Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Voyage AI Reranker

Voyage AI provides cutting-edge embedding and rerankers.

This reranker uses theVoyageAI API to rerank the search results. You can use this reranker by passingVoyageAIReranker() to thererank() method. Note that you'll either need to set theVOYAGE_API_KEY environment variable or pass theapi_key argument to use this reranker.

Note

Supported Query Types: Hybrid, Vector, FTS

importnumpyimportlancedbfromlancedb.embeddingsimportget_registryfromlancedb.pydanticimportLanceModel,Vectorfromlancedb.rerankersimportVoyageAIRerankerembedder=get_registry().get("sentence-transformers").create()db=lancedb.connect("~/.lancedb")classSchema(LanceModel):text:str=embedder.SourceField()vector:Vector(embedder.ndims())=embedder.VectorField()data=[{"text":"hello world"},{"text":"goodbye world"}]tbl=db.create_table("test",schema=Schema,mode="overwrite")tbl.add(data)reranker=VoyageAIReranker(model_name="rerank-2")# Run vector search with a rerankerresult=tbl.search("hello").rerank(reranker=reranker).to_list()# Run FTS search with a rerankerresult=tbl.search("hello",query_type="fts").rerank(reranker=reranker).to_list()# Run hybrid search with a rerankertbl.create_fts_index("text",replace=True)result=tbl.search("hello",query_type="hybrid").rerank(reranker=reranker).to_list()

Accepted Arguments

ArgumentTypeDefaultDescription
model_namestrNoneThe name of the reranker model to use. Available models are: rerank-2, rerank-2-lite
columnstr"text"The name of the column to use as input to the cross encoder model.
top_nstrNoneThe number of results to return. If None, will return all results.
api_keystrNoneThe API key for the Voyage AI API. If not provided, theVOYAGE_API_KEY environment variable is used.
return_scorestr"relevance"Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type
truncationboolNoneWhether to truncate the input to satisfy the "context length limit" on the query and the documents.

Supported Scores for each query type

You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:

Hybrid Search

return_scoreStatusDescription
relevance✅ SupportedReturns only have the_relevance_score column
all❌ Not SupportedReturns have vector(_distance) and FTS(score) along with Hybrid Search score(_relevance_score)

Vector Search

return_scoreStatusDescription
relevance✅ SupportedReturns only have the_relevance_score column
all✅ SupportedReturns have vector(_distance) along with Hybrid Search score(_relevance_score)

FTS Search

return_scoreStatusDescription
relevance✅ SupportedReturns only have the_relevance_score column
all✅ SupportedReturns have FTS(score) along with Hybrid Search score(_relevance_score)

[8]ページ先頭

©2009-2025 Movatter.jp