jax.numpy.setdiff1d
Contents
jax.numpy.setdiff1d#
- jax.numpy.setdiff1d(ar1,ar2,assume_unique=False,*,size=None,fill_value=None)[source]#
Compute the set difference of two 1D arrays.
JAX implementation of
numpy.setdiff1d().Because the size of the output of
setdiff1dis data-dependent, the functionis not typically compatible withjit()and other JAX transformations.The JAX version adds the optionalsizeargument which must be specified staticallyforjnp.setdiff1dto be used in such contexts.- Parameters:
ar1 (ArrayLike) – first array of elements to be differenced.
ar2 (ArrayLike) – second array of elements to be differenced.
assume_unique (bool) – if True, assume the input arrays contain unique values. This allowsa more efficient implementation, but if
assume_uniqueis True and the inputarrays contain duplicates, the behavior is undefined. default: False.size (int |None) – if specified, return only the first
sizesorted elements. If there are fewerelements thansizeindicates, the return value will be padded withfill_value.fill_value (ArrayLike |None) – when
sizeis specified and there are fewer than the indicated number ofelements, fill the remaining entriesfill_value. Defaults to the minimum value.
- Returns:
i.e. the elementsin
ar1that are not contained inar2.- Return type:
an array containing the set difference of elements in the input array
See also
jax.numpy.intersect1d(): the set intersection of two 1D arrays.jax.numpy.setxor1d(): the set XOR of two 1D arrays.jax.numpy.union1d(): the set union of two 1D arrays.
Examples
Computing the set difference of two arrays:
>>>ar1=jnp.array([1,2,3,4])>>>ar2=jnp.array([3,4,5,6])>>>jnp.setdiff1d(ar1,ar2)Array([1, 2], dtype=int32)
Because the output shape is dynamic, this will fail under
jit()and othertransformations:>>>jax.jit(jnp.setdiff1d)(ar1,ar2)Traceback (most recent call last):...ConcretizationTypeError:Abstract tracer value encountered where concrete value is expected: traced array with shape int32[4].The error occurred while tracing the function setdiff1d at /Users/vanderplas/github/jax-ml/jax/jax/_src/numpy/setops.py:64 for jit. This concrete value was not available in Python because it depends on the value of the argument ar1.
In order to ensure statically-known output shapes, you can pass a static
sizeargument:>>>jit_setdiff1d=jax.jit(jnp.setdiff1d,static_argnames=['size'])>>>jit_setdiff1d(ar1,ar2,size=2)Array([1, 2], dtype=int32)
If
sizeis too small, the difference is truncated:>>>jit_setdiff1d(ar1,ar2,size=1)Array([1], dtype=int32)
If
sizeis too large, then the output is padded withfill_value:>>>jit_setdiff1d(ar1,ar2,size=4,fill_value=0)Array([1, 2, 0, 0], dtype=int32)
