^abcStarrett, David A. (1972). “Fundamental nonconvexities in the theory of externalities”. Journal of Economic Theory4 (2): 180–199. doi:10.1016/0022-0531(72)90148-2. MR449575.
^abcPages 106, 110–137, 172, and 248:Baumol, William J.; Oates, Wallace E.; with contributions by V. S. Bawa and David F. Bradford (1988). “8 Detrimental externalities and nonconvexities in the production set”. The Theory of environmental policy (Second ed.). Cambridge: Cambridge University Press. ISBN978-0-521-31112-0
^abMordukhovich, Boris S. (2006). “Chapter 8 Applications to economics”. Variational analysis and generalized differentiation II: Applications. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 331. Springer. especially Section 8.5.3 "Enter nonconvexity" (and the remainder of the chapter), particularly page 495. ISBN978-3-540-25438-6. MR2191745
^Pages 231 and 239 (Figure 10 a–b: Illustration of lemma 5 [page 240]):Wold, Herman (1943b年). “A synthesis of pure demand analysis II”. Skandinavisk Aktuarietidskrift [Scandinavian Actuarial Journal]26: pp. 220–263
Exercise 45, page 146:Wold, Herman; Juréen, Lars (in association with Wold) (1953). “8 Some further applications of preference fields (pp. 129–148)”. Demand analysis: A study in econometrics. Wiley publications in statistics. New York: John Wiley and Sons, Inc. Stockholm: Almqvist and Wiksell. MR64385
^Farrell, M. J. (August 1959). “The Convexity assumption in the theory of competitive markets”. The Journal of Political Economy67 (4): 371–391. doi:10.1086/258197. JSTOR1825163.Farrell, M. J. (October 1961a). “On Convexity, efficiency, and markets: A Reply”. Journal of Political Economy69 (5): 484–489. doi:10.1086/258541. JSTOR1828538.Farrell, M. J. (October 1961b). “The Convexity assumption in the theory of competitive markets: Rejoinder”. Journal of Political Economy69 (5): 493. doi:10.1086/258544. JSTOR1828541.
^Bator, Francis M. (October 1961a). “On convexity, efficiency, and markets”. The Journal of Political Economy69 (5): 480–483. doi:10.1086/258540. JSTOR1828537.Bator, Francis M. (October 1961b). “On convexity, efficiency, and markets: Rejoinder”. Journal of Political Economy69 (5): 489. doi:10.1086/258542. JSTOR1828539.
^Rothenberg (1960, p. 447):Rothenberg, Jerome (October 1960). “Non-convexity, aggregation, and Pareto optimality”. The Journal of Political Economy68 (5): 435–468. doi:10.1086/258363. JSTOR1830308. (Rothenberg, Jerome (October 1961). “Comments on non-convexity”. Journal of Political Economy69 (5): 490–492. doi:10.1086/258543. JSTOR1828540.)
^Pages 52–55 with applications on pages 145–146, 152–153, and 274–275:Mas-Colell, Andreu (1985). “1.L Averages of sets”. The Theory of General Economic Equilibrium: ADifferentiable Approach. Econometric Society Monographs. Cambridge University Press. ISBN0-521-26514-2. MR1113262
^Theorem C(6) on page 37 and applications on pages 115–116, 122, and 168:Hildenbrand, Werner (1974). Core and equilibria of a large economy. Princeton studies in mathematical economics. Princeton, NJ: Princeton University Press. ISBN978-0-691-04189-6. MR389160
^Page 169 in the first edition:Starr, Ross M. (2011). “8 Convex sets, separation theorems, and non-convex sets in RN”. General equilibrium theory: An introduction (Second ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174749. ISBN978-0-521-53386-7. MR1462618
^Theorem 1.6.5 on pages 24–25:Ichiishi, Tatsuro (1983). Game theory for economic analysis. Economic theory, econometrics, and mathematical economics. New York: Academic Press, Inc.. ISBN0-12-370180-5. MR700688
^Cassels, J. W. S. (1981). “Appendix A Convex sets”. Economics for mathematicians. London Mathematical Society lecture note series. 62. Cambridge, New York: Cambridge University Press. pp. 33–34 and 127. ISBN0-521-28614-X. MR657578
^Pages 93–94 (especially example 1.92), 143, 318–319, 375–377, and 416:Carter, Michael (2001). Foundations of mathematical economics. Cambridge, MA: MIT Press. ISBN0-262-53192-5. MR1865841
Pages 47–48:Florenzano, Monique; Le Van, Cuong (2001). Finite dimensional convexity and optimization. Studies in economic theory. 13. in cooperation with Pascal Gourdel. Berlin: Springer-Verlag. doi:10.1007/978-3-642-56522-9. ISBN3-540-41516-5. MR1878374
^Troutman, John L. (1996). With the assistance of William Hrusa. ed. Variational calculus and optimal control: Optimization with elementary convexity. Undergraduate Texts in Mathematics (Second ed.). New York: Springer-Verlag. doi:10.1007/978-1-4612-0737-5. ISBN0-387-94511-3. MR1363262
^Rockafellar, R. Tyrrell; Wets, Roger J-B (1998). Variational analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 317. Berlin: Springer-Verlag. doi:10.1007/978-3-642-02431-3. ISBN3-540-62772-3. MR1491362
Green, Jerry; Heller, Walter P. (1981). “1 Mathematical analysis and convexity with applications to economics”. In Arrow, Kenneth Joseph; Intriligator, Michael D.. Handbook of mathematical economics, Volume I. Handbooks in economics. 1. Amsterdam: North-Holland Publishing Co.. pp. 15–52. doi:10.1016/S1573-4382(81)01005-9. ISBN0-444-86126-2. MR634800