Movatterモバイル変換


[0]ホーム

URL:


CtrlK
在本页

0022. 括号生成

题目地址(22. 括号生成)

https://leetcode-cn.com/problems/generate-parentheses

题目描述

数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。示例:输入:n = 3输出:[       "((()))",       "(()())",       "(())()",       "()(())",       "()()()"     ]

前置知识

  • DFS

  • 回溯法

公司

  • 阿里

  • 百度

  • 腾讯

  • 字节

思路

本题是20. 有效括号 的升级版。

由于我们需要求解所有的可能, 因此回溯就不难想到。回溯的思路和写法相对比较固定,并且回溯的优化手段大多是剪枝。

不难想到, 如果左括号的数目小于右括号,我们可以提前退出,这就是这道题的剪枝。 比如())....,后面就不用看了,直接退出即可。回溯的退出条件也不难想到,那就是:

  • 左括号数目等于右括号数目

  • 左括号数目 + 右括号数目 = 2 * n

由于我们需要剪枝, 因此必须从左开始遍历。(WHY?)

因此这道题我们可以使用深度优先搜索(回溯思想),从空字符串开始构造,做加法, 即 dfs(左括号数, 右括号数目, 路径), 我们从 dfs(0, 0, '') 开始。

伪代码:

res = []def dfs(l, r, s):   if l > n or r > n: return   if (l == r == n): res.append(s)   # 剪枝,提高算法效率   if l < r: return   # 加一个左括号   dfs(l + 1, r, s + '(')   # 加一个右括号   dfs(l, r + 1, s + ')')dfs(0, 0, '')return res

由于字符串的不可变性, 因此我们无需撤销 s 的选择。但是当你使用 C++ 等语言的时候, 就需要注意撤销 s 的选择了。类似:

s.push_back(')');dfs(l, r + 1, s);s.pop_back();

关键点

  • 当 l < r 时记得剪枝

代码

  • 语言支持:JS,Python3,CPP

JS Code:

/** * @param {number} n * @return {string[]} * @param l 左括号已经用了几个 * @param r 右括号已经用了几个 * @param str 当前递归得到的拼接字符串结果 * @param res 结果集 */const generateParenthesis = function (n) {  const res = [];  function dfs(l, r, str) {    if (l == n && r == n) {      return res.push(str);    }    // l 小于 r 时不满足条件 剪枝    if (l < r) {      return;    }    // l 小于 n 时可以插入左括号,最多可以插入 n 个    if (l < n) {      dfs(l + 1, r, str + "(");    }    // r < l 时 可以插入右括号    if (r < l) {      dfs(l, r + 1, str + ")");    }  }  dfs(0, 0, "");  return res;};

Python Code:

class Solution:    def generateParenthesis(self, n: int) -> List[str]:        res = []        def dfs(l, r, s):            if l > n or r > n: return            if (l == r == n): res.append(s)            if l < r: return            # 加一个左括号            dfs(l + 1, r, s + '(')            # 加一个右括号            dfs(l, r + 1, s + ')')        dfs(0, 0, '')        return res

CPP Code:

class Solution {private:    vector<string> ans;    void generate(int leftCnt, int rightCnt, string &s) {        if (!leftCnt && !rightCnt) {            ans.push_back(s);            return;        }        if (leftCnt) {            s.push_back('(');            generate(leftCnt - 1, rightCnt, s);            s.pop_back();        }        if (rightCnt > leftCnt) {            s.push_back(')');            generate(leftCnt, rightCnt - 1, s);            s.pop_back();        }    }public:    vector<string> generateParenthesis(int n) {        string s;        generate(n, n, s);        return ans;    }};

复杂度分析

  • 时间复杂度:O(2^N)

  • 空间复杂度:O(2^N)

大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。

最后更新于

这有帮助吗?


[8]ページ先頭

©2009-2025 Movatter.jp