jax.numpy.max
Contents
jax.numpy.max#
- jax.numpy.max(a,axis=None,out=None,keepdims=False,initial=None,where=None)[source]#
Return the maximum of the array elements along a given axis.
JAX implementation of
numpy.max().- Parameters:
a (ArrayLike) – Input array.
axis (Axis) – int or array, default=None. Axis along which the maximum to be computed.If None, the maximum is computed along all the axes.
keepdims (bool) – bool, default=False. If true, reduced axes are left in the resultwith size 1.
initial (ArrayLike |None) – int or array, default=None. Initial value for the maximum.
where (ArrayLike |None) – int or array of boolean dtype, default=None. The elements to be usedin the maximum. Array should be broadcast compatible to the input.
initialmust be specified whenwhereis used.out (None) – Unused by JAX.
- Returns:
An array of maximum values along the given axis.
- Return type:
See also
jax.numpy.min(): Compute the minimum of array elements along a givenaxis.jax.numpy.sum(): Compute the sum of array elements along a given axis.jax.numpy.prod(): Compute the product of array elements along a givenaxis.
Examples
By default,
jnp.maxcomputes the maximum of elements along all the axes.>>>x=jnp.array([[9,3,4,5],...[5,2,7,4],...[8,1,3,6]])>>>jnp.max(x)Array(9, dtype=int32)
If
axis=1, the maximum will be computed along axis 1.>>>jnp.max(x,axis=1)Array([9, 7, 8], dtype=int32)
If
keepdims=True,ndimof the output will be same of that of the input.>>>jnp.max(x,axis=1,keepdims=True)Array([[9], [7], [8]], dtype=int32)
To include only specific elements in computing the maximum, you can use
where. It can either have same dimension as input>>>where=jnp.array([[0,0,1,0],...[0,0,1,1],...[1,1,1,0]],dtype=bool)>>>jnp.max(x,axis=1,keepdims=True,initial=0,where=where)Array([[4], [7], [8]], dtype=int32)
or must be broadcast compatible with input.
>>>where=jnp.array([[False],...[False],...[False]])>>>jnp.max(x,axis=0,keepdims=True,initial=0,where=where)Array([[0, 0, 0, 0]], dtype=int32)
