561-7

Download citation

Keyword

Profiles

  1. Inn Shi TanView author profile

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp