jax.numpy.vstack
Contents
jax.numpy.vstack#
- jax.numpy.vstack(tup,dtype=None)[source]#
Vertically stack arrays.
JAX implementation of
numpy.vstack().For arrays of two or more dimensions, this is equivalent to
jax.numpy.concatenate()withaxis=0.- Parameters:
tup (np.ndarray |Array |Sequence[ArrayLike]) – a sequence of arrays to stack; each must have the same shape along allbut the first axis. If a single array is given it will be treatedequivalently totup = unstack(tup), but the implementation will avoidexplicit unstacking.
dtype (DTypeLike |None) – optional dtype of the resulting array. If not specified, the dtypewill be determined via type promotion rules described inType promotion semantics.
- Returns:
the stacked result.
- Return type:
See also
jax.numpy.stack(): stack along arbitrary axesjax.numpy.concatenate(): concatenation along existing axes.jax.numpy.hstack(): stack horizontally, i.e. along axis 1.jax.numpy.dstack(): stack depth-wise, i.e. along axis 2.
Examples
Scalar values:
>>>jnp.vstack([1,2,3])Array([[1], [2], [3]], dtype=int32, weak_type=True)
1D arrays:
>>>x=jnp.arange(4)>>>y=jnp.ones(4)>>>jnp.vstack([x,y])Array([[0., 1., 2., 3.], [1., 1., 1., 1.]], dtype=float32)
2D arrays:
>>>x=x.reshape(1,4)>>>y=y.reshape(1,4)>>>jnp.vstack([x,y])Array([[0., 1., 2., 3.], [1., 1., 1., 1.]], dtype=float32)
