Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Linear Combination Reranker

Note

This is deprecated. It is recommended to use theRRFReranker instead, if you want to use a score-based reranker.

The Linear Combination Reranker combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified, and defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.

Note

Supported Query Types: Hybrid

importnumpyimportlancedbfromlancedb.embeddingsimportget_registryfromlancedb.pydanticimportLanceModel,Vectorfromlancedb.rerankersimportLinearCombinationRerankerembedder=get_registry().get("sentence-transformers").create()db=lancedb.connect("~/.lancedb")classSchema(LanceModel):text:str=embedder.SourceField()vector:Vector(embedder.ndims())=embedder.VectorField()data=[{"text":"hello world"},{"text":"goodbye world"}]tbl=db.create_table("test",schema=Schema,mode="overwrite")tbl.add(data)reranker=LinearCombinationReranker()# Run hybrid search with a rerankertbl.create_fts_index("text",replace=True)result=tbl.search("hello",query_type="hybrid").rerank(reranker=reranker).to_list()

Accepted Arguments

ArgumentTypeDefaultDescription
weightfloat0.7The weight to use for the semantic search score. The weight for the full-text search score is1 - weights.
return_scorestr"relevance"Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.

Supported Scores for each query type

You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:

Hybrid Search

return_scoreStatusDescription
relevance✅ SupportedResults only have the_relevance_score column
all✅ SupportedResults have vector(_distance) and FTS(score) along with Hybrid Search score(_distance)

[8]ページ先頭

©2009-2025 Movatter.jp