Movatterモバイル変換


[0]ホーム

URL:


Page Header

About The Authors

Jakub Matusiak
ORCID iDDepartment of Radiochemistry and Colloid Chemistry, Faculty of Chemistry, MCS University (UMCS)
Poland

Jakub Matusiakwas born in 1991, Jarosław Poland.  Graduated from Maria Curie-Skłodowska University in Lublin in 2015 receiving an M. Sc. in Chemistry. Since 2015 on Ph. D. studies in Department of Radiochemistry and Colloid Chemistry, MSCU. His research area concerns the stabilization of oxide suspensions by the addition of polysaccharides and surfactants as well as the adsorption of such substances on the solid surface.

Elżbieta Grządka
Department of Radiochemistry and Colloid Chemistry, Faculty of Chemistry, MCS University (UMCS)
Poland

Elżbieta Grządka studied chemistry at Maria Curie-Sklodowska University in Lublin and was graduated in 2002 receiving M.Sc. She received Ph.D. in 2006. In 2007 she was employed at the Department of Radiochemistry and Colloid Chemistry, Faculty of Chemistry. In 2016 she achieved postdoctoral degree. Currently she is employed as the assistant professor and the head of the Department of the Radiochemistry and Colloid Chemistry.

User
Related Items
Article Tools
Email this article(Login required)
Email the author(Login required)
Journal Content

Browse
KeywordsAntimicrobial activitiesCMK-3EDTA, chelates, metal recoveryIR and NMR spectraSBA-15UVadsorbentsadsorptionbatteriescapacitorscatalystschitosancontact anglecontrolled drug releaseligninreceding contact angle, equilibrium contact angle, Tadmor’s contact angle, CAH, surface free energyskin substitutessolubility, drug delivery systems, bioavailabilitysurfactanttitanium dioxide,zeta potential
Font Size

Home >Vol 72, No 1 (2017) >Matusiak

Stability of colloidal systems - a review of the stability measurements methods

Jakub Matusiak, Elżbieta Grządka

Abstract


The stability of colloidal systems is very important in numerous already existing and new formulations. In most cases if such systems are not characterized by an appropriate stability they can not find any useful applications. The opposite process to the stabilization is the flocculation. Generally, it is undesirable. However, in a few cases the flocculation is very useful, for example in  the wastewater treatment. That is why the methods used to determine stabilizing-flocculating properties of the colloidal systems are of significant importance.

The paper describes types of stability and flocculation as well as the factors influencing those processes, e.g. the addition of polymers or surfactants. The methods presented in this paper are UV-VIS spectrophotometry,  turbidimetry, zeta potential and density measurements.


Keywords


stability; colloids; zeta potential; turbidimetry; spectroscopy

Full Text:

PDF

References


E. Dickinson, „Colloids in Food: Ingredients, Structure, and Stability”, Annual Review of Food Science and Technology, Vol. 6, p. 211-233, 2015.

P. Somasundran, B. Markovic, S. Krishnakumar, X. Yu, „Handbook of surface and colloid chemistry”, CRC Press, , p. 127–192, Boca Raton, 1997.

V. Uskoković, Journal of Dispersion Science and Technology, 33, 1762-1786, (2012).

E. Grządka, Colloid and Polymer Science, 293, 2845–2853, (2015).

D.H. Napper, Polymeric stabilization of colloidal dispersions, Academic Press, London, 1983.

P. Somasundaran, „Encyclopedia of surface and colloid science”, Taylor & Francis, New York, 2006.

E. Grządka, Cellulose, 18, 291–308, (2011).

E. Grządka, Cellulose, 21, 1641–1654, (2014).

M. Wiśniewska, K. Terpiłowski, S. Chibowski, T. Urban, V. Zarko, V.M. Gun’ko, Central Europen Journal of Chemistry, 11, 101–110, (2013).

M. Wiśniewska, S. Chibowski, T. Urban, Reactive and Functional Polymers, 72, 791–798, (2012).

M. Wiśniewska, S. Chibowski, T. Urban, Thin Solid Films, 520, 6158–6164, (2012).

M. Wiśniewska, S. Chibowski, T. Urban, Adsorption, 16, 321–332, (2010).

P. Somasundaran, X. Yu, S. Krishnakumar, Colloids and Surfaces, 133, 125–133, (1998).

B.V. Derajaguin, L.D. Landau, Acta Physicochimica, 14, 633–662, (1941).

E.J.W. Verwey, J.Th.G. Overbeek, „Theory of stability of lyophobic colloids”, Elsevier, Amsterdam, 1948.

J.L. Ortega-Vinuesa , A. Martin-Rodrigues, R. Hidalgo-Alvarez, Journal of Colloid and Interface Science, 184, 259-267, (1996).

E. Grządka, Journal of Surfactants and Detergents, 18, 445–453, (2015).

T. Sato, R. Ruch, „Stabilization Of Colloidal Dispersion By Polymer Adsorption”, Marcel Dekker Inc., New York, 1980.

A.M. Sung, I. Piirma, Langmuir, 10, 1393-1398, (1994).

R. Evnas, D.H. Napper (1973) Kolloid-Zeitschrift und Zeitschrift für Polymere, 251, 409-414, (1973).

A.N. Semenov, A.A. Shvets, Soft Matter, 11, 8863-8878, (2015).

TurbiscanLAB Expert brochure.

I. Nurdin, MATEC Web of Conferences, 39, (2016).

I.M. Tucker, J.C.W. Corbett, J. Fatkin, R.O. Jack, M. Kaszuba, B. MacCreath, F. McNeil-Watson, Current Opinion in Colloid & Interface Science, 20, 215–226, (2015).

M. Pawlik, J.S. Laskowski, A. Ansari, Journal of Colloid and Interface Science, 260, 251-258, (2003).




DOI:http://dx.doi.org/10.17951/aa.2017.72.1.33
Date of publication: 2017-12-08 10:35:22
Date of submission: 2017-03-06 14:39:35


Statistics


Total abstract view - 12613
Downloads (from 2020-06-17) - PDF - 4884

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jakub Matusiak, Elżbieta Grządka

[8]ページ先頭

©2009-2025 Movatter.jp