Movatterモバイル変換


[0]ホーム

URL:


Skip to content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!

Graph Definitions

StateGraph

Bases:Generic[StateT,InputT,OutputT]

A graph whose nodes communicate by reading and writing to a shared state.The signature of each node is State -> Partial.

Each state key can optionally be annotated with a reducer function thatwill be used to aggregate the values of that key received from multiple nodes.The signature of a reducer function is (Value, Value) -> Value.

Parameters:

NameTypeDescriptionDefault
state_schematype[StateT]

The schema class that defines the state.

required
config_schematype[Any] | None

The schema class that defines the configuration.Use this to expose configurable parameters in your API.

None
Example
fromlangchain_core.runnablesimportRunnableConfigfromtyping_extensionsimportAnnotated,TypedDictfromlanggraph.checkpoint.memoryimportMemorySaverfromlanggraph.graphimportStateGraphdefreducer(a:list,b:int|None)->list:ifbisnotNone:returna+[b]returnaclassState(TypedDict):x:Annotated[list,reducer]classConfigSchema(TypedDict):r:floatgraph=StateGraph(State,config_schema=ConfigSchema)defnode(state:State,config:RunnableConfig)->dict:r=config["configurable"].get("r",1.0)x=state["x"][-1]next_value=x*r*(1-x)return{"x":next_value}graph.add_node("A",node)graph.set_entry_point("A")graph.set_finish_point("A")compiled=graph.compile()print(compiled.config_specs)# [ConfigurableFieldSpec(id='r', annotation=<class 'float'>, name=None, description=None, default=None, is_shared=False, dependencies=None)]step1=compiled.invoke({"x":0.5},{"configurable":{"r":3.0}})# {'x': [0.5, 0.75]}

Methods:

NameDescription
add_node

Add a new node to the state graph.

add_edge

Add a directed edge from the start node (or list of start nodes) to the end node.

add_conditional_edges

Add a conditional edge from the starting node to any number of destination nodes.

add_sequence

Add a sequence of nodes that will be executed in the provided order.

compile

Compiles the state graph into aCompiledStateGraph object.

add_node

add_node(node:str|StateNode[StateT],action:StateNode[StateT]|None=None,*,defer:bool=False,metadata:dict[str,Any]|None=None,input_schema:type[Any]|None=None,retry_policy:(RetryPolicy|Sequence[RetryPolicy]|None)=None,cache_policy:CachePolicy|None=None,destinations:(dict[str,str]|tuple[str,...]|None)=None,**kwargs:Unpack[DeprecatedKwargs])->Self

Add a new node to the state graph.

Parameters:

NameTypeDescriptionDefault
nodestr |StateNode[StateT]

The function or runnable this node will run.If a string is provided, it will be used as the node name, and action will be used as the function or runnable.

required
actionStateNode[StateT] | None

The action associated with the node. (default: None)Will be used as the node function or runnable ifnode is a string (node name).

None
deferbool

Whether to defer the execution of the node until the run is about to end.

False
metadatadict[str,Any] | None

The metadata associated with the node. (default: None)

None
input_schematype[Any] | None

The input schema for the node. (default: the graph's state schema)

None
retry_policyRetryPolicy |Sequence[RetryPolicy] | None

The retry policy for the node. (default: None)If a sequence is provided, the first matching policy will be applied.

None
cache_policyCachePolicy | None

The cache policy for the node. (default: None)

None
destinationsdict[str,str] |tuple[str, ...] | None

Destinations that indicate where a node can route to.This is useful for edgeless graphs with nodes that returnCommand objects.If a dict is provided, the keys will be used as the target node names and the values will be used as the labels for the edges.If a tuple is provided, the values will be used as the target node names.NOTE: this is only used for graph rendering and doesn't have any effect on the graph execution.

None
Example
fromtyping_extensionsimportTypedDictfromlangchain_core.runnablesimportRunnableConfigfromlanggraph.graphimportSTART,StateGraphclassState(TypedDict):x:intdefmy_node(state:State,config:RunnableConfig)->State:return{"x":state["x"]+1}builder=StateGraph(State)builder.add_node(my_node)# node name will be 'my_node'builder.add_edge(START,"my_node")graph=builder.compile()graph.invoke({"x":1})# {'x': 2}
Customize the name:
builder=StateGraph(State)builder.add_node("my_fair_node",my_node)builder.add_edge(START,"my_fair_node")graph=builder.compile()graph.invoke({"x":1})# {'x': 2}

Returns:

NameTypeDescription
SelfSelf

The instance of the state graph, allowing for method chaining.

add_edge

add_edge(start_key:str|list[str],end_key:str)->Self

Add a directed edge from the start node (or list of start nodes) to the end node.

When a single start node is provided, the graph will wait for that node to completebefore executing the end node. When multiple start nodes are provided,the graph will wait for ALL of the start nodes to complete before executing the end node.

Parameters:

NameTypeDescriptionDefault
start_keystr |list[str]

The key(s) of the start node(s) of the edge.

required
end_keystr

The key of the end node of the edge.

required

Raises:

TypeDescription
ValueError

If the start key is 'END' or if the start key or end key is not present in the graph.

Returns:

NameTypeDescription
SelfSelf

The instance of the state graph, allowing for method chaining.

add_conditional_edges

add_conditional_edges(source:str,path:(Callable[...,Hashable|list[Hashable]]|Callable[...,Awaitable[Hashable|list[Hashable]]]|Runnable[Any,Hashable|list[Hashable]]),path_map:dict[Hashable,str]|list[str]|None=None,)->Self

Add a conditional edge from the starting node to any number of destination nodes.

Parameters:

NameTypeDescriptionDefault
sourcestr

The starting node. This conditional edge will run whenexiting this node.

required
pathCallable[...,Hashable |list[Hashable]] |Callable[...,Awaitable[Hashable |list[Hashable]]] |Runnable[Any,Hashable |list[Hashable]]

The callable that determines the nextnode or nodes. If not specifyingpath_map it should return one ormore nodes. If it returns END, the graph will stop execution.

required
path_mapdict[Hashable,str] |list[str] | None

Optional mapping of paths to nodenames. If omitted the paths returned bypath should be node names.

None

Returns:

NameTypeDescription
SelfSelf

The instance of the graph, allowing for method chaining.

Without typehints on thepath function's return value (e.g.,-> Literal["foo", "__end__"]:)

or a path_map, the graph visualization assumes the edge could transition to any node in the graph.

add_sequence

add_sequence(nodes:Sequence[StateNode[StateT]|tuple[str,StateNode[StateT]]],)->Self

Add a sequence of nodes that will be executed in the provided order.

Parameters:

NameTypeDescriptionDefault
nodesSequence[StateNode[StateT] |tuple[str,StateNode[StateT]]]

A sequence of StateNodes (callables that accept a state arg) or (name, StateNode) tuples.If no names are provided, the name will be inferred from the node object (e.g. a runnable or a callable name).Each node will be executed in the order provided.

required

Raises:

TypeDescription
ValueError

if the sequence is empty.

ValueError

if the sequence contains duplicate node names.

Returns:

NameTypeDescription
SelfSelf

The instance of the state graph, allowing for method chaining.

compile

compile(checkpointer:Checkpointer=None,*,cache:BaseCache|None=None,store:BaseStore|None=None,interrupt_before:All|list[str]|None=None,interrupt_after:All|list[str]|None=None,debug:bool=False,name:str|None=None)->CompiledStateGraph[StateT,InputT,OutputT]

Compiles the state graph into aCompiledStateGraph object.

The compiled graph implements theRunnable interface and can be invoked,streamed, batched, and run asynchronously.

Parameters:

NameTypeDescriptionDefault
checkpointerCheckpointer

A checkpoint saver object or flag.If provided, this Checkpointer serves as a fully versioned "short-term memory" for the graph,allowing it to be paused, resumed, and replayed from any point.If None, it may inherit the parent graph's checkpointer when used as a subgraph.If False, it will not use or inherit any checkpointer.

None
interrupt_beforeAll |list[str] | None

An optional list of node names to interrupt before.

None
interrupt_afterAll |list[str] | None

An optional list of node names to interrupt after.

None
debugbool

A flag indicating whether to enable debug mode.

False
namestr | None

The name to use for the compiled graph.

None

Returns:

NameTypeDescription
CompiledStateGraphCompiledStateGraph[StateT,InputT,OutputT]

The compiled state graph.

CompiledStateGraph

Bases:Pregel[StateT,InputT,OutputT],Generic[StateT,InputT,OutputT]

Methods:

NameDescription
stream

Stream graph steps for a single input.

astream

Asynchronously stream graph steps for a single input.

invoke

Run the graph with a single input and config.

ainvoke

Asynchronously invoke the graph on a single input.

get_state

Get the current state of the graph.

aget_state

Get the current state of the graph.

get_state_history

Get the history of the state of the graph.

aget_state_history

Asynchronously get the history of the state of the graph.

update_state

Update the state of the graph with the given values, as if they came from

aupdate_state

Asynchronously update the state of the graph with the given values, as if they came from

bulk_update_state

Apply updates to the graph state in bulk. Requires a checkpointer to be set.

abulk_update_state

Asynchronously apply updates to the graph state in bulk. Requires a checkpointer to be set.

get_graph

Return a drawable representation of the computation graph.

aget_graph

Return a drawable representation of the computation graph.

get_subgraphs

Get the subgraphs of the graph.

aget_subgraphs

Get the subgraphs of the graph.

with_config

Create a copy of the Pregel object with an updated config.

stream

stream(input:InputT|Command|None,config:RunnableConfig|None=None,*,stream_mode:(StreamMode|Sequence[StreamMode]|None)=None,print_mode:StreamMode|Sequence[StreamMode]=(),output_keys:str|Sequence[str]|None=None,interrupt_before:All|Sequence[str]|None=None,interrupt_after:All|Sequence[str]|None=None,checkpoint_during:bool|None=None,debug:bool|None=None,subgraphs:bool=False)->Iterator[dict[str,Any]|Any]

Stream graph steps for a single input.

Parameters:

NameTypeDescriptionDefault
inputInputT |Command | None

The input to the graph.

required
configRunnableConfig | None

The configuration to use for the run.

None
stream_modeStreamMode |Sequence[StreamMode] | None

The mode to stream output, defaults toself.stream_mode.Options are:

  • "values": Emit all values in the state after each step, including interrupts. When used with functional API, values are emitted once at the end of the workflow.
  • "updates": Emit only the node or task names and updates returned by the nodes or tasks after each step. If multiple updates are made in the same step (e.g. multiple nodes are run) then those updates are emitted separately.
  • "custom": Emit custom data from inside nodes or tasks usingStreamWriter.
  • "messages": Emit LLM messages token-by-token together with metadata for any LLM invocations inside nodes or tasks. Will be emitted as 2-tuples(LLM token, metadata).
  • "checkpoints": Emit an event when a checkpoint is created, in the same format as returned by get_state().
  • "tasks": Emit events when tasks start and finish, including their results and errors.

You can pass a list as thestream_mode parameter to stream multiple modes at once.The streamed outputs will be tuples of(mode, data).

SeeLangGraph streaming guide for more details.

None
print_modeStreamMode |Sequence[StreamMode]

Accepts the same values asstream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

()
output_keysstr |Sequence[str] | None

The keys to stream, defaults to all non-context channels.

None
interrupt_beforeAll |Sequence[str] | None

Nodes to interrupt before, defaults to all nodes in the graph.

None
interrupt_afterAll |Sequence[str] | None

Nodes to interrupt after, defaults to all nodes in the graph.

None
checkpoint_duringbool | None

Whether to checkpoint intermediate steps, defaults to False. If False, only the final checkpoint is saved.

None
subgraphsbool

Whether to stream events from inside subgraphs, defaults to False.If True, the events will be emitted as tuples(namespace, data),or(namespace, mode, data) ifstream_mode is a list,wherenamespace is a tuple with the path to the node where a subgraph is invoked,e.g.("parent_node:<task_id>", "child_node:<task_id>").

SeeLangGraph streaming guide for more details.

False

Yields:

TypeDescription
dict[str,Any] |Any

The output of each step in the graph. The output shape depends on the stream_mode.

astreamasync

astream(input:InputT|Command|None,config:RunnableConfig|None=None,*,stream_mode:(StreamMode|Sequence[StreamMode]|None)=None,print_mode:StreamMode|Sequence[StreamMode]=(),output_keys:str|Sequence[str]|None=None,interrupt_before:All|Sequence[str]|None=None,interrupt_after:All|Sequence[str]|None=None,checkpoint_during:bool|None=None,debug:bool|None=None,subgraphs:bool=False)->AsyncIterator[dict[str,Any]|Any]

Asynchronously stream graph steps for a single input.

Parameters:

NameTypeDescriptionDefault
inputInputT |Command | None

The input to the graph.

required
configRunnableConfig | None

The configuration to use for the run.

None
stream_modeStreamMode |Sequence[StreamMode] | None

The mode to stream output, defaults toself.stream_mode.Options are:

  • "values": Emit all values in the state after each step, including interrupts. When used with functional API, values are emitted once at the end of the workflow.
  • "updates": Emit only the node or task names and updates returned by the nodes or tasks after each step. If multiple updates are made in the same step (e.g. multiple nodes are run) then those updates are emitted separately.
  • "custom": Emit custom data from inside nodes or tasks usingStreamWriter.
  • "messages": Emit LLM messages token-by-token together with metadata for any LLM invocations inside nodes or tasks. Will be emitted as 2-tuples(LLM token, metadata).
  • "debug": Emit debug events with as much information as possible for each step.

You can pass a list as thestream_mode parameter to stream multiple modes at once.The streamed outputs will be tuples of(mode, data).

SeeLangGraph streaming guide for more details.

None
print_modeStreamMode |Sequence[StreamMode]

Accepts the same values asstream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

()
output_keysstr |Sequence[str] | None

The keys to stream, defaults to all non-context channels.

None
interrupt_beforeAll |Sequence[str] | None

Nodes to interrupt before, defaults to all nodes in the graph.

None
interrupt_afterAll |Sequence[str] | None

Nodes to interrupt after, defaults to all nodes in the graph.

None
checkpoint_duringbool | None

Whether to checkpoint intermediate steps, defaults to False. If False, only the final checkpoint is saved.

None
subgraphsbool

Whether to stream events from inside subgraphs, defaults to False.If True, the events will be emitted as tuples(namespace, data),or(namespace, mode, data) ifstream_mode is a list,wherenamespace is a tuple with the path to the node where a subgraph is invoked,e.g.("parent_node:<task_id>", "child_node:<task_id>").

SeeLangGraph streaming guide for more details.

False

Yields:

TypeDescription
AsyncIterator[dict[str,Any] |Any]

The output of each step in the graph. The output shape depends on the stream_mode.

invoke

invoke(input:InputT|Command|None,config:RunnableConfig|None=None,*,stream_mode:StreamMode="values",print_mode:StreamMode|Sequence[StreamMode]=(),output_keys:str|Sequence[str]|None=None,interrupt_before:All|Sequence[str]|None=None,interrupt_after:All|Sequence[str]|None=None,**kwargs:Any)->dict[str,Any]|Any

Run the graph with a single input and config.

Parameters:

NameTypeDescriptionDefault
inputInputT |Command | None

The input data for the graph. It can be a dictionary or any other type.

required
configRunnableConfig | None

Optional. The configuration for the graph run.

None
stream_modeStreamMode

Optional[str]. The stream mode for the graph run. Default is "values".

'values'
print_modeStreamMode |Sequence[StreamMode]

Accepts the same values asstream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

()
output_keysstr |Sequence[str] | None

Optional. The output keys to retrieve from the graph run.

None
interrupt_beforeAll |Sequence[str] | None

Optional. The nodes to interrupt the graph run before.

None
interrupt_afterAll |Sequence[str] | None

Optional. The nodes to interrupt the graph run after.

None
**kwargsAny

Additional keyword arguments to pass to the graph run.

{}

Returns:

TypeDescription
dict[str,Any] |Any

The output of the graph run. If stream_mode is "values", it returns the latest output.

dict[str,Any] |Any

If stream_mode is not "values", it returns a list of output chunks.

ainvokeasync

ainvoke(input:InputT|Command|None,config:RunnableConfig|None=None,*,stream_mode:StreamMode="values",print_mode:StreamMode|Sequence[StreamMode]=(),output_keys:str|Sequence[str]|None=None,interrupt_before:All|Sequence[str]|None=None,interrupt_after:All|Sequence[str]|None=None,**kwargs:Any)->dict[str,Any]|Any

Asynchronously invoke the graph on a single input.

Parameters:

NameTypeDescriptionDefault
inputInputT |Command | None

The input data for the computation. It can be a dictionary or any other type.

required
configRunnableConfig | None

Optional. The configuration for the computation.

None
stream_modeStreamMode

Optional. The stream mode for the computation. Default is "values".

'values'
print_modeStreamMode |Sequence[StreamMode]

Accepts the same values asstream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

()
output_keysstr |Sequence[str] | None

Optional. The output keys to include in the result. Default is None.

None
interrupt_beforeAll |Sequence[str] | None

Optional. The nodes to interrupt before. Default is None.

None
interrupt_afterAll |Sequence[str] | None

Optional. The nodes to interrupt after. Default is None.

None
**kwargsAny

Additional keyword arguments.

{}

Returns:

TypeDescription
dict[str,Any] |Any

The result of the computation. If stream_mode is "values", it returns the latest value.

dict[str,Any] |Any

If stream_mode is "chunks", it returns a list of chunks.

get_state

get_state(config:RunnableConfig,*,subgraphs:bool=False)->StateSnapshot

Get the current state of the graph.

aget_stateasync

aget_state(config:RunnableConfig,*,subgraphs:bool=False)->StateSnapshot

Get the current state of the graph.

get_state_history

get_state_history(config:RunnableConfig,*,filter:dict[str,Any]|None=None,before:RunnableConfig|None=None,limit:int|None=None)->Iterator[StateSnapshot]

Get the history of the state of the graph.

aget_state_historyasync

aget_state_history(config:RunnableConfig,*,filter:dict[str,Any]|None=None,before:RunnableConfig|None=None,limit:int|None=None)->AsyncIterator[StateSnapshot]

Asynchronously get the history of the state of the graph.

update_state

update_state(config:RunnableConfig,values:dict[str,Any]|Any|None,as_node:str|None=None,task_id:str|None=None,)->RunnableConfig

Update the state of the graph with the given values, as if they came fromnodeas_node. Ifas_node is not provided, it will be set to the last nodethat updated the state, if not ambiguous.

aupdate_stateasync

aupdate_state(config:RunnableConfig,values:dict[str,Any]|Any,as_node:str|None=None,task_id:str|None=None,)->RunnableConfig

Asynchronously update the state of the graph with the given values, as if they came fromnodeas_node. Ifas_node is not provided, it will be set to the last nodethat updated the state, if not ambiguous.

bulk_update_state

bulk_update_state(config:RunnableConfig,supersteps:Sequence[Sequence[StateUpdate]],)->RunnableConfig

Apply updates to the graph state in bulk. Requires a checkpointer to be set.

Parameters:

NameTypeDescriptionDefault
configRunnableConfig

The config to apply the updates to.

required
superstepsSequence[Sequence[StateUpdate]]

A list of supersteps, each including a list of updates to apply sequentially to a graph state. Each update is a tuple of the form(values, as_node, task_id) where task_id is optional.

required

Raises:

TypeDescription
ValueError

If no checkpointer is set or no updates are provided.

InvalidUpdateError

If an invalid update is provided.

Returns:

NameTypeDescription
RunnableConfigRunnableConfig

The updated config.

abulk_update_stateasync

abulk_update_state(config:RunnableConfig,supersteps:Sequence[Sequence[StateUpdate]],)->RunnableConfig

Asynchronously apply updates to the graph state in bulk. Requires a checkpointer to be set.

Parameters:

NameTypeDescriptionDefault
configRunnableConfig

The config to apply the updates to.

required
superstepsSequence[Sequence[StateUpdate]]

A list of supersteps, each including a list of updates to apply sequentially to a graph state. Each update is a tuple of the form(values, as_node, task_id) where task_id is optional.

required

Raises:

TypeDescription
ValueError

If no checkpointer is set or no updates are provided.

InvalidUpdateError

If an invalid update is provided.

Returns:

NameTypeDescription
RunnableConfigRunnableConfig

The updated config.

get_graph

get_graph(config:RunnableConfig|None=None,*,xray:int|bool=False)->Graph

Return a drawable representation of the computation graph.

aget_graphasync

aget_graph(config:RunnableConfig|None=None,*,xray:int|bool=False)->Graph

Return a drawable representation of the computation graph.

get_subgraphs

get_subgraphs(*,namespace:str|None=None,recurse:bool=False)->Iterator[tuple[str,PregelProtocol]]

Get the subgraphs of the graph.

Parameters:

NameTypeDescriptionDefault
namespacestr | None

The namespace to filter the subgraphs by.

None
recursebool

Whether to recurse into the subgraphs.If False, only the immediate subgraphs will be returned.

False

Returns:

TypeDescription
Iterator[tuple[str,PregelProtocol]]

Iterator[tuple[str, PregelProtocol]]: An iterator of the (namespace, subgraph) pairs.

aget_subgraphsasync

aget_subgraphs(*,namespace:str|None=None,recurse:bool=False)->AsyncIterator[tuple[str,PregelProtocol]]

Get the subgraphs of the graph.

Parameters:

NameTypeDescriptionDefault
namespacestr | None

The namespace to filter the subgraphs by.

None
recursebool

Whether to recurse into the subgraphs.If False, only the immediate subgraphs will be returned.

False

Returns:

TypeDescription
AsyncIterator[tuple[str,PregelProtocol]]

AsyncIterator[tuple[str, PregelProtocol]]: An iterator of the (namespace, subgraph) pairs.

with_config

with_config(config:RunnableConfig|None=None,**kwargs:Any)->Self

Create a copy of the Pregel object with an updated config.

Functions:

NameDescription
add_messages

Merges two lists of messages, updating existing messages by ID.

add_messages

add_messages(left:Messages,right:Messages,*,format:Literal["langchain-openai"]|None=None)->Messages

Merges two lists of messages, updating existing messages by ID.

By default, this ensures the state is "append-only", unless thenew message has the same ID as an existing message.

Parameters:

NameTypeDescriptionDefault
leftMessages

The base list of messages.

required
rightMessages

The list of messages (or single message) to mergeinto the base list.

required
formatLiteral['langchain-openai'] | None

The format to return messages in. If None then messages will bereturned as is. If 'langchain-openai' then messages will be returned asBaseMessage objects with their contents formatted to match OpenAI messageformat, meaning contents can be string, 'text' blocks, or 'image_url' blocksand tool responses are returned as their own ToolMessages.

Requirement

Must havelangchain-core>=0.3.11 installed to use this feature.

None

Returns:

TypeDescription
Messages

A new list of messages with the messages fromright merged intoleft.

Messages

If a message inright has the same ID as a message inleft, the

Messages

message fromright will replace the message fromleft.

Example
Basic usage
fromlangchain_core.messagesimportAIMessage,HumanMessagemsgs1=[HumanMessage(content="Hello",id="1")]msgs2=[AIMessage(content="Hi there!",id="2")]add_messages(msgs1,msgs2)# [HumanMessage(content='Hello', id='1'), AIMessage(content='Hi there!', id='2')]
Overwrite existing message
msgs1=[HumanMessage(content="Hello",id="1")]msgs2=[HumanMessage(content="Hello again",id="1")]add_messages(msgs1,msgs2)# [HumanMessage(content='Hello again', id='1')]
Use in a StateGraph
fromtypingimportAnnotatedfromtyping_extensionsimportTypedDictfromlanggraph.graphimportStateGraphclassState(TypedDict):messages:Annotated[list,add_messages]builder=StateGraph(State)builder.add_node("chatbot",lambdastate:{"messages":[("assistant","Hello")]})builder.set_entry_point("chatbot")builder.set_finish_point("chatbot")graph=builder.compile()graph.invoke({})# {'messages': [AIMessage(content='Hello', id=...)]}
Use OpenAI message format
fromtypingimportAnnotatedfromtyping_extensionsimportTypedDictfromlanggraph.graphimportStateGraph,add_messagesclassState(TypedDict):messages:Annotated[list,add_messages(format='langchain-openai')]defchatbot_node(state:State)->list:return{"messages":[{"role":"user","content":[{"type":"text","text":"Here's an image:","cache_control":{"type":"ephemeral"},},{"type":"image","source":{"type":"base64","media_type":"image/jpeg","data":"1234",},},]},]}builder=StateGraph(State)builder.add_node("chatbot",chatbot_node)builder.set_entry_point("chatbot")builder.set_finish_point("chatbot")graph=builder.compile()graph.invoke({"messages":[]})# {#     'messages': [#         HumanMessage(#             content=[#                 {"type": "text", "text": "Here's an image:"},#                 {#                     "type": "image_url",#                     "image_url": {"url": ""},#                 },#             ],#         ),#     ]# }

[8]ページ先頭

©2009-2025 Movatter.jp