jax.numpy.polyint
Contents
jax.numpy.polyint#
- jax.numpy.polyint(p,m=1,k=None)[source]#
Returns the coefficients of the integration of specified order of a polynomial.
JAX implementation of
numpy.polyint().- Parameters:
- Returns:
An array of coefficients of integrated polynomial.
- Return type:
See also
jax.numpy.polyder(): Computes the coefficients of the derivative ofa polynomial.jax.numpy.polyval(): Evaluates a polynomial at specific values.
Examples
The first order integration of the polynomial\(12 x^2 + 12 x + 6\) is\(4 x^3 + 6 x^2 + 6 x\).
>>>p=jnp.array([12,12,6])>>>jnp.polyint(p)Array([4., 6., 6., 0.], dtype=float32)
Since the constant
kis not provided, the result included0at the end.If the constantkis provided:>>>jnp.polyint(p,k=4)Array([4., 6., 6., 4.], dtype=float32)
and the second order integration is\(x^4 + 2 x^3 + 3 x\):
>>>jnp.polyint(p,m=2)Array([1., 2., 3., 0., 0.], dtype=float32)
When
m>=2, the constantskshould be provided as an array havingmelements. The second order integration of the polynomial\(12 x^2 + 12 x + 6\) with the constantsk=[4,5]is\(x^4 + 2 x^3 + 3 x^2 + 4 x + 5\):>>>jnp.polyint(p,m=2,k=jnp.array([4,5]))Array([1., 2., 3., 4., 5.], dtype=float32)
