Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Zinc Oxide Nanostructures: Illuminating the Potential in Biomedical Applications: a Brief Overview

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanoparticles (NPs) find versatile applications in industries like cosmetics, paint, coatings, and rubber due to their low toxicity, cost-effectiveness, and straightforward synthesis methods. ZnO-NPs also hold significant promise in biomedical research, particularly for their demonstrated anticancer and antimicrobial properties. ZnO-NPs have gained prominence in biomedical research, particularly in the realms of antimicrobial and anticancer applications. Their ability to generate reactive oxygen species (ROS) and induce apoptosis is central to these functions. Additionally, ZnO-NPs have proven effective as drug carriers, facilitating the targeted delivery of medications. This not only reduces undesirable toxicity and non-target effects but also enhances synergistic effects. Furthermore, ZnO-NPs exhibit excellent light-related properties, making them valuable candidates for various bioimaging applications. This unique characteristic positions them as promising tools in the field of biomedicine. In this paper, we provide an overview of the synthesis, development, and diverse applications of ZnO-NPs in the realm of biomedicine. This summary aims to foster further research and draw attention to various biomedical areas where ZnO-NPs have shown promise, including anticancer, antibacterial, antifungal, anti-inflammatory, wound healing, bioimaging, and antidiabetic activities.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations.Beilstein Journal of Nanotechnology, 9(1), 1050–1074.

    Google Scholar 

  2. Ghosh, M. K., Jain, K., Khan, S., Das, K., & Ghorai, T. K. (2021).ACS Omega, 5(10), 4973–4981.

    Google Scholar 

  3. Vinayagam, R., Hebbar, A., Kumar, P. S., Rangasamy, G., Varadavenkatesan, T., Murugesan, G., Srivastava, S., Goveas, L. C., Kumar, N. M., & Selvaraj, R. (2023). Green synthesized cobalt oxide nanoparticles with photocatalytic activity towards dye removal.Environmental Research, 216, Part 4, 114766.

  4. Krishna, P. G., Chandra Mishra, P., Naika, M. M., Gadewar, M., Ananthaswamy, P. P., Rao, S., et al. (2022). Photocatalytic activity induced by metal nanoparticles synthesized by sustainable approaches: A comprehensive review.Frontiers in Chemistry, 10, 917831.https://doi.org/10.3389/fchem.2022.917831

    Article  Google Scholar 

  5. Sathyananda, P., Prashanth, G., Prashanth, B., Nagabhushana, G., Krishnaiah, H., Nagendra, M., Dileep, S. A., & Boselin Prabhu, S. (2021). Evaluation of antimicrobial, antioxidant, and cytotoxicity activities of CuO nanopellets synthesized by surfactant-free hydrothermal method.Journal of Testing and Evaluation, 49.https://doi.org/10.1520/JTE20200538

  6. Prashanth, G. K., Sathyananda, H. M., Prashanth, P. A., et al. (2022). Controlled synthesis of Ag/CuO nanocomposites: Evaluation of their antimycobacterial, antioxidant, and anticancer activities.Applied Physics A, 128, 614.https://doi.org/10.1007/s00339-022-05748-x

    Article  Google Scholar 

  7. Gwon, K., Park, J. -D., Lee, S., Yu, J. -S., & Lee, D. N. (2022). Biocompatible core–shell-structured Si-based NiO nanoflowers and their anticancer activity.Pharmaceutics, 14, 268.https://doi.org/10.3390/pharmaceutics14020268

    Article  Google Scholar 

  8. Lyagin, I., Aslanli, A., Domnin, M., Stepanov, N., Senko, O., Maslova, O., & Efremenko, E. (2023). Metal nanomaterials and hydrolytic enzyme-based formulations for improved antifungal activity.International Journal of Molecular Sciences, 24, 11359.https://doi.org/10.3390/ijms241411359

    Article  Google Scholar 

  9. Chandraker, S. K., Lal, M., & Shukla, R. (2019). DNA-binding, antioxidant, H 2 O 2 sensing and photocatalytic properties of biogenic silver nanoparticles using Ageratum conyzoides L. leaf extract.RSC Advances, 9(41), 23408–23417.

    Google Scholar 

  10. Ghosh, M. K., Chandraker, S. K., Shukla, R., Mandal, M., Mandal, V., & Ghorai, T. K. (2019 Jul). Molecular interaction, antimicrobial, antioxidant, cytotoxic and magnetic properties of Mn 12 benzoate.Journal of Cluster Science, 12, 1–5.

    Google Scholar 

  11. Sanoop, P. K., Anas, S., Ananthakumar, S., Gunasekar, V., Saravanan, R., & Ponnusami, V. (2016, Nov). Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation.Arabian Journal of Chemistry, 1(9), S1618–S1626.

    Google Scholar 

  12. Sun, X. H., Lam, S., Sham, T. K., Heigl, F., Jürgensen, A., & Wong, N. B. (2005, Mar 3). Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: Nanowires, nanoneedles, nanoflowers, and tubular whiskers.The Journal of Physical Chemistry B, 109(8), 3120–3125.

    Google Scholar 

  13. Guaraldo, T. T., et al. (2023). Highly efficient ZnO photocatalytic foam reactors for micropollutant degradation.Chemical Engineering Journal, 455, 140784.

    Google Scholar 

  14. Ghamarpoor, R., et al. (2023). Preparation of dual-use GPTES@ ZnO photocatalyst from waste warm filter cake and evaluation of its synergic photocatalytic degradation for air-water purification.Journal of Environmental Management, 342, 118352.

    Google Scholar 

  15. Zelekew, O. A., et al. (2023). Recent progress on plant extract-mediated biosynthesis of ZnO-based nanocatalysts for environmental remediation: Challenges and future outlooks.Advances in Colloid and Interface Science, 102931.

  16. Rodrigues, J., Jain, S., & Shimpi, N. G. (2023). Performance of 1D tin (Sn) decorated spherical shape ZnO nanostructures as an acetone gas sensor for room and high temperature.Materials Science and Engineering: B, 288, 116199.

    Google Scholar 

  17. Ansari, G., et al. (2023). Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor.Optics & Laser Technology, 164, 109495.

    Google Scholar 

  18. Jia, X., et al. (2023). Ultrathin Ag@ ZnO Core–Shell nanowires for stable flexible transparent conductive films.ACS Applied Electronic Materials, 5(8), 4198–4208.

    Google Scholar 

  19. Che, L., et al. (2023). Fluorine, chlorine, and gallium co-doped zinc oxide transparent conductive films fabricated using the sol-gel spin method.Journal of Materiomics.

  20. Hu, L., et al. (2023). N-ion-implanted ZnO microtubes for highly-efficient UV detection.Optical Materials, 138, 113683.

    Google Scholar 

  21. Mosallanezhad, P., et al. (2022). Fabrication and characterization of polycaprolactone/chitosan nanofibers containing antibacterial agents of curcumin and ZnO nanoparticles for use as wound dressing.Frontiers in Bioengineering and Biotechnology, 10, 1027351.

    Google Scholar 

  22. Sathiyaseelan, A., et al. (2023). Ampicillin-resistant bacterial pathogens targeted chitosan nano-drug delivery system (CS-AMP-P-ZnO) for combinational antibacterial treatment.International Journal of Biological Macromolecules, 237, 124129.

    Google Scholar 

  23. Puspasari, V., et al. (2022). ZnO-based antimicrobial coatings for biomedical applications.Bioprocess and Biosystems Engineering, 45(9), 1421–1445.

    Google Scholar 

  24. Elbrolesy, A., et al. (2023). Novel green synthesis of UV-sunscreen ZnO nanoparticles using solanum lycopersicum fruit extract and evaluation of their antibacterial and anticancer activity.Journal of Inorganic and Organometallic Polymers and Materials, 1–10.

  25. Sahoo, S., Maiti, M., Ganguly, A., Jacob George, J., Bhowmick, A. K. (2007, Aug 15) Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber.Journal of Applied Polymer Science, 105(4), 2407–2415.

  26. Newman, M. D., Stotland, M., & Ellis, J. I. (2009, Oct 1). The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens.Journal of the American Academy of Dermatology, 61(4), 685–692.

    Google Scholar 

  27. Hatamie, A., Khan, A., Golabi, M., Turner, A. P., Beni, V., Mak, W. C., Sadollahkhani, A., Alnoor, H., Zargar, B., Bano, S., & Nur, O. (2015, Oct 6). Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material.Langmuir, 31(39), 10913–10921.

    Google Scholar 

  28. Xiao, F. X., Hung, S. F., Tao, H. B., Miao, J., Yang, H. B., & Liu, B. (2014). Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: Towards intimate integration of 1D–1D hybrid nanostructures.Nanoscale, 6(24), 14950–14961.

    Google Scholar 

  29. Jiang, J., Pi, J., & Cai, J. (2018, Oct). The advancing of zinc oxide nanoparticles for biomedical applications.Bioinorganic Chemistry and Applications, 2018.

  30. Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010, Sep 1). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications.Expert Opinion on Drug Delivery, 7(9), 1063–1077.

    Google Scholar 

  31. Kim, S., Lee, S. Y., & Cho, H. J. (2017, Nov). Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma.Nanomaterials, 7(11), 354.

    Google Scholar 

  32. Zhang, Z. Y., & Xiong, H. M. (2015, Jun). Photoluminescent ZnO nanoparticles and their biological applications.Materials, 8(6), 3101–3127.

    Google Scholar 

  33. Elkady, M. F., Shokry Hassan, H., Hafez, E. E., & Fouad, A. (2015, Sep). Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria.Bioinorganic Chemistry and Applications, 2015, 536854.

    Google Scholar 

  34. Prashanth, G. K., Prashanth, P. A., Bora, U., Gadewar, M., Nagabhushana, B. M., Ananda, S., Krishnaiah, G. M., & Sathyananda, H. M. (2015 Oct 1). In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis.Karbala International Journal of Modern Science, 1(2), 67–77.

    Google Scholar 

  35. Ramani, M., Ananda, S., Mutthuraju, M., & Singh, R. (2019 Dec 1). Comparison of antimicrobial, antioxidant and anticancer activities of ZnO nanoparticles prepared by lemon juice and citric acid fueled solution combustion synthesis.BioNanoScience, 9(4), 799–812.

    Google Scholar 

  36. Prashanth, G. K., Prashanth, P. A., Nagabhushana, B. M., Ananda, S., Nagendra, H. G., & Rajendra, S. C. (2016, Apr 1). In vitro antimicrobial, antioxidant and anticancer studies of ZnO nanoparticles synthesized by precipitation method.Advanced Science, Engineering and Medicine, 8(4), 306–313.

    Google Scholar 

  37. Prashanth, G. K., Prashanth, P. A., Krishnaiah, G. M., Nagabhushana, B. M., Nagendra, H. G., & Sathyananda, H. M. (2018). Antibacterial and cytotoxicity studies of ZnO nanoparticles prepared by bio-fueled solution combustion synthesis.International Journal of Scientific Research and Review, 7(9).

  38. Prashanth, G. K., Prashanth, P. A., Nagabhushana, B. M., Ananda, S., Krishnaiah, G. M., Nagendra, H. G., Sathyananda, H. M., Rajendra Singh, C., Yogisha, S., Anand, S., & Tejabhiram, Y. (2018). Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels.Artificial Cells, Nanomedicine, and Biotechnology, 46(5), 968–979.

    Google Scholar 

  39. Krishna, P. G., Ananthaswamy, P. P., Gadewar, M., Bora, U., & Mutta, N. B. (2016). In vitro antibacterial and anticancer studies of ZnO nanoparticles prepared by sugar fueled combustion synthesis.Advanced Materials Letters, 8(1), 24–29.

    Google Scholar 

  40. Prashanth, G. K., Prashanth, P. A., Singh, P., Nagabhushana, B. M., Shivakumara, C., Krishnaiah, G. M., Nagendra, H. G., Sathyananda, H. M., & Chaturvedi, V. (2020 Oct). Effect of doping (with cobalt or nickel) and UV exposure on the antibacterial, anticancer, and ROS generation activities of zinc oxide nanoparticles.Journal of Asian Ceramic Societies, 24, 1–3.

    Google Scholar 

  41. Krishna, P. G., Ananthaswamy, P. P., Yadavalli, T., Mutta, N. B., Sannaiah, A., & Shivanna, Y. (2016, May). ZnO nanopellets have selective anticancer activity.Materials Science and Engineering: C, 1(62), 919–926.

    Google Scholar 

  42. Krishna, P. G., Ananthaswamy, P. P., Trivedi, P., Chaturvedi, V., Mutta, N. B., Sannaiah, A., Erra, A., & Yadavalli, T. (2017, Jun). Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel.Materials Science and Engineering: C, 1(75), 1026–1033.

    Google Scholar 

  43. Nagarajaiah, S., Nanda, N., Manjappa, P., et al. (2023). Evaluation of apoptosis in human breast cancer cell (MDA-MB-231) induced by ZnO nanoparticles synthesized using Piper betle leaf extract as bio-fuel.Applied Physics A, 129, 461.https://doi.org/10.1007/s00339-023-06731-w

    Article  Google Scholar 

  44. Spanhel, L., & Anderson, M. A. (1991, Apr). Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids.Journal of the American Chemical Society, 113(8), 2826–2833.

    Google Scholar 

  45. Khan, M. M., Khan, M. W., Alhoshan, M., AlSalhi, M. S., & Aldwayyan, A. S. (2010, Jul 1). Influences of Co doping on the structural and optical properties of ZnO nanostructured.Applied Physics A, 100(1), 45–51.

    Google Scholar 

  46. Bisht, G., Rayamajhi, S., Biplab, K. C., Paudel, S. N., Karna, D., & Shrestha, B. G. (2016, Dec 1). Synthesis, characterization, and study of in vitro cytotoxicity of ZnO-Fe3O4 magnetic composite nanoparticles in human breast cancer cell line (MDA-MB-231) and mouse fibroblast (NIH 3T3).Nanoscale Research Letters, 11(1), 537.

  47. Bettini, S., Pagano, R., Valli, L., & Giancane, G. (2016, Apr 20). Enhancement of open circuit voltage of a ZnO-based dye-sensitized solar cell by means of piezotronic effect.Chemistry–An Asian Journal, 11(8), 1240–1245.

    Google Scholar 

  48. Bettini, S., Pagano, R., Bonfrate, V., Maglie, E., Manno, D., Serra, A., Valli, L., & Giancane, G. (2015, Aug 27). Promising piezoelectric properties of new ZnO@ octadecylamine adduct.The Journal of Physical Chemistry C, 119(34), 20143–20149.

    Google Scholar 

  49. Pagano, R., Quarta, A., Pal, S., Licciulli, A., Valli, L., & Bettini, S. (2017, Dec 7). Enhanced solar-driven applications of ZnO@ Ag patchy nanoparticles.The Journal of Physical Chemistry C, 121(48), 27199–27206.

    Google Scholar 

  50. Wang, Z., Zhang, H., Zhang, L., Yuan, J., Yan, S., & Wang, C. (2002, Dec 3). Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction.Nanotechnology, 14(1), 11.

    Google Scholar 

  51. Elumalai, K., & Velmurugan, S. (2015, Aug). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.).Applied Surface Science, 1(345), 329–336.

    Google Scholar 

  52. Qu, J., Yuan, X., Wang, X., & Shao, P. (2011, Jul 1). Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L.Environmental Pollution, 159(7), 1783–1788.

    Google Scholar 

  53. Sharma, D., Sabela, M. I., Kanchi, S., Mdluli, P. S., Singh, G., Stenström, T. A., & Bisetty, K. (2016, Sep). Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies.Journal of Photochemistry and Photobiology B: Biology, 1(162), 199–207.

    Google Scholar 

  54. Mahendra, C., Murali, M., Manasa, G., Ponnamma, P., Abhilash, M. R., Lakshmeesha, T. R., Satish, A., Amruthesh, K. N., & Sudarshana, M. S. (2017, Sep). Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.).Microbial Pathogenesis, 1(110), 620–629.

    Google Scholar 

  55. Ghidan, A. Y., Al-Antary, T. M., Salem, N. M., & Awwad, A. M. (2017). Facile green synthetic route to the zinc oxide (ZnONPs) nanoparticles: Effect on green peach aphid and antibacterial activity.Journal of Agricultural Science, 9(2), 131.

    Google Scholar 

  56. Fu, L., & Fu, Z. (2015, Mar 1). Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity.Ceramics International, 41(2), 2492–2496.

    Google Scholar 

  57. Janaki, A. C., Sailatha, E., & Gunasekaran, S. (2015, Jun). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 5(144), 17–22.

    Google Scholar 

  58. Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., & Chung, I. M. (2018, Jan 1). Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities.Bioprocess and Biosystems Engineering, 41(1), 21–30.

  59. Nagajyothi, P. C., Cha, S. J., Yang, I. J., Sreekanth, T. V., Kim, K. J., & Shin, H. M. (2015, May). Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract.Journal of Photochemistry and Photobiology B: Biology, 1(146), 10–17.

    Google Scholar 

  60. Ali, K., Dwivedi, S., Azam, A., Saquib, Q., Al-Said, M. S., Alkhedhairy, A. A., & Musarrat, J. (2016, Jun). Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.Journal of Colloid and Interface Science, 15(472), 145–156.

    Google Scholar 

  61. Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., & Hong, S. I. (2014, Aug). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications.Materials Science and Engineering: C, 1(41), 17–27.

    Google Scholar 

  62. Karam, S. T., & Abdulrahman, A. F. (2022). Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract.Photonics, 9, 594.https://doi.org/10.3390/photonics9080594

    Article  Google Scholar 

  63. Surendra, B. S., Mahadeva Swamy, M., Shamala, T., Rao, S., Shree, A. S. S., Swamy, C. M., & Pramila, S. (2022). Development of enhanced electrochemical sensor and antimicrobial studies of ZnO NPs synthesized using green plant extract.Sensors International, 3, 100176.

    Google Scholar 

  64. Stokes, D. (2008, Nov 20).Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). John Wiley & Sons.

    Google Scholar 

  65. McMullan, D. (1995, May). Scanning electron microscopy 1928–1965.Scanning, 17(3), 175–185.

    Google Scholar 

  66. Fultz, B., & Howe, J. M. (2012, Oct 14).Transmission electron microscopy and diffractometry of materials. Springer Science & Business Media.

    Google Scholar 

  67. Avadhani, G. S. (2010, Aug 23). Techniques for characterization of nano materials. InProceedings of the sixth international conference on mathematical modeling and computer simulation of material technologies, (MMT-2010).

  68. Griffiths, P. R., & De Haseth, J. A. (2007, Mar 16).Fourier transform infrared spectrometry. John Wiley & Sons.

    Google Scholar 

  69. Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017, Dec 1). Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications.Drug Discovery Today, 22(12), 1825-1834.

  70. Dutta, R. K., Nenavathu, B. P., Gangishetty, M. K., & Reddy, A. V. (2013, Jul 1). Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli.Journal of Environmental Science and Health, Part A, 48(8), 871–878.

    Google Scholar 

  71. Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007, May 21). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems.Applied Physics Letters, 90(21), 213902.

    Google Scholar 

  72. Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010, Oct). The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein.The FEBS Journal, 277(20), 4184–4194.

    Google Scholar 

  73. Singh, B. N., Rawat, A. K., Khan, W., Naqvi, A. H., & Singh, B. R. (2014, Sep 4). Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids.PLoS One, 9(9), e106937.

    Google Scholar 

  74. Ishwarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Al-Anbr, M. N., Khaled, J. M., & Benelli, G. (2018, Jan). Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.Journal of Photochemistry and Photobiology B: Biology, 1(178), 249–258.

    Google Scholar 

  75. Divya, M., Vaseeharan, B., Abinaya, M., Vijayakumar, S., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Benelli, G. (2018, Jan). Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity.Journal of Photochemistry and Photobiology B: Biology, 1(178), 211–218.

    Google Scholar 

  76. Hsueh, Y. H., Ke, W. J., Hsieh, C. T., Lin, K. S., Tzou, D. Y., & Chiang, C. L. (2015, Jun 3). ZnO nanoparticles affect Bacillus subtilis cell growth and biofilm formation.PloS One, 10(6), e0128457.

    Google Scholar 

  77. Jiang, Y., Zhang, L., Wen, D., & Ding, Y. (2016, Dec). Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli.Materials Science and Engineering: C, 1(69), 1361–1366.

    Google Scholar 

  78. Sarwar, S., Chakraborti, S., Bera, S., Sheikh, I. A., Hoque, K. M., & Chakrabarti, P. (2016, Aug 1). The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype.Nanomedicine: Nanotechnology, Biology and Medicine, 12(6), 1499–1509.

  79. Lee, J., Choi, K. H., Min, J., Kim, H. J., Jee, J. P., & Park, B. J. (2017, Nov). Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus.Nanomaterials, 7(11), 365.

    Google Scholar 

  80. Matai, I., Sachdev, A., Dubey, P., Kumar, S. U., Bhushan, B., & Gopinath, P. (2014, Mar). Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli.Colloids and Surfaces B: Biointerfaces, 1(115), 359–367.

    Google Scholar 

  81. Wu, W., Liu, T., He, H., Wu, X., Cao, X., Jin, J., Sun, Q., Roy, V. A., & Li, R. K. (2018, Jul 1) Rhelogical and antibacterial performance of sodium alginate/zinc oxide composite coating for cellulosic paper.Colloids and surfaces B: Biointerfaces, 167, 538–543.

  82. Ghule, K., Ghule, A. V., Chen, B. J., & Ling, Y. C. (2006). Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study.Green Chemistry, 8(12), 1034–1041.

    Google Scholar 

  83. Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassl, R., Goessler, W., Reidl, J., & Schild, S. (2015, Jan 1). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli.International Journal of Medical Microbiology, 305(1), 85–95.

  84. Thi, T. U. D., Nguyen, T. T., Thi, Y. D., Thi, K. H. T., Phan, B. T., & Pham, K. N. (2020). Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities.RSC Advances, 10, 23899–23907.

    Google Scholar 

  85. Ghasemi, F., & Jalal, R. (2016, Sep). Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii.Journal of Global Antimicrobial Resistance, 1(6), 118–122.

    Google Scholar 

  86. Karthik, K., Dhanuskodi, S., Gobinath, C., & Sivaramakrishnan, S. (2015, Mar). Microwave-assisted synthesis of CdO–ZnO nanocomposite and its antibacterial activity against human pathogens.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 15(139), 7–12.

    Google Scholar 

  87. Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., & Parhi, P. (2018, Jun). Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method.Microbial Pathogenesis, 1(119), 145–151.

    Google Scholar 

  88. Iswarya, A., Vaseeharan, B., Anjugam, M., Ashokkumar, B., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Benelli, G. (2017, Oct). Multipurpose efficacy of ZnO nanoparticles coated by the crustacean immune molecule β-1, 3-glucan binding protein: Toxicity on HepG2 liver cancer cells and bacterial pathogens.Colloids and Surfaces B: Biointerfaces, 1(158), 257–269.

    Google Scholar 

  89. Dědková, K., Janíková, B., Matějová, K., Peikertová, P., Neuwirthová, L., Holešinský, J., & Kukutschová, J. (2015, Jul). Preparation, characterization and antibacterial properties of ZnO/kaoline nanocomposites.Journal of Photochemistry and Photobiology B: Biology, 1(148), 113–117.

    Google Scholar 

  90. Shaban, M., Mohamed, F., & Abdallah, S. (2018, Mar 2). Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing ZnO nanocatalyst.Scientific Reports, 8(1), 1–5.

    Google Scholar 

  91. Bellanger, X., Billard, P., Schneider, R., Balan, L., & Merlin, C. (2015, Feb). Stability and toxicity of ZnO quantum dots: Interplay between nanoparticles and bacteria.Journal of Hazardous Materials, 11(283), 110–116.

    Google Scholar 

  92. Sehmi, S. K., Noimark, S., Bear, J. C., Peveler, W. J., Bovis, M., Allan, E., MacRobert, A. J., & Parkin, I. P. (2015). Lethal photosensitisation of Staphylococcus aureus and Escherichia coli using crystal violet and zinc oxide-encapsulated polyurethane.Journal of Materials Chemistry B, 3(31), 6490–6500.

    Google Scholar 

  93. Ohira, T., & Yamamoto, O. (2012, Jan 22). Correlation between antibacterial activity and crystallite size on ceramics.Chemical Engineering Science, 68(1), 355–361.

    Google Scholar 

  94. Sharma, H., Kumar, K., Choudhary, C., Mishra, P. K., & Vaidya, B. (2016, Feb 17). Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug.Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 672–679.

  95. Zhang, Y., Nayak T. R., Hong, H., & Cai, W. (2013, Dec 1). Biomedical applications of zinc oxide nanomaterials.Current Molecular Medicine, 13(10), 1633-1645.

  96. Sharma, V., Anderson, D., & Dhawan, A. (2012, Aug 1). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2).Apoptosis, 17(8), 852–870.

  97. Boroumand Moghaddam, A., Moniri, M., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Navaderi, M., & Mohamad, R. (2017, Oct). Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line.Genes, 8(10), 281.

    Google Scholar 

  98. Bai, D.-P., Zhang, X.-F., Zhang, G.-L., Huang, Y.-F., & Gurunathan, S. (2017). Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells.International Journal of Nanomedicine, 6521–6535.

  99. Hariharan, R., Senthilkumar, S., Suganthi, A., & Rajarajan, M. (2012, Nov). Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action.Journal of Photochemistry and Photobiology B: Biology, 5(116), 56–65.

    Google Scholar 

  100. Dhivya, R., Ranjani, J., Bowen, P. K., Rajendhran, J., Mayandi, J., & Annaraj, J. (2017, Nov). Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells.Materials Science and Engineering: C, 1(80), 59–68.

    Google Scholar 

  101. Dhivya, R., Ranjani, J., Rajendhran, J., Mayandi, J., & Annaraj, J. (2018, Jan). Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles.Materials Science and Engineering: C, 1(82), 182–189.

    Google Scholar 

  102. Namvar, F., Azizi, S., Rahman, H. S., Mohamad, R., Rasedee, A., Soltani, M., & Rahim, R. A. (2016). Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite.OncoTargets and Therapy, 9, 4549.

    Google Scholar 

  103. Patel, P., Kansara, K., Senapati, V. A., Shanker, R., Dhawan, A., & Kumar, A. (2016, Jul 1). Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells.Mutagenesis, 31(4), 481–490.

    Google Scholar 

  104. Tripathy, N., Ahmad, R., Ko, H. A., Khang, G., & Hahn, Y. B. (2015). Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system.Nanoscale, 7(9), 4088–4096.

    Google Scholar 

  105. Bai, K. J., Chuang, K. J., Ma, C. M., Chang, T. Y., & Chuang, H. C. (2017, Aug 1). Human lung adenocarcinoma cells with an EGFR mutation are sensitive to non-autophagic cell death induced by zinc oxide and aluminium-doped zinc oxide nanoparticles.The Journal of Toxicological Sciences, 42(4), 437–444.

    Google Scholar 

  106. Pandurangan, M., Enkhtaivan, G., & Kim, D. H. (2016, May). Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells.Journal of Photochemistry and Photobiology B: Biology, 1(158), 206–211.

    Google Scholar 

  107. Puvvada, N., Rajput, S., Kumar, B. P., Sarkar, S., Konar, S., Brunt, K. R., Rao, R. R., Mazumdar, A., Das, S. K., Basu, R., & Fisher, P. B. (2015, Jul). Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression.Scientific Reports, 6(5), 11760.

    Google Scholar 

  108. Liu, J., Ma, X., Jin, S., Xue, X., Zhang, C., Wei, T., Guo, W., & Liang, X. J. (2016, May 2). Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance.Molecular Pharmaceutics, 13(5), 1723–1730.

    Google Scholar 

  109. Othman, B. A., Greenwood, C., Abuelela, A. F., Bharath, A. A., Chen, S., Theodorou, I., Douglas, T., Uchida, M., Ryan, M., Merzaban, J. S., & Porter, A. E. (2016, Jun). Correlative light-electron microscopy shows RGD-targeted ZnO nanoparticles dissolve in the intracellular environment of triple negative breast cancer cells and cause apoptosis with intratumor heterogeneity.Advanced Healthcare Materials, 5(11), 1310–1325.

    Google Scholar 

  110. Bai Aswathanarayan, J., Rai Vittal, R., & Muddegowda, U. (2018, Oct 3). Anticancer activity of metal nanoparticles and their peptide conjugates against human colon adenorectal carcinoma cells.Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1444–1451.

  111. Cao, Y., Roursgaard, M., Kermanizadeh, A., Loft, S., & Møller, P. (2015, Jan). Synergistic effects of zinc oxide nanoparticles and fatty acids on toxicity to caco-2 cells.International Journal of Toxicology, 34(1), 67–76.

    Google Scholar 

  112. Fang, X., Jiang, L., Gong, Y., Li, J., Liu, L., & Cao, Y. (2017, Dec). The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells.Chemico-Biological Interactions, 25(278), 40–47.

    Google Scholar 

  113. De Angelis, I., Barone, F., Zijno, A., Bizzarri, L., Russo, M. T., Pozzi, R., Franchini, F., Giudetti, G., Uboldi, C., Ponti, J., & Rossi, F. (2013, Dec 1). Comparative study of ZnO and TiO2 nanoparticles: Physicochemical characterisation and toxicological effects on human colon carcinoma cells.Nanotoxicology, 7(8), 1361–1372.

    Google Scholar 

  114. Deng, Y., & Zhang, H. (2013). The synergistic effect and mechanism of doxorubicin-ZnO nanocomplexes as a multimodal agent integrating diverse anticancer therapeutics.International Journal of Nanomedicine, 8, 1835.

    Google Scholar 

  115. Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. M., Ahmad, J., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species.International Journal of Nanomedicine, 7, 845.

    Google Scholar 

  116. Hassan, H. F., Mansour, A. M., Abo-Youssef, A. M., Elsadek, B. E., & Messiha, B. A. (2017, Feb). Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence.Clinical and Experimental Pharmacology and Physiology, 44(2), 235–243.

    Google Scholar 

  117. Generalov, R., Kuan, W. B., Chen, W., Kristensen, S., & Juzenas, P. (2015, May). Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells.Colloids and Surfaces B: Biointerfaces, 1(129), 79–86.

    Google Scholar 

  118. Arooj, S., Nazir, S., Nadhman, A., Ahmad, N., Muhammad, B., Ahmad, I., Mazhar, K., & Abbasi, R. (2015, Feb 26). Novel ZnO: Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells.Beilstein Journal of Nanotechnology, 6(1), 570–582.

    Google Scholar 

  119. Surendra, T. V., Roopan, S. M., Al-Dhabi, N. A., Arasu, M. V., Sarkar, G., & Suthindhiran, K. (2016, Dec). Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities.Nanoscale Research Letters, 11(1), 546.

    Google Scholar 

  120. Gunalan, S., Sivaraj, R., & Rajendran, V. (2012, Dec 1). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens.Progress in Natural Science: Materials International, 22(6), 693–700.

    Google Scholar 

  121. Lipovsky, A., Nitzan, Y., Gedanken, A., & Lubart, R. (2011, Feb 2). Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury.Nanotechnology, 22(10), 105101.

    Google Scholar 

  122. Ilves, M., Palomäki, J., Vippola, M., Lehto, M., Savolainen, K., Savinko, T., & Alenius, H. (2014, Dec 1). Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model.Particle and Fibre Toxicology, 11(1), 38.

    Google Scholar 

  123. Wang, Y., Song, S., Liu, J., Liu, D., & Zhang, H. (2015 Jan 7). ZnO-functionalized upconverting nanotheranostic agent: Multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH.Angewandte Chemie International Edition, 54(2), 536–540.

    Google Scholar 

  124. Lansdown, A. B., Mirastschijski, U., Stubbs, N., Scanlon, E., & Ågren, M. S. (2007 Jan). Zinc in wound healing: Theoretical, experimental, and clinical aspects.Wound Repair and Regeneration, 15(1), 2–16.

    Google Scholar 

  125. Raguvaran, R., Manuja, B. K., Chopra, M., Thakur, R., Anand, T., Kalia, A., & Manuja, A. (2017, Mar). Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells.International Journal of Biological Macromolecules, 1(96), 185–191.

    Google Scholar 

  126. Sudheesh Kumar, P. T., Lakshmanan, V. K., Anilkumar, T. V., Ramya, C., Reshmi, P., Unnikrishnan, A. G., Nair, S. V., & Jayakumar, R. (2012, Apr 11). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation.ACS Applied Materials & Interfaces, 4(5), 2618–2629.

    Google Scholar 

  127. Jiang, H., Wang, H., & Wang, X. (2011, May 15). Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications.Applied Surface Science, 257(15), 6991–6995.

  128. Pan, Z. Y., Liang, J., Zheng, Z. Z., Wang, H. H., & Xiong, H. M. (2011, Jul). The application of ZnO luminescent nanoparticles in labeling mice.Contrast Media & Molecular Imaging, 6(4), 328–330.

    Google Scholar 

  129. Nazarizadeh, A., & Asri-Rezaie, S. (2016, Aug 1). Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats.AAPS PharmSciTech, 17(4), 834–843.

    Google Scholar 

  130. Wahba, N. S., Shaban, S. F., Kattaia, A. A., & Kandeel, S. A. (2016, Nov 1). Efficacy of zinc oxide nanoparticles in attenuating pancreatic damage in a rat model of streptozotocin-induced diabetes.Ultrastructural Pathology, 40(6), 358–373.

    Google Scholar 

  131. Fekri, M. H., Soleymani, S., Mehr, M. R., & Akbari-adergani, B. (2022). Synthesis and characterization of mesoporous ZnO/SBA-16 nanocomposite: Its efficiency as drug delivery system.Journal of Non-Crystalline Solids, 591.

  132. Amirsoleimani, A., Bahrami, Z., Kafshdouzan, K., et al. (2023, July 21). Design and evaluation of periodic mesoporous organosilica/ZnO nanocomposites as an effective drug delivery system for gemcitabine. PREPRINT (Version 1). Available atResearch Square.https://doi.org/10.21203/rs.3.rs-3175849/v1

  133. Farooq, I., Noor, S., Sajjad, S., et al. (2023). Functionalization of biosynthesized CQDs capped AgO/ZnO ternary composite against microbes and targeted drug delivery to tumor cells.Journal of Cluster Science, 34, 2681–2693.https://doi.org/10.1007/s10876-023-02417-8

    Article  Google Scholar 

  134. Raliya, R., & Biswas, P. (2017). Zinc oxide nanoparticles for therapeutic delivery.Advances in Drug Delivery Reviews.

    Google Scholar 

  135. Singh, S. K., et al. (2017). Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications.Drug Discovery Today.

  136. Georgetti, M. E., et al. (2012). Zinc oxide nanoparticles: a review of their biological activity and potential for drug delivery.Nanotechnology, Science, and Applications.

  137. Bhardwaj, A., & Kumar, R. (2019). Zinc oxide nanoparticles: a promising nanomaterial for drug delivery and targeting.Journal of Drug Delivery Science and Technology.

  138. Jabbari, E., et al. (2016). Recent advances in zinc oxide nanoparticles as potential drugs and drug delivery systems.Current Opinion in Chemical Engineering.

  139. Norozi, S., Ghollasi, M., Salimi, A., et al. (2023). Mesenchymal stem cells osteogenic differentiation by ZnO nanoparticles and polyurethane bimodal foam nanocomposites.Cell Tissue Bank.https://doi.org/10.1007/s10561-023-10090-4

  140. Liu, S., Lin, R., Pu, C., Huang, J., Zhang, J., & Hou, H. (2022). Nanocomposite biomaterials for tissue engineering and regenerative medicine applications [Internet].Nanocomposite Materials for Biomedical and Energy Storage Applications. IntechOpen. Available from:https://doi.org/10.5772/intechopen.102417

  141. Nekounam, H., Samani, S., Samadian, H., Shokrgozar, M. A., & Faridi-Majidi, R. (2023). Zinc oxide-carbon nanofiber (ZnO-CNF) nanocomposite for bone tissue engineering: An inquiry into structural, physical and biological properties.Materials Chemistry and Physics, 295, 127052.

    Google Scholar 

  142. Nasiri, G., Azarpira, N., Alizadeh, A., Zebarjad, S. M., Aminshahidi, M., Alavi, O., & Kamali, M. (2022). Fabrication and evaluation of poly (vinyl alcohol)/gelatin fibrous scaffold containing ZnO nanoparticles for skin tissue engineering applications.Materials Today Communications, 33, 104476.

    Google Scholar 

  143. Li, Z., Wang, J., Chen, H., Wang, R., & Zhu, M. (2023). Synthesis of ZnO nanorod-decorated graphene oxide for application in dental resin composites.ACS Biomaterials Science & Engineering, 9(5), 2706–2715.

    Google Scholar 

  144. Shitole, A. A., Raut, P. W., Sharma, N., et al. (2019). Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.Journal of Materials Science: Materials in Medicine, 30, 51.https://doi.org/10.1007/s10856-019-6255-5

    Article  Google Scholar 

  145. Li, Y., Yang, Y., Qing, Y., Li, R., Tang, X., Guo, D., & Qin, Y. (2020 Aug). Enhancing ZnO-NP antibacterial and osteogenesis properties in orthopedic applications: A review.International Journal of Nanomedicine, 20(15), 6247–6262.https://doi.org/10.2147/IJN.S262876

    Article  Google Scholar 

  146. Li, S., Chen, L., & Fu, Y. (2023, Jul 22). Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects.Journal of Nanobiotechnology, 21(1), 232.https://doi.org/10.1186/s12951-023-01992-2

    Article MathSciNet  Google Scholar 

  147. Colniță, A., Toma, V. -A., Brezeștean, I. A., Tahir, M. A., & Dina, N. E. (2023). A review on integrated ZnO-based SERS biosensors and their potential in detecting biomarkers of neurodegenerative diseases.Biosensors, 13, 499.https://doi.org/10.3390/bios13050499

    Article  Google Scholar 

  148. Choudhury, S. R., Ordaz, J., Lo, C.-L., Damayanti, N. P., Zhou, F., & Irudayaraj, J. (2017). From the cover: Zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto-and epigenetic toxicity.Toxicological Sciences, 156(1), 261–274.

    Google Scholar 

  149. Ozdal, M., & Gurkok S. (2022, Feb 2) Recent advances in nanoparticles as antibacterial agent.ADMET DMPK, 10(2), 115–129.https://doi.org/10.5599/admet.1172

  150. Sá, A. S., de Lima, I. S., Honório, L. M., et al. (2022). ROS-mediated antibacterial response of ZnO and ZnO containing cerium under light.Chemical Papers, 76, 7051–7060.https://doi.org/10.1007/s11696-022-02390-y

    Article  Google Scholar 

  151. Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., & Hano, C. (2021, Sep 12) Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment.Cancers (Basel), 13(18), 4570.https://doi.org/10.3390/cancers13184570

  152. Naser, S. S., Ghosh, B., Simnani, F. Z., Singh, D., Choudhury, A., Nandi, A., Sinha, A., Jha, E., Panda, P. K., Suar, M., et al. (2023). Emerging trends in the application of green synthesized biocompatible ZnO nanoparticles for translational paradigm in cancer therapy.Journal of Nanotheranostics, 4, 248–279.https://doi.org/10.3390/jnt4030012

    Article  Google Scholar 

  153. Sharma, S., Kulkarni, P., & Thakur, R. (2021). Zinc oxide nanoparticles: A potential candidate for Covid-19 treatment.Materials Science and Engineering, C, 118, 111492.

    Google Scholar 

  154. Sportelli, M. C., Izzi, M., Loconsole, D., Sallustio, A., Picca, R. A., Felici, R., Chironna, M., & Cioffi, N. (2022, Mar 11). On the efficacy of ZnO nanostructures against SARS-CoV-2.International Journal of Molecular Sciences, 23(6), 3040.https://doi.org/10.3390/ijms23063040

  155. Jha, S., Rani, R., & Singh, S. (2023). Biogenic zinc oxide nanoparticles and their biomedical applications: A review.Journal of Inorganic and Organometallic Polymers, 33, 1437–1452.https://doi.org/10.1007/s10904-023-02550-x

    Article  Google Scholar 

  156. Sharma, A., et al. (2023). In vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity of Murraya koenigii leaf extract intercedes ZnO nanoparticles.Luminescence, 38(7), 1139–1148.

    Google Scholar 

  157. Rudayni, H. A., et al. (2023). Biological activities of sargassum algae mediated ZnO and Co doped ZnO nanoparticles as enhanced antioxidant and anti-diabetic agents.Molecules, 28(9), 3692.

    Google Scholar 

  158. Ahmed, F., et al. (2020). Antidiabetic and oxidative stress assessment of bio-enzymatically synthesized zinc oxide nanoformulation on streptozotocin-induced hyperglycemic mice.Applied Nanoscience, 10, 879–893.

    Google Scholar 

  159. Hassan, R. M., et al. (2021). Mitigating effect of single or combined administration of nanoparticles of zinc oxide, chromium oxide, and selenium on genotoxicity and metabolic insult in fructose/streptozotocin diabetic rat model.Environmental Science and Pollution Research, 28, 48517–48534.

    Google Scholar 

  160. Alkazazz, F. F., & Taher Z. A. (2021). A review on nanoparticles as a promising approach to improving diabetes mellitus.Journal of Physics: Conference Series, 1853(1), 012056.

  161. Siddiqi, K. S., ur Rahman, A., Tajuddin, et al. (2018). Properties of zinc oxide nanoparticles and their activity against microbes.Nanoscale Research Letters, 13, 141.https://doi.org/10.1186/s11671-018-2532-3

  162. Hassan, S. S. M., Kamel, A. H., Hashem, H. M., & Abdel Bary, E. M. (2020). Drug delivery systems between metal, liposome, and polymer-based nanomedicine: a review.European Chemical Bulletin, 9(3), 91–102.

    Google Scholar 

  163. Foulkes, R., Man, E., Thind, J., Yeung, S., Joy, A., & Hoskins, C. (2020). The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives.Biomaterials Science, 8, 4653–4664.

    Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

  1. Research & Development Centre, Department of Chemistry, Sir M. Visvesvaraya Institute of Technology, Bengaluru, 562 157, India

    G. K. Prashanth

  2. Department of Physics, RV College of Engineering, Bengaluru, 560 059, India

    M. S. Dileep

  3. Department of Pharmacology, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, 122 103, India

    Manoj Gadewar

  4. Department of Chemistry, Medi-Caps University, Indore, 453 331, India

    Mithun Kumar Ghosh

  5. Department of Chemistry, Nitte Meenakshi Institute of Technology, Bengaluru, 560 064, India

    Srilatha Rao

  6. Department of Biochemistry, School of Science, Jain (Deemed-to-Be University), JC Road, Bengaluru, 560 057, India

    A. S. Giresha

  7. Department of Chemistry, PES College of Engineering, Mandya, 571 401, India

    P. A. Prashanth

  8. Department of PG Chemistry, JSS College of Arts, Commerce, and Science, Mysuru, 570 025, India

    M. Mahadeva Swamy

  9. Department of Chemistry, Navkis College of Engineering, Hassan, 573 217, India

    K. V. Yatish

  10. Department of Chemistry, Sai Vidya Institute of Technology, Bengaluru, 560 064, India

    M. Mutthuraju

Authors
  1. G. K. Prashanth

    You can also search for this author inPubMed Google Scholar

  2. M. S. Dileep

    You can also search for this author inPubMed Google Scholar

  3. Manoj Gadewar

    You can also search for this author inPubMed Google Scholar

  4. Mithun Kumar Ghosh

    You can also search for this author inPubMed Google Scholar

  5. Srilatha Rao

    You can also search for this author inPubMed Google Scholar

  6. A. S. Giresha

    You can also search for this author inPubMed Google Scholar

  7. P. A. Prashanth

    You can also search for this author inPubMed Google Scholar

  8. M. Mahadeva Swamy

    You can also search for this author inPubMed Google Scholar

  9. K. V. Yatish

    You can also search for this author inPubMed Google Scholar

  10. M. Mutthuraju

    You can also search for this author inPubMed Google Scholar

Contributions

Dr. G.K. Prashanth spearheaded the conceptualization and executed the data collection for this project. M.S. Dileep, Manoj Gadewar, Mithun Kumar Ghosh, Srilatha Rao, Giresha A. S, P.A. Prashanth, M. Mahadeva Swamy, K.V. Yatish, and M. Mutthuraju collaborated extensively in the development and composition of the manuscript.

Corresponding author

Correspondence toG. K. Prashanth.

Ethics declarations

Informed Consent

None.

Research Involving Humans and Animals Statement

None/Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashanth, G.K., Dileep, M.S., Gadewar, M.et al. Zinc Oxide Nanostructures: Illuminating the Potential in Biomedical Applications: a Brief Overview.BioNanoSci.14, 1876–1896 (2024). https://doi.org/10.1007/s12668-024-01366-4

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp