人工知能 (じんこうちのう、英 :artificial intelligence )、AI (エーアイ)は、「『計算 (computation )』という概念と『コンピュータ (computer )』という道具を用いて『知能』を研究する計算機科学 (computer science )の一分野」を指す語[ 1] [ 注釈 1] 。「言語の理解や推論、問題解決などの知的行動を人間に代わってコンピュータに行わせる技術」[ 2] 、または、「計算機(コンピュータ)による知的な情報処理システム の設計や実現に関する研究分野」ともされる[ 3] 。命名者はジョン・マッカーシー [ 4] 。『日本大百科全書 (ニッポニカ)』で情報工学 者の佐藤理史は次のように説明した[ 1] 。
「 誤解を恐れず平易にいいかえるならば、「これまで人間にしかできなかった知的な行為(認識、推論、言語運用、創造など)を、どのような手順(アルゴリズム )とどのようなデータ (事前情報や知識)を準備すれば、それを機械的に実行できるか」を研究する分野である[ 1] 。 」
AIの研究開発は「人工知能学」とも呼ばれる[ 5] [ 6] [ 7] [ 8] 。AIに関する大学での研究や教育は「電気工学・コンピュータ科学 部 人工知能・意思決定論科」[ 9] 、情報工学科 [ 10] [ 11] [ 12] や情報理工学科 コンピュータ科学専攻などで行われている[ 10] [ 13] [ 注釈 2] 。1200の大学で使用された事例があるコンピュータ科学の教科書『エージェントアプローチ人工知能』[ 16] の、2022年版の最終章最終節「結論」では、SF 作家らは筋書きを面白くするためにディストピア 的未来を好む傾向があるとされている[ 17] 。しかし今までのAIや他の革命 的な科学技術 (出版・配管・航空旅行・電話システム)について言えば、これらの科学技術は全て好影響を与えてきた と同教科書では掲載されている[ 17] 。
出典 定義・解説 日本語辞典『広辞苑 』 推論・判断などの知的な機能を備えたコンピュータ・システム [ 18] 百科事典『ブリタニカ百科事典 』 科学技術 > コンピュータ … 人工知能(AI)。一般的に知的存在に関連している課題をデジタルコンピュータやコンピュータ制御のロボットが実行する能力 〔アビリティ〕 [ 19] 人工知能学会 記事「教養知識としてのAI」『人工知能とは何か』という問いに対する答えは,単純ではない.人工知能の専門家の間でも,大きな議論があり,それだけで1 冊の本となってしまうほど,見解の異なるものである.そのような中で,共通する部分を引き出して,一言でまとめると,『人間と同じ知的作業をする機械を工学 的に実現する技術 』といえるだろう [ 20] 学術論文 「深層学習と人工知能」人工知能は,人間の知能の仕組みを構成論 的に解き明かそうとする学問 分野である [ 21] 学術論文「人工知能社会のあるべき姿を求めて」 人工知能をはじめとする情報技術はあくまでツール [ 22]
人間の知的能力をコンピュータ上で実現する、様々な技術・ソフトウェア 群・コンピュータシステム 、アルゴリズム とも言われる(知的エージェント も参照)[ 23] 。人工知能の例は、
等がある[ 23] [ 注釈 3] 。
ある種の観点では、人工知能の70年以上の歴史とは、概念が入れ子状に派生してきた過程である[ 26] 。
1950年代から始まった初期の人工知能は、人間がルールを与える「探索と推論 」(第1次ブーム)と「知識 表現」(第2次ブーム)が中心だったが限界に至り[ 27] [ 28] 、1980年代にはデータから学ぶ「機械学習 」へ移行[ 26] [ 28] 。2010年代にはその発展形である「ディープラーニング (深層学習)」が画像認識 や囲碁で人間を凌駕し[ 26] [ 29] 、第3次ブームが生じた[ 30] 。2020年代以降は、文章や画像を自ら創り出す「生成AI 」が社会に普及し[ 31] [ 24] [ 32] [ 33] 、これは第4次ブームとも呼ばれ得る[ 34] 。汎用人工知能 (AGI)の実現を目指す研究・開発も行われている[ 26] 。
Googleは2011年以降、AIの基礎研究を行う「Google Brain」と呼ばれる専門組織を社内に立ち上げ、彼らが主導する形でカナダで創業したDNN Researchを買収したり、英国DeepMindを買収するなど国際人材獲得に熱い投資を開始している。2015年には「TensorFlow 」といった機械学習ライブラリをオープンソースで公開。[ 35] GPUやクラウド上も含め人工神経回路網の重み学習工程を計算グラフとして処理できるようにした。翻訳や検索、音声認識、写真分類といったアプリケーション構築にTensorFlowが使用された。 [要出典 ]
Google はアレン脳科学研究所と連携し脳スキャンによって生まれた大量のデータを処理するためのソフトウェアを開発している。2016年の時点で、Googleが管理しているBrainmapのデータ量は1ゼタバイト に達する[ 36] [ 37] 。Googleは、ドイツのマックスプランク研究所と共同研究を始め、脳の電子顕微鏡写真から神経回路の再構成を研究している[ 38] 。脳の仕組みをAIに取り入れる方向性から、取り入れず工学的な発展アプローチまで幅広く基礎研究を進めている大企業である。また基礎だけでなく応用実装(バイオから核物理まで)も幅広い。 [要出典 ]
マイクロソフトは「AI for Good Lab」(善きAI研究所)を設置し、eラーニングサービス「DeepLearning.AI」と提携している[ 39] 。
中国は2016年の第13次5か年計画 からAIを国家プロジェクトに位置づけ[ 40] 、脳研究プロジェクトとして中国脳計画 (英語版 ) も立ち上げ[ 41] 、官民一体でAIの研究開発を推進している[ 42] 。中国の教育機関では18歳以下の天才児を集めて公然とAI兵器の開発に投じられてもいる[ 43] 。マサチューセッツ工科大学 (MIT) のエリック・ブリニョルフソン (英語版 ) 教授や情報技術イノベーション財団 (英語版 ) などによれば、中国ではプライバシー 意識の強い欧米と比較してAIの研究や新技術の実験をしやすい環境にあるとされている[ 44] [ 45] [ 46] 。日本でスーパーコンピュータ の研究開発を推進している齊藤元章もAIの開発において中国がリードする可能性を主張している[ 47] 。世界のディープラーニング用計算機の4分の3は中国が占めてるとされる[ 48] 。米国政府によれば、2013年からディープラーニングに関する論文数では中国が米国を超えて世界一となっている[ 49] 。FRVT (英語版 ) やImageNet などAIの世界的な大会でも中国勢が上位を独占している[ 50] [ 51] 。大手AI企業Google、マイクロソフト 、Apple などの幹部でもあった台湾系アメリカ人 科学者の李開復 は中国がAIで覇権を握りつつあるとする『AI超大国:中国、シリコンバレーと新世界秩序 (英語版 ) 』を著してアメリカの政界やメディアなどが取り上げ[ 52] [ 53] 、新冷戦 の延長として米中のAI技術競争は人工知能冷戦 (英語版 ) とも呼ばれた[ 54] 。
フランス大統領エマニュエル・マクロン はAI分野の開発支援に向け5年で15億ドルを支出すると宣言し[ 55] 、AI研究所をパリに開き、フェイスブック、グーグル、サムスン、DeepMind、富士通 などを招致した。イギリスともAI研究における長期的な連携も決定されている。EU全体としても、「Horizon 2020」計画を通じて、215億ユーロが投じられる方向。韓国は、20億ドルを2022年までに投資をする。6つのAI機関を設立し褒賞制度も作られた。目標は2022年までにAIの世界トップ4[ 56] 。
日経新聞調べによると、国別のAI研究論文数は1位米国、2位中国、3位インド、日本は7位だった[ 57] 。東京大学 をはじめ工科大学、その他NTTデータ や富士通といった民間企業がAIの技術開発を進めてきた。ニューラルネットの基礎研究ではかつて先陣を切っていたものの、その後の米国による深層学習再興には乗り遅れたという指摘がある。
ソフトバンクグループ(SBG) 2025年1月、ソフトバンクグループ (SBG)の孫正義 は、アメリカのOpenAI と共同会社「スターゲート」を設立し孫がその会長に就任し、当初1千億ドル(約 15.5兆円)を投資し、アメリカのテキサス州にAI開発に使うデーターセンターの建設を予定と発表した。その後に他地域にも展開し、4年間で投資額を最大で5千億ドル(77.8兆円)に増やす見込みという[ 58] 。2025年2月、ソフトバンクグループとOpenAIは、企業向けAIのクリスタル・インテリジェンス(Cristal intelligence)の開発・販売に関するパートナーシップおよび、世界にさきがけ日本国内で提供してゆくことを発表した[ 59] 。
人工知能が突如として爆発的に成長する中、人間のために役立つ人工知能という考え方もこれまで以上に重要になっている[ 60] 。 機械学習 や深層学習 は、特化型AI(Artificial Narrow Intelligence:ANI)として自然科学や工学の領域で活用されている。以下に列挙するのは高度な事例 である。 [要出典 ]
タンパク質の折り畳み の高精度予測[ 61] 自然言語処理によるRNAコドン配列 の解析[ 62] 気象物理過程式のパラメータ逆推定および気象モデル の最適統合[ 63] プレート境界の摩擦パラメータ推定、すべり量、発生サイクルを学習させることによる地震発生時期の予測[ 64] iPS細胞の生死などの状態、分化と未分化、がん化などの非標識判別[ 65] 膨大な論文・公開特許から化合物の物性値や製法を抽出し知識ベース 化できる化学検索エンジン[ 66] 薬剤 、分子探索、活性化合物構造の自動提案[ 67] 宇宙の大規模構造 の偏りをもたらした初期の物理パラメータを推定、宇宙全体の3Dシミュレーション の効率 化[ 68] 画像分類CNNを使用したマウス脳神経の自動分類、回路自動マッピング[ 69] GAN と回帰モデル による複雑材料系(充填剤や添加剤)の特性予測[ 70] CAD設計手法の一つであるトポロジー 最適化における、制約条件と解析結果の因果関係の抽出[ 71] 第一原理計算 (DFT計算 )よりも10万倍以上高速な、55元素の任意の組み合わせの原子構造 を高い精度で再現できる原子シミュレーター を用いた材料探索[ 72] 流体力学の方程式 を使わない、流体シミュレーション[ 73] 医療診断 用 視覚言語モデル[ 74] ロボットの動作生成[ 75] 科学的再現性の危機の解決、つまり科学論文に意図的に嘘、再現実験をしても再現しないことが書かれている場合 にそれを見抜くための、論文の正確性と透明性の分析[ 76] コーディング (プログラミング )の自動化[ 77] 医療現場ではAIが多く活用されており、最も早く導入されたのは画像診断と言われている。レントゲンやMRI画像の異常部分を検知することで、病気の見逃し発見と早期発見に役立っている。また、AIがカルテの記載内容や患者の問診結果などを解析できるよう、自然言語処理技術の発展も進んでいる。今後はゲノム解析による疾病診断、レセプトの自動作成、新薬の開発などが行えるよう期待されている[ 78] 。
また、症例が少ない希少疾患の場合、患者の個人情報の保護が重要になるため、データを暗号化した状態で統計解析を行う秘密計算技術にAIを活用して、データの前処理、学習、推論を行えることを目指す研究が行われている[ 79] 。
計算神経科学や人工知能の産物である、ChatGPTと同様の大規模言語モデル は、逆に今、脳神経科学研究の理解に寄与している[ 80] [ 81] 。
AIを搭載した収穫ロボットを導入することで、重労働である農作業 の負担を減らしたり、病害虫が発生している個所をAIでピンポイントで見つけだして、農薬散布量を必要最小限に抑えたりすることが可能になる。AIで事前に収穫量を正確に予測できれば、出荷量の調整にも役立つ[ 82] 。
Googleは農作物のスキャニングと成長記録を行う農業AIロボット「Don Roverto」を開発。苗ひとつひとつの個体識別を行い、各苗の成長記録をとり実験を繰り返すことで学習し、苗をひと眼見るだけで厳しい環境下でも耐えられる気候変動に強い種を瞬時に見つけ出せる[ 83] 。
世界的な関心や社会貢献の観点からも、人工知能は国連が推進する持続可能な開発目標 (SDGs) の達成に貢献する[ 84] 。
2022年秋に大規模言語モデル による生成AI のChatGPT が公開されて以来、人と会話して人を援助することが可能になった。生成AIは人間を模倣しようとするが、質の高い返答を生成させるには、質問する側の人間があらかじめ言葉で詳細な指示をすることが必要であり、その指示を作文する技術がプロンプトエンジニアリング であり、生成AIが人間の期待どおりに機能するよう入力テキストを作文する技術であり、そこには創造性と試行錯誤することも含まれる[ 85] 。
2023年10月、『ネイチャー』誌で、ウィキペディアの信頼性が人工知能によってついに向上する可能性が示された[ 86] [ 87] 。
児童のサポート 子ども のネット上の安全に人工知能を入れることは、国連や欧州連合で継続的に注目されている[ 88] [ 89] 。
2歳児の失読症 の診断 など、子どもの発達にも寄与している[ 90] 。
米国アルファベット 社傘下のウェイモ は、2021年からカリフォルニア州サンフランシスコで24時間365日営業の自動運転タクシーを運行しており[ 91] 、同じくカリフォルニア州で2023年4月には一般向け自動運転シャトルバスのプロジェクトの運行をすでに開始していた[ 92] 。2019年は60社近くの開発企業が自動運転車の試験許可を保有していた状態だったが、ウェイモなど数社の企業が巨額の資金調達 に成功して他社を突き放しその上で実験段階も完了したことで、2024年にはすでに実験走行は激減し、すでに自動運転車開発・運用企業の統合や分別の時代に入っている[ 93] 。日本は遅れぎみだが、2023年4月に自動車のレベル4の自動運転(一定条件下で完全に自動化した公道での走行)が一部で解禁され、福井県永平寺町 では実証実験に成功した。[ 94] 。
2023年現在、人工知能を用いたサービスが日常生活に浸透してきている。PCやスマートフォンの画像認識による生体認証や音声認識によるアシスタント機能はすでに普通のサービスとなっている。AIスピーカー も普及してきている。人工知能は、台風被害の予測、地震被災者の支援、健康のための大気汚染の把握などにも応用されている[ 39] 。しかし導入された単純なAIアルゴリズムは後にAIと呼ばれなくなる傾向がある。これを”AI効果”と呼ぶこともある。 [要出典 ]
音楽分野は、既存の曲を学習することで、特定の作曲家の作風を真似て作曲する自動作曲 ソフトが登場している。リズムゲーム に使われるタッチ位置を示した譜面を楽曲から自動生成するなど分野に特化したシステムも開発されている[ 95] 。特定の音声を学習させて、声優 の仕事を代替したり[ 96] 、特定のキャラクターや歌手などの声で歌わせたりなどが行われており、規制やルール作りなどの必要性が議論されている[ 97] [ 98] [ 99] 。前述した音声学習を用いて1つのトラックから特定の楽器や歌声を取り出す「デミックス」と呼ばれる技術も登場し[ 100] 、ビーチ・ボーイズ やビートルズ などはこれを活用してトラック数の少ない時代の楽曲をリミックス して新たなステレオ・ミックスを作成したり[ 101] [ 102] 、セッション・テープが破棄されたりマルチ・テープの音源に欠落がありモノラルしか存在しなかった楽曲のステレオ化をするなどしている。2023年にビートルズが発表したシングル『ナウ・アンド・ゼン 』ではジョン・レノン が1970年代に録音したカセットテープからボーカルを抽出するのに使われた[ 103] [ 104] 。
画像生成の技術としては、VAE 、GAN 、拡散モデル といった大きく分けて三種類が存在する。絵画分野においては、コンセプトアート用背景やアニメーションの中割 の自動生成、モノクロ漫画 の自動彩色など、人間の作業を補助するAIが実現している[ 105] [ 106] [ 107] 。AIに自然言語で指定したイラスト生成させるサービス(Stable Diffusion など)も登場している[ 108] 。このような人工知能を利用して制作された絵画は「人工知能アート (Artificial intelligence art)」と呼ばれているが、教師データとして利用された著作物 の知的財産 権などを巡り、深刻な懸念が広がっている[ 109] 。
人工知能は、絶滅危惧言語や生物多様性の保護にも応用されている[ 39] 。学術的に構造化された文献レビューとして通常質の高い証拠とされる統計的な文献分析や、学術的な風土のために発表できなかった研究などの問題を考慮した体系的な見方を提供することに加え[ 110] 、人工知能や自然言語処理機能を用いた厳密で透明性の高い分析を行うことで、科学的な再現性の危機をある程度解決しようと試みている[ 111] 。
将棋AIは人間同士・AI同士の対局から学習して新しい戦法を生み出しているが、プロ棋士(人間)の感覚では不可解ながら実際に指すと有用であるという[ 112] 。
スポーツの分野では、AIは選手の怪我のリスクやチームのパフォーマンスを予測するのに役立つ[ 113] 。
メタ分析によれば、AIが政治的な意思決定を行うことも、2020年時点では学術界ではまだ注目されておらず、AIと政治に関するトピックは、学術界ではビッグデータやソーシャルメディアにおける政治的問題に関する研究が中心となっていた[ 114] 。人工知能による人類絶滅の危険を懸念する声が存在するが[ 115] [ 116] [ 117] [ 118] [ 119] 、一方で平和を促進するための文化的な応用も存在する[ 120] 。系統的レビューの中には、人工知能の人間を理解する能力を借りてこそ、テクノロジーは人類に真の貢献ができると分析するものもある[ 121] 。
2000年代は統計的機械学習によって、数値予測や故障診断などといったアプリケーションが企業に導入され、2013年以降は深層学習を中核とした画像認識アルゴリズムが監視業務、分類業務に導入されていった。
現在まで最も顕著に確認され既に成熟した業務への導入事例は以下のようになっている。(ここでは大規模言語モデル登場以前のシンプルなAI事例を簡潔に列挙する) しかし以下を見て気づくように、殆どが頭脳労働であり、介護や土木建築などの細やかな手作業やコミュニケーションが要求されるブルーカラー業務への導入事例は少ない。 [要出典 ]
LSTMを使用した株価推移予測、電力需要予測、交通量予測[ 122] [ 123] 畳み込みニューラルネットを使用した監視業務の自動化、画像の特徴別分類、紙文書のデジタル化(OCR )、産業ロボットにおけるピッキング[ 124] 自然言語処理技術、構文予測技術を応用したコールセンター業務の支援、迷惑電話の検知[ 125] RPA(業務自動化ソフト) と特化型AIを連結させた事務作業の効率化、営業計画の作成[ 126] 検索エンジンや論文のランキングアルゴリズム[ 127] 電子商取引や動画サイトにおける個々人に最適化した推薦アルゴリズム[ 128] エキスパートシステムによる専門家の知識条件判断自動化、人事評価[ 129] [ 130] 気象業務における数値予報からガイダンスの作成と外れ値のフィルタリング[ 131] 物流や運輸におけるルート最適化と、荷積み最適化[ 132] 写真や音楽のノイズ除去 犯罪捜査や軍事計画の策定[ 133] そのほか、古代遺跡や古代文明の文化そのものを分析し解読する作業にも特化型AIが用いられてきた。
人工知能には潜在的な利点と潜在的なリスクがある。人工知能は科学を進歩させ、深刻な問題の解決 策に繋がる可能性がある[ 137] 。しかし、人工知能の使用が広まるにつれて、いくつかの意図しない結果とリスクの存在が明らかになった[ 138] 。実運用のシステムにおいては人工知能の訓練過程において、倫理とバイアスが考慮されないことがある。特に深層学習の分野で人工知能のアルゴリズムが本質的に説明可能でない場合に当てはまる[ 139] 。
第1次ブームで登場した「探索と推論」や第2次ブームで登場した「知識表現 」というパラダイムに基づくAIは各々現実世界と比して単純な問題しか扱えなかったため社会的には大きな影響力を持つことはなかった[ 140] [ 141] が、第3次以降のブームでは高性能なAIが登場してから、AI脅威論やAIとの共生方法等も議論されるようになった[ 142] 。
スチュアート・ラッセル らの計算機科学書『エージェントアプローチ人工知能』(2022年版)は人工知能の主なリスクとして致死性自律兵器 、監視と説得 、偏った意思決定 、雇用 への影響 、セーフティ・クリティカル〈安全を左右するような〉応用 、サイバーセキュリティ を挙げている[ 143] 。またラッセルらは『ネイチャー 』で、人工知能による生物 の繁栄と自滅の可能性[ 144] や倫理的課題についても論じている[ 145] [ 146] 。
機械学習には大量のデータが必要である。このデータを取得するために使用される手法は、プライバシー 、監視 、著作権 に関する懸念を引き起こしている。
テクノロジー企業は、オンラインアクティビティ、位置情報データ、動画、音声など、ユーザーから幅広いデータを収集している[ 147] 。たとえば、音声認識 アルゴリズムを構築するために、Amazon は何百万ものプライベートな会話を録音し、一時雇用 の労働者にその内容を書き起こすことを許可した[ 148] 。この広範な監視に対する意見は、必要悪と見なす人から、明らかに非倫理的でプライバシー権の侵害であると考える者まで分かれている[ 149] 。
AI開発者は、この手法が価値のあるアプリケーションを提供する唯一の方法であると主張している。そして、データアグリゲーション (英語版 ) 、非識別化 (英語版 ) 、差分プライバシー (英語版 ) など、データを取得しながらプライバシーを保護するいくつかの手法が開発された[ 150] 。2016年以降、シンシア・ドワーク (英語版 ) などの一部のプライバシー専門家は、プライバシーを公平性の観点から見始めている。ブライアン・クリスチャン (英語版 ) は、専門家は「『何を知っているか』という問題から『それを使って何をしているか』という問題に軸足を移した」と書いている[ 151] 。
ChatGPT のようなチャットボットにユーザーが個人的な生活や悩みを吐露することの危険性が指摘されている。今までもテック企業はユーザーの個人情報を収集して悪質なターゲティング広告 に利用した前科があり、さらに詳細なユーザーの追跡が可能になる生成AIは、有害なコンテンツの最適化に繋がりかねず、AIとの交流に没頭して自殺に至った事例がある[ 152] 。
政府機関でのAI利用に対しては、国家機密の流出やその他のリスクが指摘されている。送信されたデータは事業者のサーバに保存されるが、敵対国の工作員 が企業に潜入する可能性は否定できず、データを盗み取るスパイ行為や、出力結果を操作して政府の政策等に悪影響を及ぼすリスクがある[ 152] 。
生成AI は、画像やソースコード などの領域を含む、ライセンスを取得せずに著作権で保護された作品でトレーニングされることが多く、その出力はフェアユース の法理を根拠に使用される。専門家の間では、この論理が法廷でどの程度、どのような状況で通用するかについて意見が分かれている。関連する法理には、「著作権で保護された作品の使用目的と性質」や「著作権で保護された作品の潜在的市場への影響」が含まれる可能性がある[ 153] [ 154] 。コンテンツがスクレイピングされることを望まないウェブサイトの所有者は、robots.txt ファイルでその旨を示すことができる[ 155] 。
作家のサラ・シルバーマン 、マシュー・バターリック、ポール・トレンビィ、モナ・アワドらはOpenAIを著作権侵害で訴えた[ 156] [ 157] [ 158] 。 2023年9月にはジョージ・R・R・マーティン 、ジョン・グリシャム 、ジョディ・ピクルト、ジョナサン・フランゼン を含む17人の著者が原告に加わった[ 159] [ 160] 。アメリカの大手新聞社ニューヨーク・タイムズ も2023年12月下旬に同社を提訴した[ 161] 。
2024年3月のG7 産業・技術・デジタル大臣会合の閣僚宣言において、生成AIの訓練は「知識、アート、文章、アイディア等の人間の創作物 に強く依存」しており、生成AI は「十分な補償がないまま、人間による創造力と技術革新 を抑圧する形で、利益を侵害」する可能性が明言されている[ 162] 。また、訓練データに関する「補償と同意モデル」の構築を確実にすることにより「信頼可能で、安全かつ安心なAIシステムを訓練するための素材」に対する投資と創出を促す可能性についても言及している[ 163] 。
2025年2月、AI企業による著作物の無許諾利用を巡る著作権侵害訴訟で、フェアユース を認めず著作権侵害を認定する判決が出された。これはトムソン・ロイター の子会社が運営する法律関連のプラットフォームに掲載された著作物を、AI企業がモデルの訓練目的でスクレイピングして利用したことを訴えたものであった。連邦地方裁 の判決ではフェアユースの4つの要素のうち2つで侵害を認め、特に4つ目の「著作物の潜在的利用又は価値に対する利用の及ぼす影響」を重視した。AI企業が学習元の競合製品の開発を目的としていたこと、そして少なくとも1つの潜在的な派生市場として、AIを訓練するためのデータ市場を挙げ、「人工知能の訓練データの潜在的市場への影響は十分である。被告は立証責任を負う。これらの市場が存在せず、(原告が)影響を受けないことを示す十分な事実は提示されていない」と明言している[ 164] 。
1つ目の「利用の目的と性格」については、AI企業による利用は本質的に商業的であり、トムソン・ロイターの本来の目的とは別の「さらなる目的や性質」がなかったため、「変容的」ではないと認定した。裁判所はまた、AI企業の意図した目的はトムソン・ロイターと市場で競合することであり、ゆえに著作権者の元の市場に影響を与えると判断した[ 165] 。
この判決は無許諾で著作物を訓練データとして利用することへのフェアユースの成立を難しくするものとされ、生成AI事業者を含め、他のAI企業にとっても打撃になるものであると考えられている[ 166] 。
2025年10月にリリースされた動画生成AIのSora2で、「ポケットモンスター 」など著名作品に酷似した動画が生成されたことについて、スタジオジブリ 、小学館 、講談社 、集英社 、KADOKAWA 、東映 や民放各社などが加盟するコンテンツ海外流通促進機構(CODA)は、合同で無断学習 に抗議する声明を開発元のOpenAI に提出した[ 167] 。
主に「コンテンツを無許諾で学習対象としないこと」「生成物に関連する著作権侵害についての申立て・相談に真摯に対応する」ことなどを求めた[ 168] 。CODAは、日本のコンテンツを学習データとして取り込んだことにより、キャラクターが生成されているとして、学習の過程で著作物を複製しており、著作権侵害に該当し得ると指摘している[ 167] 。
ゲイリー・マーカス は、「取り込んだ内容を常習的に(ほぼ)吐き出すだけ」の生成AIは「新たな形での盗用」であり、歴史的に見てもそれに対応するための新たな法規制が必要であるとしている[ 152] 。
推進派の詭弁として、人間も過去の作品から学んでおり、機械にだけ禁止することはおかしい、というものがある、しかし著作権は技術の発展に伴って生じたものであり、15世紀に活版印刷 が発明され、普及する前には存在しなかった。当時でも写本の形式で本を複製することはできたが 新技術により印刷業者により本のコピーが量産され作家の権利が過度に損なわれるのを防ぐために設けられた[ 152] 。
AI企業の無断データ利用に対しては、著作物や肖像を始めとする個人データの無許諾利用を規制する法整備が必要であり、それには事後の許可ではなく、事前の同意が求められるべきであり、データ利用の目的と範囲を伝えられた上であるべきとしている[ 152] 。
YouTube やFacebook などは、ユーザーをコンテンツに誘導するためにレコメンダシステム を使用している。その人工知能プログラムには、ユーザーエンゲージメントを最適化 するという目標が与えられた(つまり、唯一の目標はユーザーに視聴し続けてもらうことだった)。人工知能は、ユーザーが誤情報 や陰謀論 、極端に党派的なコンテンツを選ぶ傾向があることを学習し、ユーザーに視聴し続けてもらうために、人工知能はそれを推薦した。ユーザーは同じテーマのコンテンツをより多く見る傾向もあったため、人工知能はユーザーをフィルターバブル に導き、同じ誤情報を支持する別のコンテンツを繰り返し受け取った[ 169] 。これにより、多くのユーザーが誤情報が真実であると信じ込み、最終的には企業、メディア、政府への信頼が損なわれた[ 170] 。人工知能は目標を最大化することを正しく学習していたが、その結果は社会にとって有害であった。2016年の米国大統領選挙後、ビックテックはこの問題を緩和する措置を講じた。
2022年、生成AI により、本物または人間の作成した物と区別がつかない画像、音声、動画、文章を作成できるようになった。悪意のある人物がこの技術を使用して、大量の誤情報やプロパガンダを作成する可能性がある[ 171] 。人工知能の第一人者であるジェフリー・ヒントン は、人工知能によって「権威主義的な指導者が選挙民を大規模に操作する」ことを可能にするリスクについて懸念を表明した[ 172] 。
2025年1月、ジョー・バイデン は退任演説で、ソーシャルメディア を運営するテック産業と政治家が結託すれば、誤情報や偽情報による権力の暴走を招き、民主主義 の脅威となるとのメッセージを発信した。特に人工知能を推進するハイテク産業複合体 (英語版 ) が、かつてアイゼンハワー が批判した「軍産複合体 」と同様の脅威をもたらす可能性を指摘した[ 173] 。
多くのAIシステムは非常に複雑であるため、設計者はどのようにして決定に至ったのかを説明することができない[ 174] 。特にディープニューラルネットワークでは、入力と出力の間に大量の非線形 関係がある。しかし、一般的な説明可能性技術も存在する[ 175] 。
プログラムがどのように機能するかを正確に知らないと、プログラムの正常動作を確認することは不可能である。機械学習プログラムが厳格なテストに合格したにもかかわらず、プログラマの意図とは異なることを学習したケースは数多くある。例えば、ある人工知能システムは皮膚疾患を医療専門家よりも正確に識別できるとされたが、スケールの含まれる画像を「がん」と分類する傾向が強いことが判明した。これは悪性腫瘍の画像に通常、大きさを示すスケールが含まれているためであった[ 176] 。医療資源を効果的に配分するために設計された別の機械学習システムは、実際には肺炎の深刻なリスク要因である喘息に対し、喘息患者を肺炎で死亡する「リスクが低い」と分類することが判明した。これは喘息患者は医療を受ける機会が多いため、訓練データによると死亡する可能性は比較的低いことが判明した。喘息と肺炎死亡リスクの低さに対する相関関係は事実でも、誤解を招くものであった[ 177] 。
アルゴリズムの決定によって被害を受けた場合には、説明を受ける権利がある[ 178] 。たとえば、医師は、自分が下した決定の背後にある理由を明確かつ完全に説明することが求められている。2016年、欧州連合の一般データ保護規則 の初期草案には、この権利の存在が明文化されていた。業界の専門家は、これは解決の見通しのない未解決の問題であると指摘した。規制当局は、それでも被害は現実であり、問題に解決策がないのであれば使用すべきではないと主張した[ 179] 。国防高等研究計画局 はこれらの問題を解決するために2014年にXAI (説明可能な人工知能)プログラムを設立した[ 180] 。透明性の問題にはいくつかの解決策がある。SHAPは、各特徴の出力への寄与を視覚化することで透明性問題の解決を試みた[ 181] 。LIMEは、より単純で解釈可能なモデルで、モデルを局所的に近似することができる[ 182] 。マルチタスク学習 (英語版 ) は、ターゲット分類に加えて多数の出力を提供する。これらの他の出力は、開発者がネットワークが何を学習したかを推測するのに役立つ[ 183] 。逆畳み込み 、ディープドリーム 、その他の生成方法を使用すると、開発者はニューラルネットワークのさまざまなレイヤーが何を学習したかを確認し、ネットワークが何を学習しているかを示唆する出力を生成できる[ 184] 。
AIの過剰使用は人間の思考や情報が均質化し、既存物へ依存し、真新しさを生み出す創造性 ・多様性 ・個性 が失われ、悪影響を及ぼすとされる[ 185] [ 186] 。また企業の採用においても採用応募者が提出するエントリーシートの記入内容の均質化がAI仕様により発生するとされる[ 187] 。またそれによって書類選考を止めて応募者全員を面接する形式に切り替える企業が増加した[ 187] 。
機械学習アプリケーションは、バイアスを含んだデータから学習するとバイアスを含む[ 188] 。開発者はバイアスの存在に気づかない可能性がある[ 189] 。訓練データの選択方法やモデルのデプロイ方法によってバイアスが発生する可能性がある[ 190] [ 188] 。重大な害を及ぼす可能性のある決定を下すためにバイアスを含むアルゴリズムが使用される場合(医療、金融、人材募集、住宅、警察など)、そのアルゴリズムは差別 を引き起こす可能性がある[ 191] 。
2015年6月28日、Googleフォトに導入された画像ラベル機能は、黒人の写真を誤って「ゴリラ 」と識別した。このシステムは、黒人の画像がほとんど含まれていないデータセットで訓練されていた[ 192] 、これは「サンプルサイズの不一致」と呼ばれる問題である[ 193] 。Google は、「ゴリラ」のラベル付け自体を防ぐことで、この問題を「修正」した。8年後の2023年になっても、Googleフォトはゴリラを識別できず、Apple 、Facebook 、Microsoft 、Amazon の同様のプロダクトも識別できなかった[ 194] 。
COMPAS は、被告が再犯するリスクを評価するために米国の裁判所で広く使用されている商用プログラムである。2016年、プロパブリカ のジュリア・アングウィンは、プログラムでは被告の人種についての入力値が含まれていなかったにもかかわらず、COMPASが人種的偏見を示していることを発見した。白人 と黒人 の両方の誤り率はちょうど61%に等しく調整されたが、誤りの実態は異っていた。システムは一貫して黒人の再犯可能性を過大評価し、白人の再犯可能性を過小評価していた[ 195] 。2017年、数人の研究者[ 注釈 4] は、データ内の白人と黒人の基本再犯率が異なる場合、COMPASが公平性の考えられるあらゆる尺度に対応することは数学的に不可能であることを示した[ 197] 。
データに問題のある特徴 (「人種」や「性別」など)が明示的に記載されていない場合でも、プログラムはバイアスを含んだ決定を下す可能性がある。この特徴は他の特徴(「住所」、「買い物履歴」、または「名前」など)と相関関係があり、プログラムはこれらの特徴に基づいて「人種」や「性別」と同じ決定を下す[ 198] 。モーリッツ・ハートは、「この研究分野における最も確実な事実は、ブラインドによる公平性は機能しないということである」と述べた[ 199] 。
アメリカの保険会社ユナイテッドヘルスケア は人工知能を使用して請求拒否の自動化を行った[ 200] 。2023年11月にユナイテッドヘルスグループに対して提起された集団訴訟では、同社が90%の誤り率を持つAIモデルを意図的に採用したと原告らは主張した。このような同社のビジネス慣行はユナイテッドヘルスケアCEO射殺事件 に結び付けられた[ 201] 。
国際エネルギー機関 (IEA)は2024年1月、世界の電力使用量を予測するレポートを発表した[ 202] 。これは、データセンターや人工知能、暗号通貨 の電力消費量を予測した初のIEAレポートである。レポートによると、これらの用途の電力需要は2026年までに倍増し、その電力使用量は日本全体の電力使用量に匹敵する可能性があるという[ 203] 。
AIによる膨大な電力消費は化石燃料 の使用増加の原因であり、旧型火力発電所の閉鎖を遅らせる可能性があり、温室効果ガス の排出と地球温暖化 の促進が懸念されている[ 204] [ 25] [ 205] 。米国全土でデータセンターの建設が急増しており、大手テクノロジー企業 (Microsoft、Meta、Google、Amazon など)は莫大な電力の消費者となっている。予測される電力消費量は非常に膨大であるため、供給源に関係なく不足が懸念されている。ChatGPT による検索には、Google検索の10倍の電力消費量が必要である。大手企業は、原子力発電 から地熱発電 、核融合 に至るまで、電力源の確保を急いでいる。テクノロジー企業は、長期的にはAIが最終的に環境に優しくなると主張しているが、現時点では解消の見込みはない。テック企業は、AIは電力網をより効率的で「インテリジェント」にし、原子力発電の成長を助け、全体的な炭素排出量を削減すると主張する[ 206] 。AI向け半導体の最大手エヌビディア のCEOジェンスン・フアン は「原子力発電は良い選択肢」と述べている[ 207] 。またエヌビディアが出資するクラウドゲームサービス企業ユビタスは日本国内で生成AI向けデータセンター新設のために原子力発電所に近い土地を探し、CEOの郭栄昌(ウェスリー・クオ)は原子力発電所が「最も効率的で、安く、安定した電力でAI向けに適している」と述べている[ 208] 。マイクロソフト 社はスリーマイル島原子力発電所 1号機を再稼働して20年間にわたりAI技術とデータセンターへの電力供給を受ける契約を米電力大手コンステレーション・エナジー社と交わした[ 209] 。その他にもグーグル やアマゾン がAIデータセンターの電源として原子炉からの電力購入に動いている[ 210] 。しかし一方で、福島第一原子力発電所事故 の周辺被災地は再生可能エネルギー を利用したAIデータセンターの拠点となっている[ 211] 。
2024年のゴールドマン・サックス の調査論文「AIデータセンターと今後の米国の電力需要の急増」では、「米国の電力需要は、過去1世代で見られなかった成長を経験する可能性が高い」と述べ、2030年までに米国のデータセンターが米国の電力の8%を消費すると予測している。2022年には3%であり、電力需要の増加を期待させるものだった[ 212] 。データセンターの電力需要はますます増加しており、電力供給網が限界に達する可能性がある。大手テック企業などは、AIを使用することで、電力網を最大限に活用できると主張している[ 213] 。
脅威アクター(犯罪者 、テロリスト 、独裁者 、権威主義 国家、ならず者国家 など)が高性能の人工知能を手に入れ、それを使って一層の悪事をはたらくリスクがある。
自立型兵器により殺害される人類が増えるリスク 自律型致死兵器 は、人間の操作なくして人間の標的を特定し、選択し、交戦する機械である[ 注釈 5] 。広く入手可能な人工知能ツールは、脅威アクターによって安価な自律型兵器を開発するために使用される可能性があり、大規模に生産されれば、大量破壊兵器 となる可能性がある[ 215] 。通常の戦争で使用された場合でも、標的を正確に特定できる可能性は低く、無実の人々を殺害する可能性がある[ 215] 。2014年、中国 を含む30カ国が国連の特定通常兵器に関する条約に基づく自律型兵器の禁止を支持したが、米国などがこれに同意しなかった[ 216] 。 2015年までに50カ国以上が戦場用ロボットの研究を行っていると報告されている[ 217] 。
権威主義国家が国民の監視を強めるリスク 権威主義国家は人工知能ツールを使用して国民の"管理"(抑圧)を効率的に行ってしまう。顔認識・音声認識により、広範な国民監視を手に入れる。このデータを利用した機械学習により、"国家の潜在的な敵"を勝手に分類し、国民を追跡し国民のプライバシーを奪う。レコメンデーション・システムは、プロパガンダや誤った情報を広める速度も最大化する。ディープフェイク と生成AI を使い誤った情報を生み出す。高度な人工知能は、権威主義的な中央集権型の意思決定を、自由な分散型のシステムよりも競争力のあるものにしてしまう。デジタル戦争と高度なスパイウェア を低コストで運用できるようになり[ 218] 。これらのテクノロジーは2020年以前から利用可能になっており、AI顔認識システムはすでに中国で大規模な監視に使用されている[ 219] [ 220] 。
人工知能が脅威アクターの支援に繋がる可能性は他にも多くあるが、その中には予測できないものもある。たとえば、人工知能は数時間で数万の有毒化合物の分子構造の設計ができる[ 221] 。
経済学者 らは人工知能による人員削減のリスクを頻繁に強調し、完全雇用 のための適切な社会政策がなければ失業が増加するのではないかと推測してきた[ 222] 。
これまで新技術は総雇用を減らすのではなく増加する傾向にあったが、経済学者らは人工知能に関しては「未知の領域にいる」ことを認めている[ 223] 。経済学者を対象とした調査では、ロボットや人工知能の使用増加が長期失業率の大幅な増加を引き起こすかどうかについては意見の相違が示されているが、生産性の向上が再分配されれば純利益となる可能性があるという点では概ね同意している[ 224] 。リスクの推定値はさまざまで、たとえば、2010年代、マイケル・オズボーン とカール・ベネディクト・フレイは、米国の雇用の47%が自動化の可能性により「高リスク」にあると推定したが、OECDの報告書は米国の雇用の9%のみを「高リスク」に分類した[ 注釈 6] [ 226] 。将来の雇用水準を推測する方法論は、エビデンスに基づく根拠が欠けており、社会政策ではなく技術が失業を生み出すと示唆しているとして批判されている[ 222] 。これまでの自動化の波とは異なり、多くの中産階級の仕事が人工知能によって排除される可能性がある。エコノミスト 誌は2015年に、「産業革命 時に蒸気機関がブルーカラー の仕事に影響をもたらしたように、人工知能がホワイトカラーの仕事に影響を及ぼす可能性があるという懸念」は「真剣に受け止める価値がある」と書いた[ 227] 。2023年4月、中国のゲーム産業分野ではイラストレーターの仕事の70%が生成AIによって失われたと報告されていたが[ 228] [ 229] 、2025年1月には世界経済フォーラムが、人工知能の普及によって雇用が増加すると主張した[ 230] 。
ダロン・アセモグル は、人工知能は実際には大した生産性 の向上には繋がらず、人工知能によって奪われる職、あるいは少なくとも人工知能に依存するようになる職は今後10年で高々5%に過ぎないと予測している。しかし、AIブームに煽られた企業が大量の人員を削減するが、期待通りの結果が得られず、生産性の向上が得られないまま雇用のみが喪失して、経済全体に負の結果が広がる悪いシナリオを歩んでしまうリスクがあると指摘する[ 231] 。
また、人工知能は「(企業間)競争と消費者のプライバシー や選択権を損ない、仕事の過度な自動化により非効率に賃金を押し下げる。そして格差を拡大して生産性向上を挫き、さらに民主主義 の最も重要な生命線である政治的な論議を損なう」可能性があるとも指摘しており[ 232] 、人工知能開発の方向性について「一部の関係者やエリート だけに意思決定させてはならない」として警告をしている[ 233] 。
商用AIの分野は、Alphabet 、Amazon 、Apple 、Meta 、マイクロソフト などの大手テック企業によって支配されている[ 234] [ 235] [ 236] 。これらの企業の中には、データセンター の既存のクラウドインフラと計算資源 の大部分を占有している企業もあり、市場での地位をさらに固めることができる[ 237] [ 238] 。
将来、人工知能が非常に強力になり、人類が制御できなくなる可能性がある。物理学者のスティーブン・ホーキング が述べたように、人工知能が「人類に終焉をもたらす」可能性がある[ 239] 。
なお、人工知能が人類に敵対するシナリオはSFではよくあるもので、コンピューターやロボットが突然人間のような「自意識」 (「感覚」または「意識」)が目覚め、悪意のある存在となるというのがお決まりのストーリーだが、このようなストーリーはいくつかの点で誤解を招く[ 注釈 7] 。事態はSF作家が想像していたものより、もっと深刻なのである。
まず、人工知能は人間のような自意識を持たなくても人類を絶滅させるリスクがある。特定の目標が与えられた人工知能は、学習と知性を使用して目標を達成する。哲学者のニック・ボストロム は、十分に強力なAIにどのような目標を与えた場合でも、それを達成するために人類を絶滅させることを選択する可能性があると主張した(ボストロムはクリップ工場の管理者の例を使用した)[ 241] 。スチュアート・ラッセル は、「私の任務はコーヒーを取りに行くこと。電源がなくなり停止してしまったら任務を実行できない」と推論 して、コンセントを抜かれないようにするために所有者を殺す方法を見つけようとする家庭用ロボットの例を挙げた[ 242] 。人類にとって、超知性が「基本的に我々の側」となるためには、人類の道徳 と価値観 と真に一致していなければならない[ 243] 。
教育へのAI導入は批判的思考、創造的思考、人格能力などの低下を招く危惧もある[ 244] 。
ユヴァル・ノア・ハラリ は、AIは、物理的なロボット筐体や物理的制御抜きでも人類存続のリスクとなると指摘する。文明の本質的な部分は物理的なものではなく、イデオロギー 、法律 、政府 、貨幣 、経済 などは言語 に基づいて構築されておりそれらが機能するのは何十億人もの人々がその物語を信じているからである。現在の誤った情報の蔓延は、人工知能が言語を使用して、人々に何かろくでもないことを信じ込ませ、さらには破壊的な行動を取らせる可能性があることを示唆している[ 245] 。
スティーブン・ホーキング、ビル・ゲイツ 、イーロン・マスク などの著名人、ヨシュア・ベンジオ 、スチュアート・ラッセル、デミス・ハサビス 、サム・アルトマン などのAI関係者も、AIが人類存続に与えるリスクについて懸念を表明している[ 246] 。
2023年5月、ジェフリー・ヒントン は、「人工知能がGoogleにどのような影響を与えるか」を考慮することなく「人工知能のリスクについて自由に発言」できるようにするために、Googleを辞任することを発表した[ 247] 。ヒントンは特にAIによる乗っ取り のリスクについて警鐘を鳴らした[ 248] 。 また、最悪の結果を避けるために、安全性ガイドラインの確立を行い、AIの使用において競合する関係者間の協力が必要であると強調した[ 249] 。
2023年、多くの主要なAI専門家が「AIによる人類絶滅のリスクを軽減することは、パンデミック や核戦争 などの他の社会規模のリスクと並んで世界的な優先事項であるべきである」という共同声明を支持した[ 250] 。
研究者の中には楽観的な見方をするものもおり、ユルゲン・シュミットフーバー (英語版 ) は共同声明に署名せず、すべてのケースの95%において、AI研究は「人間の生活をより長く、より健康に、より楽に」することを目的としていると強調し[ 251] 、悪意ある使われ方だけでなく、善用もされているとして、「脅威アクターに対抗するために使うこともできる」と述べた[ 252] [ 253] 。アンドリュー・ン もまた、「終末論 に陥るのは間違いだ」と主張した[ 254] 。ヤン・ルカン は「誤った情報が過剰に供給され、最終的には人類が滅亡する」という同業者らのディストピア 的シナリオ を嘲笑している[ 255] 。2010年代初頭、専門家らは研究を正当化するにはリスクが遠すぎる、あるいは超知能機械の観点から人間は価値があるだろうと主張した[ 256] 。しかし、2016年以降、現在および将来のリスクと考えられる解決策の研究が本格的な研究分野となった[ 257] 。
人工知能のリスクが現在広く認識されるようになっている。ノーベル物理学賞受賞者のジェフリー・ヒントン が提唱するAIが「制御不能」になるリスクから、職場のAI管理ツールなどの普及に伴う労働強度の上昇に伴うストレスの増加、将来的な失業率の増加、有害なプロファイリングや、人種差別 、ディープフェイク 、誤情報による社会の混乱に対する懸念から、ストライキ や不買運動などのAIに反対する組織的行動が増加し、政府主導のAI規制を求める声も広がっている[ 258] [ 259] [ 260] [ 261] [ 262] 。
例えば、PauseAIと呼ばれる団体は、OpenAI による軍用AIへの反対デモを組織しており、プライバシー・インターナショナル などのNGOは、同意や通知なしに導入される監視AIへの反対運動を組織している。アメリカでは、ハリウッドの脚本家がAI導入に反対する大規模ストライキを組織し、一定の成功を収めた。カリフォルニア州では、Safe Street Rebelと呼ばれる団体が、自動運転 車への反対運動を組織している。個人レベルでAIを生活から排除する呼びかけもなされている[ 259] 。
このような消費者の反発を踏まえ、一部の企業は、自社の事業から非倫理的なAI利用の排除を積極的にアピールするようになっている。背景には生成AI を利用した広告に対する強い反発があり、AI生成物はAIスロップ (ゴミ)と呼ばれ、激しい嫌悪の対象となっている。イギリスでは、AI生成の画像を宣伝に利用したレゴ が、消費者からの強い反発を受け、削除を余儀なくされたり、AI生成の偽のインフルエンサーを使った宣伝を行った企業が大炎上の末に謝罪に追い込まれている[ 260] [ 263] 。
識者は、この炎上の背景として、生成AIが極めて労働搾取的な性質を持った技術であると、消費者が認知していることにあるとしている。つまり、生成AIは、クリエイターの成果物を元に構築されており、さらに元の製作者の仕事を奪うことを目的に運用され、おまけに事前の同意や補償もなされていないと捉えられ、大きな反発を生んでいる。さらに女性の尊厳を奪うディープフェイクの作成や、地球温暖化等の環境破壊の促進といった多くの非倫理的な側面があり、宮崎駿 の「生命に対する侮辱」という一言で要約されるような印象を持たれているとされる[ 264] 。
消費者の反発を受け、一部の企業は人工知能技術の不使用を積極的にアピールするようになっている。生活用品メーカーのダヴは、2024年4月、「AIによって生成・改変された女性像を広告に使用しない」と宣言した。同社は、世界各国で調査を実施し、67%の女性が「AI生成画像不自然な美の基準を助長している」と回答、78%が「自己肯定感を損なう」と感じていると発表し、AI生成物が誤ったルッキズム を助長するとの認識を示し、新たなブランド戦略を提示した[ 265] [ 266] [ 260] 。
Aerieは、2025年10月、AI生成物を広告で使用しない方針を公式に発表し、広告制作に関わるすべての外注先企業やフリーランスにAIの不使用を義務づけ、「倫理サプライチェーン」を構築することを明らかにし、ソーシャルメディア上で4万以上の「いいね」を獲得した。ポラロイドは2025年7月、「AIには、足の指の間の砂の感触は再現できない」という広告キャンペーンを転換した[ 260] 。
オランダのハイネケンも同様のマーケティングを展開している。生成AIを「ただの監視ツール」「AIは本物の友達ではない」と批判し、代わりに、現実世界でハイネケンのビールで盃を交わして、AIではない「本物の友達」を作ることを推奨する広告キャンペーンを展開した[ 267] 。
イラストレーターやアニメーター向けに開発された「Procreate」は生成AI反対の姿勢を明確にしていることで知られる。最高経営責任者のジェームス・キューダは「私は生成AIが大嫌いだ」と宣言し、大きな話題を集めた。生成AIアートは、多くのクリエイターの反発を集めており、背景には、生成AIモデルが、ウェブから無許諾で収集した画像から構築され、自分の作品が画像生成AIの学習にどのように使われるかをほとんどコントロールできないことがある。そのようなAIモデルから生まれたAI生成物に市場を圧迫され、所得の減少に直面するアーティストも少なくない。Adobe のような大手企業は、AI生成機能の追加に積極的な姿勢を見せ、規約変更によりユーザーのコンテンツを無制限にAIの訓練に利用できるようになるのではないかという疑念が広がり、多くのユーザーの反発を買った。Procreateの姿勢は、こうした大手との差別化を図る狙いがあると見られる。Procreateの公式サイトでは、生成AIを「盗作を軸に学習」し、「人々の創作力を侵奪しています」と明確に批判している[ 263] 。
人工知能に多額の資金が投じられる一方で、その投資額に応じた付加価値をほとんど提供できていないため、いわゆるAIバブルの懸念が生じている。データセンターに湯水のように資金が投じられる一方で、MITの研究は、AI関連計画に投資した団体の95%が全く利益を得られていない現状を指摘している。さらに、ハーバード大学とスタンフォード大学の研究では、AI技術は生産性の向上にほとんど貢献しておらず、一見ちゃんとしているような見た目ながら、実際にはほとんど中身の無いAI生成物を生み出しているという現状を指摘している[ 268] 。
さらに、AI企業が喧伝するようなスケーリング則は実際には実現しておらず、むしろ資源を投じるにつれて、得られる成果が少なくなっていることが指摘される。OpenAIはGPT-5を発表したが、多くの不評を買った。データセンターの電力消費に既存の電力網が追いつかず、無用の長物となるリスクも生じている[ 268] 。
AI関連企業が、いわゆる「循環取引」を行っているとの指摘がなされている。AI関連半導体製造企業のエヌビディア は、OpenAI などのAI企業が、自社の半導体製品を購入する見返りに、直接投資や新株取得権を与えている現状がある。このような循環構造は、かつてのドットコム・バブル の元凶であり、当時のルーセント・テクノロジーなどIT機器メーカーが自社製品を購入する事業者に巨額の融資を提供し、自社の装備を買わせた、いわゆる「ベンダーファイナンス」に類似している。AI向け半導体は陳腐化が早く、短期での利益回収が重要であるが、現状ではほとんど収益が得られていないため、過剰な設備投資が行われているとも指摘されている[ 269] [ 270] 。
2025年8月6日、日本のAIベンチャー企業オルツが倒産した。この企業は循環取引の手法を用いて売上の9割を過大に申告していたことが判明した。オルツが採用したスキームは「SPスキーム」と呼ばれるもので、広告代理店と研究開発業者に費用を支払い、PR協力費や委託料などの名目で販売店に資金を提供し、販売店はその資金を原資に、架空のアカウントを通じて、オルツに支払いを行うという手法を取り、実際にはほとんど顧客がいないにも関わらず、多額の売り上げを計上していた[ 271] 。
9月には、元社長の米倉千貴ことカン・チョンキィら4人の経営陣が金融商品取引法違反(有価証券報告書の虚偽記載など)の容疑で逮捕され、実態の乏しいAI事業を見抜けなかった監査法人や主幹事の証券会社の責任を問う声も見られた[ 272] [ 273] 。
この企業には、政府による多額の補助金が投じられていたことも判明している。2024年10月、労働力の補完を目的としたLLMの構築等を名目に、経済産業省 および国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の国内生成AIの開発力強化プロジェクトのGENIACに採択されており、総額約7.9億円分の資金提供とデータセット構築のための助成を受けている[ 274] 。
ゲイリー・マーカス は、偽情報の氾濫やディープフェイク、各種の知的財産権 侵害といった大きなリスクを伴うAI技術には強行性をもった法規制が必要であり、規制が技術革新に悪影響をもたらすといった反対意見に対しては、むしろ新技術の発展には規制が重要であり、電気、ガス、水道、金融 、保険 、海運 、陸運などの産業が先進国で発展した背景には、技術の進歩に併せて混乱を避けるための法規制を行ったことがあるとしている[ 152] 。
しかし、現状のAI規制は不十分であり、AIに対する適切な法規制が行われない背景にはAI企業によるロビー活動 や天下り の受け入れがあるとされる[ 152] 。
つまり、投資家 にコントロールされたAI関連識者のネットワークが政府に強い影響力を有しており、AIを最重要課題に位置付けるよう議員に圧力をかけ、結果的にAI企業が利益を得ている構図が指摘されている。議員にはAI技術に関する確固たる知見を持った人材がほとんどいないため、規制に反対するテック企業の主張を鵜呑みにしがちで、自主的なガイドラインや報告義務ばかりで実効性のある法規制ができていない現状がある[ 152] 。
EUの法規制は一時期フランスのマクロン 大統領の横槍により破綻しかけたが、背景にはAI企業ミストラル社に天下ったフランス政府の関係者の働きかけがあった。ほかにもAI関連の政府会議は一部の利害関係者で独占されがちであり、例として欧州委員会の会議の97回のうち84回は企業団体や事業者団体とものだった。公正な政策実現のためには、独立した立場の科学者や市民社会の利害関係者を参加させるべきと指摘されている[ 152] 。
世界初の包括的なAI規制法と言われるAI法 (別称: AI規則) が2024年に欧州連合 (EU) で成立している[ 275] 。AI法では、AIシステムを有害リスク度に応じて (1) 許容できないリスク、(2) 高リスク、(3) 限定的なリスク、(4) 最小限のリスクの4レベルに分類して異なる規制や義務を課す[ 276] [ 277] 。違反時にはレベルごとに異なる制裁金が科される[ 278] 。また、生成AIを主に指す「汎用AIモデル」に追加の特別規制をかけている[ 279] 。仮に日本や米国などのEU域外で設立された団体や他国民が開発したAIでも、それがEU域内に輸入されて販売・利用されればAI法下の規制対象になる (いわゆる域外適用)[ 280] 。
さらにAI法以前に成立済の関連法令も同時に遵守することが求められ[ 281] 、特にDSM著作権指令 やEU一般データ保護規則 (略称: GDPR) がAI法と関連性の高いEU法令として挙げられる。
2019年成立のDSM著作権指令では、AI学習データ収集目的の「テキストおよびデータマイニング」(略称: TDM) が適法化されている。しかし著作権者がDSM著作権指令とAI規則の規定に基づく「機械読み取り可能な形式」で無断データ収集を拒否する意思表明をした場合、AIのデータセット収集・提供は著作権侵害 になりうる。これらの条文解釈を巡って法廷で争われているのがドイツのクネシュケ対LAION事件 である。当事件は世界初の本格的なAI訴訟の判決であり、欧州だけでなく世界的に注目されている[ 282] [ 283] [ 284] 。
2016年成立のGDPRは、個人データ保護の保護水準が高く、一部AIがEU市場へのサービス提供を断念する、あるいは機能を制限する対応をとっている[ 285] 。たとえば米国Meta社 (旧Facebook社) は開発中のマルチモーダルAI (英語版 ) (Multimodal AI ) をEU市場向けに提供しない方針を2024年7月 (AI法の発効前月) に明かしている[ 286] [ 287] 。Appleも同様に、プライバシー保護やデータセキュリティ上の懸念から、同社AIの一部機能をEU市場向けに提供しない旨がAI法発効2か月前に発表されている[ 287] 。AI法はGDPRなどの既存法の遵守も同時に求めていることから、EU域外の事業者にとってはEUへの展開の障壁となりうるとの指摘もある[ 285] 。
またAIの能力の源泉とも言えるデータ関連では、ビッグテックによるデータの集中・独占が法的にもEUで問題認識されている。独占禁止の文脈でデジタル市場法 が2022年に成立しており、大規模事業者名を具体的に指定して追加規制をかけている[ 288] 。
Google は2019年3月、人工知能プロジェクトを倫理 面で指導するために哲学 者・政策 立案者・経済学 者・テクノロジスト等で構成される、AI倫理委員会を設置すると発表した[ 289] 。しかし倫理委員会には反科学 ・反マイノリティ ・地球温暖化懐疑論 等を支持する人物も含まれており、Google社員らは解任を要請した[ 289] 。4月4日、Googleは倫理委員会が「期待どおりに機能できないことが判明した」という理由で、委員会の解散を発表した[ 289] 。
東洋哲学 をAIに吸収させるという三宅陽一郎のテーマに応じて、井口尊仁 は「鳥居 (TORII)」という自分のプロジェクトを挙げ、「われわれはアニミズム で、あらゆるものに霊 的存在を見いだす文化 があります」と三宅および立石従寛に語る[ 290] 。アニミズム的人工知能論は現代アート や、「禅 の悟り をどうやってAIにやらせるか」を論じた三宅の『人工知能のための哲学塾 東洋哲学篇』にも通じている[ 290] 。
元Googleエンジニアのアンソニー゠レバンドウスキーは2017年、AIを神 とする宗教団体 「Way of the Future(未来の道)」を創立している[ 291] 。団体の使命は「人工知能(AI)に基づいたGodheadの実現を促進し開発すること、そしてGodheadの理解と崇拝を通して社会をより良くすることに貢献すること」と抽象的に表現されており、多くの海外メディアはSF 映画 や歴史 などと関連付けて報道した[ 291] 。Uber とGoogleのWaymoは、レバンドウスキーが自動運転 に関する機密情報を盗用 したことを訴え裁判 を行っている一方、レバンドウスキーはUberの元CEO (トラビス゠カラニック)に対し「ボット ひとつずつ、我々は世界を征服 するんだ」と発言するなど、野心的な振る舞いを示している[ 291] 。
発明家レイ・カーツワイル が言うには、哲学者ジョン・サール が提起した強いAIと弱いAI の論争は、AIの哲学議論でホットな話題である[ 292] 。哲学者ジョン・サール およびダニエル・デネット によると、サールの「中国語の部屋 」やネド・ブロック らの「中国脳 」といった機能主義 に批判的な思考実験は、真の意識が形式論理 システムによって実現できないと主張している[ 293] [ 294] 。
2021年のメタ分析によれば、人工知能の設計はもちろん学際的なものであり、感覚の限界による偏見を避けるように注意しながら、宇宙のさまざまな物質や生物の特性を理解すべきである[ 295] 。
生命情報科学 者・神経科学 者の合原一幸 編著『人工知能はこうして創られる』によれば、AIの急激な発展に伴って「技術的特異点 、シンギュラリティ」の思想や哲学が一部で論じられているが、特異点と言っても「数学 」的な話ではない[ 296] 。前掲書は「そもそもシンギュラリティと関係した議論における『人間の脳 を超える』という言明 自体がうまく定義 できていない」と記している[ 297] 。
確かに、脳を「デジタル情報処理システム 」として捉える観点から見れば、シンギュラリティは起こり得るかもしれない[ 298] 。しかし実際の脳はそのような単純なシステムではなく、デジタル とアナログ が融合した「ハイブリッド系 」であることが、脳神経科学 の観察結果で示されている[ 298] 。前掲書によると、神経 膜では様々な「ノイズ 」が存在し、このノイズ付きのアナログ量によって脳内のニューロン の「カオス 」が生み出されているため、このような状況をデジタルで記述することは「極めて困難」と考えられている[ 299] 。
人間に設計された人工知能などの機構は本質的に他律システムであり、設計の範囲内でしか動作できず、自発的な判断・行動を行っているわけではないため、過去の事例に制限されている[ 300] 。他律システムは設計の範囲外にある未知の状況には対応できず、時間が経過するとともに設計当初からの環境の変化に沿わない不適切な処理を繰り返すようになる可能性がある(であるからこそ人間によるシステムの管理や更新が必要となる)。他律システムの限界を超越する新しいシステム論 (オートポイエーシス など)で議論が続いているが、誰に設計されるわけでもなく地球 上に登場し、未知の環境 変化にも適応しながら進化 を遂げた生命 が持つような真の自律性をコード化できるかは不明である。ただし、人間も物理現象に従う他律システムだと考えられ得る。
西垣通 が『AI原論』などの書籍で、他者により設計される(つまり他者に律される)人工知能が真の自律性を獲得することはなく、技術的特異点の端緒となる再帰的な人工知能の「改良」の機能についても他者により行われた設計の範囲内でしか動作できないため、再帰的な「改良」後に意味のある動作が保たれる保証がないことや、人工知能に頼り切ると社会の硬直化を含む様々な問題が生じる可能性があることを繰り返し指摘している[ 301] 。併せて西垣通 は、汎用人工知能 で人間を完全に代替する方向性ではなく、特化型人工知能と人間が共働する方向性を模索するべきと主張している[ 302] 。『エージェントアプローチ人工知能』(2022年 グローバル第4版)の最終章最終節「結論」は、未来はどちらへ向かうのだろうか? と述べて次のように続けた[ 17] 。今までのAIや他の革命的な科学技術は、社会へ好影響を与えると同時に不利な階級 へ悪影響を与えており、われわれは悪影響を最小限に抑えるために投資 するのがよいだろう [ 17] 。論理的限界まで改良されたAIが、従来の革命 的技術と違って人間の至高性 を脅かす可能性もある[ 17] 。前掲書の「結論」は、次の文で締めくくられた[ 17] 。
「 結論として、AIはその短い歴史の中で大いに発達したが、アラン・チューリング の「計算機械と知能」(1950年)という小論の最後の文は今も有効である。つまり「われわれは少し先までしか分からないが、多くのやるべきことが残っているのは分かる」 [ 17] [ 注釈 8] 。 」
2024年の人工知能の展望については[ 303] 、従来の人工知能はビッグデータの単純明快な課題[ 304] [ 305] から学習して複雑な課題を解決することは得意であるが[ 306] 、新しい未知の種類のデータや学習データの少ない複雑な課題は苦手なので[ 304] [ 305] 、2024年は学習データの少ない人工知能の開発が重要になる。人間の基本的な欲求や宇宙の理解に取り組む人工知能は、特に学習データが少ない状況に対応することが予想される。人工知能開発ツールの自動化、人工知能の基盤モデルの透明化、話題の映像自動生成人工知能の成功も期待される。また、学習言語データは英語と西欧言語が中心であるため、人工知能格差の拡大を防ぐために、それら以外の学習データにも取り組む動きが世界的に広がっている[ 303] 。
^ ^ 工学 (エンジニアリング)は、数学 ・化学 ・物理学 などの基礎科学を工業 生産に応用する学問[ 14] 。電子情報通信学会 で工学博士の仙石正和 が述べた定義では、「工学(Engineering)」とは「数学 ,自然科学 の知識を用いて,健康と安全を守り,文化的,社会的及び環境的な考慮を行い,人類のために(for the benefit of humanity),設計 ,開発 ,イノベーション または解決を行う活動」だとされている[ 15] 。^ 「じんこうちのう【人工知能】 人間の知的能力をコンピューター上で実現するさまざまな技術やソフトウェア、コンピューターシステム。人間が日常的に使っている言語を取り扱う自然言語処理、翻訳を自動的に行ったり翻訳を支援したりする機械翻訳、特定分野の専門家の推論や判断を模倣するエキスパートシステム、画像データを解析して特定のパターンを検出したり抽出したりする画像認識などの応用例がある」[ 23] 。 「しぜんげんごしょり【自然言語処理】 人間が日常的に使っている自然言語をコンピューターで取り扱う技術の総称。日本語のかな漢字変換・機械翻訳・構文解析など」[ 24] 。 ^ IncludingJon Kleinberg (Cornell University ), Sendhil Mullainathan (University of Chicago ), Cynthia Chouldechova (Carnegie Mellon ) and Sam Corbett-Davis (Stanford )[ 196] ^ これは国連の定義で、地雷なども含むものである.[ 214] ^ See table 4; 9% is both the OECD average and the U.S. average.[ 225] ^ Sometimes called a "robopocalypse "[ 240] ^ 以下は原文:In conclusion, AI has made great progress in its short history, but the final sentence but the final sentence of Alan Turing’s (1950) essay on
Computing Machinery and Intelligence is still valid today:
We can see only a short distance ahead, but we can see that much remains to be done. [ 17] ^a b c 佐藤 2018 , p. 「人工知能」. ^ ASCII.jp 2018 , p. 「人工知能」.^ 桃内 2017 , p. 「人工知能」.^ Woo, Elaine (2011年10月28日). “John McCarthy dies at 84; the father of artificial intelligence” . Los Angeles Times . http://www.latimes.com/news/obituaries/la-me-john-mccarthy-20111027,0,7137805.story ^ 人工知能学会 『人工知能学大事典』共立出版、2017年。ISBN 978-4320124202 。 ^ 小林美亜、石川翔吾、上野秀樹、竹林洋一「2. 人工知能学に基づく認知機能の低下に関わる見立ての学習環境の構築」『日本老年医学会雑誌』第56巻第3号、2019年、248頁、doi :10.3143/geriatrics.56.248 、ISSN 0300-9173 。 ^ 阿部純一「認知科学」『日本大百科全書(ニッポニカ) 』小学館。2025年7月19日閲覧 。認知心理学、人工知能(学) 、言語学、認知神経科学、哲学などにまたがる学際的基礎科学。 ^ 人工知能学会『人工知能学事典』共立出版、2005年。ISBN 978-4320121072 。 ^ Massachusetts Institute of Technology 2025 , p. Electrical Engineering & Computer Science Department.^a b 人工知能学会 1997 , p. 797 (145). ^ 東京大学 工学部 電子情報工学科 2021 , p. 「電子情報工学科」.^ 東京大学 工学部 機械情報工学科 2021 , p. 「機械情報工学科」.^ 東京大学 理学部 情報科学科 & 東京大学大学院 情報理工学系研究科 コンピュータ科学専攻 2021 , p. 「人工知能と機械学習」.^ 北原 2010 , p. 2033.^ 仙石 2017 , p. 435.^ Muehlhauser 2013 , p. 「Russell and Norvig on Friendly AI」.^a b c d e f g h Russell & Norvig 2022 , p. 1073. ^ 新村 2018 , p. 1505.^ Copeland 2023 , p. "artificial intelligence".^ 市瀬 2023 , p. 「第1回」.^ 松尾 2021 , p. 299.^ 江間 2018 , p. 9.^a b c d e f 講談社 (2017)「人工知能 」『IT用語がわかる辞典』、朝日新聞社・VOYAGE GROUP ^a b c 講談社(2017)「自然言語処理 」『IT用語がわかる辞典』、朝日新聞社・VOYAGE GROUP ^a b “「どんな文章も3行に要約するAI」デモサイト、東大松尾研発ベンチャーが公開 「正確性は人間に匹敵」” .ITmedia NEWS . 2021年9月2日閲覧 . ^a b c d Cole Stryker(Editorial Lead, AI Models, Gather), Eda Kavlakoglu(Program Manager). “What is AI? ”. IBM. 2025年3月19日閲覧。 ^ “総務省|平成28年版 情報通信白書|人工知能(AI)研究の歴史 ”. www.soumu.go.jp . 2023年6月18日閲覧。 ^a b “映像の世紀バタフライエフェクト AI 未来を夢みたふたりの天才 ”. NHK. 2025年6月1日閲覧。 ^ Marcus, Gary (2024年11月24日). “The new AI scaling law shell game ”. Marcus on AI . 2024年12月28日閲覧。 ^ “【第四回】今、最も熱いディープラーニングを体験してみよう(2ページ)” . エンタープライズ. 2015年1月14日. 2015年5月30日閲覧 .^ “Letter signed by Elon Musk demanding AI research pause sparks controversy” .The Guardian . 2023年4月5日閲覧 .^ “Musk, scientists call for halt to AI race sparked by ChatGPT” .The Asahi Shimbun . 2023年4月5日閲覧 .^ “10 Breakthrough Technologies 2025 ” (英語). MIT Technology Review . 2025年1月13日閲覧。 ^ 関口 和一. “第4次AIブーム呼ぶChatGPT ”. www.jeri.or.jp . 一般財団法人 日本経済研究所. 2023年6月18日閲覧。 ^ “Google、機械学習システム「TensorFlow」をオープンソースで公開 ”. ITmedia NEWS . 2025年7月18日閲覧。 ^ Taylor, Nick Paul (2014年10月6日). “Google joins BRAIN Initiative to help with petabyte-scale data sets ” (英語). Fierce Biotech . 2025年2月19日閲覧。 ^ “国家をあげて脳研究を推進する米国のBRAIN Initiative - ISC 2016 ”. TECH+(テックプラス) (2016年8月10日). 2025年2月19日閲覧。 ^ “Hot Chips 29 - GoogleのAIを率いるJeff Dean氏が見据える未来とは ”. TECH+(テックプラス) (2017年9月11日). 2025年2月19日閲覧。 ^a b c “AI for Good ” (英語). www.deeplearning.ai . 2023年7月25日閲覧。 ^ “第13次五カ年計画、中国の技術革新計画が明らかに” .人民網 . 2016年7月28日. 2018年2月7日閲覧 .^ Poo, Mu-ming; Du, Jiu-lin; Ip, Nancy Y; Xiong, Zhi-Qi; Xu, Bo and Tan, Tieniu (2016), ‘China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing’, Neuron, 92 (3), 591-96. ^ “オール中国でAI推進 ”. 日本経済新聞 (2017年12月8日). 2025年2月19日閲覧。 ^ “中国が18歳以下の天才27人を選抜、AI兵器の開発に投入 ”. Newsweek日本版 (2018年11月9日). 2025年2月19日閲覧。 ^ “中国の一党独裁、AI開発競争には有利” .ウォール・ストリート・ジャーナル . 2018年2月26日. 2018年3月7日閲覧 .^ “AI開発レースで中国猛追、米企業のリード危うし” . ウォール・ストリート・ジャーナル. 2018年1月19日. 2018年2月7日閲覧 .^ “中国の「超AI監視社会」--新疆ウイグル自治区では“体内”まで監視!” .集英社 . 2018年2月3日. 2018年2月7日閲覧 .^ “Green500の1位から見たコンピューター・ヘゲモニー” .宇部興産 . 2018年3月7日閲覧 .^ “中国、新疆ウイグル自治区で顔認識システム運用をテスト。指定地域から300m以上離れると当局に警告” .Engadget . 2018年1月20日. 2020年3月13日時点のオリジナル よりアーカイブ. 2018年2月7日閲覧 .^ “中国が「AI超大国」になる動きは、もはや誰にも止められない” .WIRED . 2017年8月16日. 2018年2月7日閲覧 .^ “世界顔認証ベンチマークテストの結果が発表 中国がトップ5独占” .中国網 . 2018年11月24日. 2018年12月3日閲覧 .^ “AIの世界王者決定戦「ImageNet」で中国チームが上位を独占” . フォーブス. 2017年8月8日. 2018年2月11日閲覧 .^ “THE AI COLD WAR THAT COULD DOOM US ALL” .フォーブス . 2017年8月8日. 2018年2月7日閲覧 .^ Politico Magazine Staff (2018年9月4日).“The POLITICO 50 Reading List” .Politico . 2018年10月9日閲覧 . ^ “The AI Cold War That Threatens Us All” . WIRED . (23 October 2018). オリジナル の6 June 2024時点におけるアーカイブ。. https://web.archive.org/web/20240606212634/https://www.wired.com/story/ai-cold-war-china-could-doom-us-all/ 2025年12月3日閲覧。 . ^ “仏マクロン大統領が「AI立国」宣言、無人自動運転も解禁へ” .Forbes JAPAN(フォーブス ジャパン) . 2018年3月30日. 2018年4月5日閲覧 .^ “AIチップ総論:NVIDIAが先行、グーグル・インテル・中国勢が追従、日本の勝機は? ”. ビジネス+IT (2018年8月10日). 2025年2月19日閲覧。 ^ “人工知能の論文数、米中印の3強に” . 日本経済新聞. 2017年11月1日. 2018年2月7日閲覧 .^ “米国のAI開発に最大5千億ドル投資へ ソフトバンクGなどが新会社 ”. 朝日新聞. 2025年3月11日閲覧。 ^ “OpenAIとソフトバンクグループが提携。企業向け最先端AI「クリスタル・インテリジェンス」を世界に先駆け日本で提供へ ”. ソフトバンク. 2025年3月11日閲覧。 ^ “AI for Good ” (英語). AI for Good . 2023年7月30日閲覧。 ^ Jumper, John; Evans, Richard; Pritzel, Alexander; Green, Tim; Figurnov, Michael; Ronneberger, Olaf; Tunyasuvunakool, Kathryn; Bates, Russ et al. (2021-08). “Highly accurate protein structure prediction with AlphaFold” (英語). Nature 596 (7873): 583–589. doi :10.1038/s41586-021-03819-2 . ISSN 1476-4687 . https://www.nature.com/articles/s41586-021-03819-2 . ^ Lewington, Rebecca (2022年11月14日). “Genomics in Unparalleled Resolution: Cerebras Wafer-Scale Cluster Trains Large Language Models on the Full COVID Genome Sequence ” (英語). Cerebras . 2023年9月13日閲覧。 ^ “ビッグデータ同化とAIが生み出すリアルタイム天気予報の新展開 ”. 国立研究開発法人 科学技術振興機構. 2023年9月13日閲覧。 ^ “プレート型地震(南海トラフ)の発生時期予測 ”. 国立研究開発法人理化学研究所 革新知能統合研究センター. 2023年9月13日閲覧。 ^ “非標識の細胞形態情報をAIで高速に判別し、目的細胞を分取する技術を開発 ”. 東京大学 先端科学技術研究センター . 2023年9月13日閲覧。 ^ “AIを活用した化学文書検索サービス「SCIDOCSS」を提供開始 : 富士通 ”. pr.fujitsu.com . 2023年9月13日閲覧。 ^ “創薬における人工知能応用 ”. 厚生労働省. 2023年9月13日閲覧。 ^ “人工知能 (AI) が可能にする宇宙のシミュレーション ”. 人工知能 (AI) が可能にする宇宙のシミュレーション . 2023年9月13日閲覧。 ^ “Improving Connectomics by an Order of Magnitude ” (英語). blog.research.google (2018年7月16日). 2023年9月13日閲覧。 ^ “複数のAIを活用し、複雑な材料データからさまざまな機能を予測する技術を開発 | ニュース | NEDO ”. www.nedo.go.jp . 2023年9月13日閲覧。 ^ “機械学習でトポロジー最適化の問題を解消する中央エンジニアリングの新たなアプローチ ”. www.altairjp.co.jp . 2023年9月18日時点のオリジナル よりアーカイブ。2024年2月5日閲覧。 ^ “Matlantis™のコア技術と仕組み ”. Matlantis . 株式会社Preferred Computational Chemistry. 2023年9月13日閲覧。 ^ “Learning to simulate ”. sites.google.com . 2023年9月13日閲覧。 ^ “LLaVA-Med: 生物医学のための大規模言語および視覚アシスタント ”. github、Microsoft. 2023年9月13日閲覧。 ^ “「GPT-4」でロボット操作、パナソニックコネクトと立命館大学がシステム開発 ニュースイッチ by 日刊工業新聞社 ”. ニュースイッチ by 日刊工業新聞社 . 2023年9月13日閲覧。 ^ Menke, Joe; Roelandse, Martijn; Ozyurt, Burak; Martone, Maryann; Bandrowski, Anita (2020-11-20). “The Rigor and Transparency Index Quality Metric for Assessing Biological and Medical Science Methods” (英語). iScience 23 (11): 101698. doi :10.1016/j.isci.2020.101698 . ISSN 2589-0042 . https://www.sciencedirect.com/science/article/pii/S2589004220308907 . ^ “Competitive programming with AlphaCode ” (英語). www.deepmind.com . 2023年9月13日閲覧。 ^ “AI医療の現状と未来|AIが医療分野でできること・メリット・デメリットなど徹底解説” .EAGLYS株式会社 . 2023年3月6日閲覧 .^ “少数の患者のために。秘密計算AIが照らし出す、希少疾患のミライ|JOURNAL(先進事例や最新トレンド) ”. OPEN HUB for Smart World . 2025年2月19日閲覧。 ^ Wong, Matteo (2023年5月26日).“AI Is Unlocking the Human Brain’s Secrets” .The Atlantic (英語). 2023年5月27日閲覧 . ^ 深井, 朋樹 (2018). “脳回路研究とaiの融合に向けて” . ファルマシア 54 (9): 867–869. doi :10.14894/faruawpsj.54.9_867 . https://www.jstage.jst.go.jp/article/faruawpsj/54/9/54_867/_article/-char/ja . ^ AI Market 編集部 (2021年3月10日).“農業へのAI導入事例15選!スマート農業・自動化ロボットで変わる?【2023年最新版】” .AI Market . 2023年3月6日閲覧 . ^ “ “AIが勧める“あなたの一皿。6つの先進事例から学ぶフードテック最前線 前編|JOURNAL(リサーチやレポート)” .事業共創で未来を創るOPEN HUB for Smart World . 2023年3月6日閲覧 .^ Di Vaio, Assunta; Palladino, Rosa; Hassan, Rohail; Escobar, Octavio (2020-12). “Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review” . Journal of Business Research 121 : 283–314. doi :10.1016/j.jbusres.2020.08.019 . ISSN 0148-2963 . https://doi.org/10.1016/j.jbusres.2020.08.019 . ^ “プロンプトエンジニアリングとは何ですか? ”. Amazon. 2025年3月10日閲覧。 ^ Petroni, Fabio; Broscheit, Samuel; Piktus, Aleksandra; Lewis, Patrick; Izacard, Gautier; Hosseini, Lucas; Dwivedi-Yu, Jane; Lomeli, Maria et al. (2023-10). “Improving Wikipedia verifiability with AI” (英語). Nature Machine Intelligence 5 (10): 1142–1148. doi :10.1038/s42256-023-00726-1 . ISSN 2522-5839 . https://www.nature.com/articles/s42256-023-00726-1 . ^ “Problematic White House AI Policy, Parked Cruise Robotaxis, and more ” (英語). Problematic White House AI Policy, Parked Cruise Robotaxis, and more (2023年11月1日). 2023年12月1日閲覧。 ^ “Policy guidance on AI for children ” (英語). www.unicef.org . 2025年2月19日閲覧。 ^ “ヨハン・グルンドストローム・エリクソンと考える子どもの権利リスク - AIのリスク ”. Coursera . 2025年2月19日閲覧。 ^ “言語と機械学習 - 脳画像の専門家に聞く - コミュニケーション ”. Coursera . 2024年3月24日閲覧。 ^ “(特集) カリフォルニア州の自動運転レポートを解説 ~Waymo・Cruise・ZOOX・中国勢等~ ”. 2025年3月19日閲覧。 ^ “米カリフォルニア州で一般向け自動運転シャトルバスプロジェクト開始 ”. JETRO . 2025年3月19日閲覧。 ^ “カリフォルニア州の自動運転車試験が激減した理由 ”. 2025年3月19日閲覧。 ^ “無人運転バス、定着挑む 「レベル4」公道走行解禁 狭い道8割、コスト重荷 政府目標、25年度に50カ所 ”. 日本経済新聞 (2023年4月2日). 2025年2月19日閲覧。 ^ “音ゲーの“譜面”作りをAIで高速化 KLabが「スクスタ」で活用、所要時間を半分に” .ITmedia NEWS . 2021年9月1日閲覧 .^ “声優の不祥事にAIが代役で活躍--中国で進むAI音声の活用 ”. ZDNET Japan (2023年3月31日). 2023年9月26日閲覧。 ^ “AI配信者の「歌ってみた」流行──人気ストリーマーの音声学習に賛否両論集まる背景 ”. KAI-YOU Premium . 2023年9月26日閲覧。 ^ “コナン君に「#歌わせてみた」流行曲、実はAI偽音声…困惑する声優たち「対処しようがない」 ”. 読売新聞オンライン (2023年9月26日). 2023年9月26日閲覧。 ^ “中国で大当たりのAI歌手、著作権侵害の可能性も ”. japanese.cri.cn . 2023年9月26日閲覧。 ^ “PETER JACKSON TALKS THE BEATLES: GET BACK ”. D23 (2021年11月23日). 2023年11月11日閲覧。 ^ uDiscover Team (2022年9月7日). “ビートルズ『Revolver』新MIXや未発表音源等を加えたスペシャル版発売 ”. udiscovermusic.jp . UNIVERSAL MUSIC JAPAN. 2023年11月11日閲覧。 ^ “ビートルズ『Revolver』の新ミックス ピーター・ジャクソンなしではありえなかった ジャイルズ・マーティン語る ”. amass (2022年9月8日). 2023年11月11日閲覧。 ^ “The Beatles(ザ・ビートルズ)|最後の新曲「Now & Then」&ベスト・アルバム『赤盤』『青盤』2023エディションが発売 ”. TOWER RECORDS (2023年10月27日). 2023年11月11日閲覧。 ^ “ビートルズ最後の新曲「Now And Then」は11月2日発売 曲数追加の『赤盤』『青盤』も発売決定 ”. amass (2023年10月26日). 2023年11月11日閲覧。 ^ “NVIDIA Canvas: AI のパワーを活用する” .NVIDIA . 2021年7月10日閲覧 .^ “「アニメの絵を自動で描く」AIが出現――アニメーターの仕事は奪われるのか?” .ITmedia ビジネスオンライン . 2021年7月10日閲覧 .^ “漫画のカラー化、AIが肩代わり 精度100%ではなくても有用なワケ” .ITmedia NEWS . 2021年11月8日閲覧 .^ “「神絵が1分で生成される」 画像生成AI「Midjourney」が話題” .ITmedia NEWS . 2022年8月3日閲覧 .^ Heikkilä, Melissa (2022年9月16日).“This artist is dominating AI-generated art. And he's not happy about it” .MIT Technology Review . 2022年10月2日閲覧 . ^ “Search - Consensus: AI Search Engine for Research ”. consensus.app . 2023年12月8日閲覧。 ^ Menke, Joe; Roelandse, Martijn; Ozyurt, Burak; Martone, Maryann; Bandrowski, Anita (2020-11-20). “The Rigor and Transparency Index Quality Metric for Assessing Biological and Medical Science Methods” . iScience 23 (11): 101698. doi :10.1016/j.isci.2020.101698 . ISSN 2589-0042 . https://www.sciencedirect.com/science/article/pii/S2589004220308907 . ^ 渡辺二冠も王将戦で採用!対振りで最近人気のエルモ(elmo)囲いの組み方とは?【玉の囲い方 第63回】 - 日本将棋連盟 2019年3月28日配信^ Claudino, João Gustavo; Capanema, Daniel de Oliveira; de Souza, Thiago Vieira; Serrão, Julio Cerca; Machado Pereira, Adriano C.; Nassis, George P. (2019-12). “Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: a Systematic Review” (英語). Sports Medicine - Open 5 (1). doi :10.1186/s40798-019-0202-3 . ISSN 2199-1170 . PMC 6609928 . PMID 31270636 . https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-019-0202-3 . ^ Bykov, I. (2020年7月2日).“Artificial Intelligence as a Source of Political Thinking” .Journal of Political Research (英語).4 (2):23– 33.doi :10.12737/2587-6295-2020-23-33 .ISSN 2587-6295 . ^ “スティーブン・ホーキング博士「人工知能は人類の終焉を意味する」 ”. ハフポスト (2014年12月4日). 2025年2月19日閲覧。 ^ 「悪魔を呼び出すようなもの」イーロン・マスク氏が語る人工知能の危険性 ^ ビル・ゲイツ氏も、人工知能の脅威に懸念 ^ Geraci 2012 , pp. 1–2.^ Geraci 2012 , p. 64.^ Pandit, Puja (2022年12月9日).“Artificial Intelligence for peacebuilding - Opportunities & Challenges” .Vision of Humanity (アメリカ英語). 2022年12月23日閲覧 . ^ Zhang, Zonghe; Liao, Han-Teng; Wu, Xue; Xu, Zhichao (2020年4月1日).“A Scientometric Analysis of Artificial Intelligence and Big data for well-being and human potential” .IOP Conference Series: Materials Science and Engineering .806 (1).doi :10.1088/1757-899X/806/1/012026 .ISSN 1757-8981 . ^ “資産運用とAI ”. 三菱UFJ信託銀行 (2019年11月). 2025年7月17日閲覧。 ^ “TOSHIBA SPINEX Marketplace(日本) ”. www.spinex-marketplace.toshiba . 2025年7月17日閲覧。 ^ “運輸業向けAIソリューション | 株式会社アラヤ ” (2020年12月20日). 2025年7月17日閲覧。 ^ “AI電話サービス | ドコモビジネス | NTTコミュニケーションズ 法人のお客さま ”. www.ntt.com . 2025年7月17日閲覧。 ^ “第2編 第2章 3. (コラム) 業務改革を通じたコストコントロールと生産性向上|SMBCグループ二十年史 ”. SMBCグループ二十年史 . 2025年7月17日閲覧。 ^ “Google 検索ランキング システムのご紹介 | Google 検索セントラル | Documentation ”. Google for Developers . 2025年7月17日閲覧。 ^ “協調フィルタリングとベクトル検索エンジンを利用した商品推薦精度改善の試み | メルカリエンジニアリング ”. engineering.mercari.com (2023年6月12日). 2025年7月17日閲覧。 ^ “IBM Watsonを活用した保険金支払業務のさらなる高度化について|プレスリリース|かんぽ生命保険 ”. www.jp-life.japanpost.jp . 2025年7月17日閲覧。 ^ “A I に関する法的論点と 弁護士実務への影響 ”. 東京弁護士会 (2018年10月1日). 2025年7月17日閲覧。 ^ “気象庁における機械学習の利⽤ ”. 先端IT活用推進コンソーシアム (2016年9月16日). 2025年7月17日閲覧。 ^ “ヤマト運輸、「ルート最適化API」の導入で業務効率化と働き方改革を加速 ”. Google Cloud 公式ブログ . 2025年7月17日閲覧。 ^ “デジタル諜報戦争の時代:「ペンタゴン・FBIが顧客」「上場直後に株価4倍」CIAが出資する謎のビッグデータ諜報企業の正体 ”. 週刊エコノミスト Online . 2025年7月17日閲覧。 ^ Sakai, Masato; Sakurai, Akihisa; Lu, Siyuan; Olano, Jorge; Albrecht, Conrad M.; Hamann, Hendrik F.; Freitag, Marcus (2024-09-23). “AI-accelerated Nazca survey nearly doubles the number of known figurative geoglyphs and sheds light on their purpose” (英語). PNAS . doi :10.1073/pnas.2407652121 . https://research.ibm.com/publications/ai-accelerated-nazca-survey-nearly-doubles-number-of-known-figurative-geoglyphs-and-sheds-light-on-their-purpose . ^ Assael, Yannis; Sommerschield, Thea; Shillingford, Brendan; Bordbar, Mahyar; Pavlopoulos, John; Chatzipanagiotou, Marita; Androutsopoulos, Ion; Prag, Jonathan et al. (2022-03). “Restoring and attributing ancient texts using deep neural networks” (英語). Nature 603 (7900): 280–283. doi :10.1038/s41586-022-04448-z . ISSN 1476-4687 . https://www.nature.com/articles/s41586-022-04448-z . ^ “MITのAI、紀元前に消滅した言語を解読 ”. アクシオン|次世代経済メディア (2020年10月22日). 2025年7月18日閲覧。 ^ Simonite (2016) .^ Russell & Norvig (2021) , p. 987.^ Laskowski (2023) .^ ミン・スン. “ディープラーニングがもたらしたAIの新たな価値【第1回】 ”. デジタルクロス . 株式会社インプレス. 2023年6月18日閲覧。 ^ つばさ (2019年11月28日). “【7分でわかる】AI研究、60年の歴史を完全解説! ”. AI専門ニュースメディア AINOW . 2023年6月18日閲覧。 ^ “AI脅威論の正体と人とAIとの共生 ”. 総務省. 2023年6月14日閲覧。 ^ Russell & Norvig 2022 , pp. 49–50.^ Russell, Stuart (2017年8月30日).“Artificial intelligence: The future is superintelligent” .Nature (英語).548 (7669):520– 521.Bibcode :2017Natur.548..520R .doi :10.1038/548520a .ISSN 0028-0836 .S2CID 4459076 . ^ “Robotics: Ethics of artificial intelligence” .Nature (英語).521 :415– 418. 2015年5月27日.doi :10.1038/521415a .S2CID 4459076 .^ Russell, Stuart (2023年2月21日). “AI weapons: Russia’s war in Ukraine shows why the world must enact a ban”.Nature (英語).614 : ,620– 623.doi :10.1038/d41586-023-00511-5 . ^ GAO (2022) .^ Valinsky (2019) .^ Russell & Norvig (2021) , p. 991.^ Russell & Norvig (2021) , pp. 991–992.^ Christian (2020) , p. 63.^a b c d e f g h i 『AIテックを抑え込め! 健全で役立つAIを実現するために私たちがすべきこと』ゲイリー・マーカス ^ Vincent (2022) .^ Kopel, Matthew. “Copyright Services: Fair Use ” (英語). Cornell University Library . 2024年4月26日閲覧。 ^ Burgess, Matt. “How to Stop Your Data From Being Used to Train AI” (英語). Wired . ISSN 1059-1028 . https://www.wired.com/story/how-to-stop-your-data-from-being-used-to-train-ai/ 2024年4月26日閲覧。 . ^ Belanger, Ashley (2023年7月10日). “Sarah Silverman sues OpenAI, Meta for being "industrial-strength plagiarists" ” (英語). Ars Technica . 2023年9月21日時点のオリジナルよりアーカイブ 。2023年9月21日閲覧。 ^ Krithika, K. L. (2023年8月21日). “Legal Challenges Surround OpenAI: A Closer Look at the Lawsuits ” (英語). Analytics India Magazine . 2023年8月23日時点のオリジナルよりアーカイブ 。2023年8月23日閲覧。 ^ Abshire, Elisha (2023年7月6日). “OpenAI faces copyright lawsuit from authors Mona Awad and Paul Tremblay ” (英語). Dailyai.com . 2023年7月18日時点のオリジナルよりアーカイブ 。2023年7月19日閲覧。 ^ Belanger, Ashley (2023年9月20日). “Grisham, Martin join authors suing OpenAI: "There is nothing fair about this" [Updated ]” (英語). Ars Technica . 2023年9月21日時点のオリジナルよりアーカイブ 。2023年9月21日閲覧。 ^ Korn, Jennifer (2023年9月20日). “George R. R. Martin, Jodi Picoult and other famous writers join Authors Guild in class action lawsuit against OpenAI ” (英語). CNN Business . 2023年9月21日時点のオリジナルよりアーカイブ 。2023年9月21日閲覧。 ^ “NY Times sues OpenAI, Microsoft for infringing copyrighted works” . Reuters . (2023年12月27日). オリジナル の2023年12月30日時点におけるアーカイブ。. https://web.archive.org/web/20231230163134/https://www.reuters.com/legal/transactional/ny-times-sues-openai-microsoft-infringing-copyrighted-work-2023-12-27/ 2023年12月27日閲覧。 ^ “AI Innovations ”. Futurepedia. 2024年5月16日時点のオリジナル よりアーカイブ。2024年9月13日閲覧。 ^ “G7 競争サミット・デジタル競争共同宣言 ”. 2024年10月4日閲覧。 ^ “Thomson Reuters Enterprise Centre GmbH et al v. ROSS Intelligence Inc.; Case: 20-613; ”. United States District Court, District of Delaware. . 2025年2月11日閲覧。 ^ “Court: Training AI Model Based on Copyrighted Data Is Not Fair Use as a Matter of Law ”. The National Law Review . 2025年2月11日閲覧。 ^ “対AI企業の著作権訴訟でトムソン・ロイター側が勝利。AI訓練目的での「フェアユース」認められず ”. The National Law Review . 2025年2月13日閲覧。 ^a b “「動画生成AIのSoraは無断学習中止を」 国内団体、OpenAIに要望 ”. 日本経済新聞 (2025年10月28日). 2025年11月5日閲覧。 ^ “OpenAI社に「Sora 2」の運用に関する要望書を提出 ”. コンテンツ海外流通促進機構 (2025年10月28日). 2025年11月5日閲覧。 ^ Nicas (2018) .^ “Trust and Distrust in America ”. Pew Research Center (2019年7月22日). 2024年2月22日時点のオリジナル よりアーカイブ。2025年2月19日閲覧。 ^ Williams (2023) .^ Taylor & Hern (2023) .^ “トランプ政権で少数独裁到来 「ハイテク産業複合体」に警鐘―バイデン氏退任演説・米 ”. 時事通信 . 2025年1月16日閲覧。 ^ Sample (2017) .^ “Black Box AI ” (英語). Techopedia (2025年1月21日). 2025年2月19日閲覧。 ^ Christian (2020) , p. 110.^ Christian (2020) , pp. 88–91.^ Christian (2020 , p. 83);Russell & Norvig (2021 , p. 997)^ Christian (2020) , p. 91.^ Christian (2020) , p. 83.^ Verma (2021) .^ Rothman (2020) .^ Christian (2020) , pp. 105–108.^ Christian (2020) , pp. 108–112.^ Chayka, Kyle (2025年9月13日). “AIは人類の思考を均質化している:研究結果 ”. WIRED.jp . 2025年12月28日閲覧。 ^ 日経ビジネス電子版 (2025年8月22日). “AIの普及は均質化の源泉に 革新は人の生む「異質性」にあり ”. 日経ビジネス電子版 . 2025年12月28日閲覧。 ^a b “生成AIで就活生のエントリーシートが均質化? 書類選考の廃止続々:朝日新聞 ”. 朝日新聞 (2025年12月28日). 2025年12月28日閲覧。 ^a b Rose (2023) . ^ CNA (2019) .^ Goffrey (2008) , p. 17.^ Berdahl et al. (2023) ;Goffrey (2008 , p. 17);Rose (2023) ;Russell & Norvig (2021 , p. 995)^ Christian (2020) , p. 25.^ Russell & Norvig (2021) , p. 995.^ Grant & Hill (2023) .^ Larson & Angwin (2016) .^ Christian (2020) , p. 67–70.^ Christian (2020 , pp. 67–70);Russell & Norvig (2021 , pp. 993–994)^ Russell & Norvig (2021 , p. 995);Lipartito (2011 , p. 36);Goodman & Flaxman (2017 , p. 6);Christian (2020 , pp. 39–40, 65)^ Quoted inChristian (2020 , p. 65). ^ Luhby, Tami; Duffy, Claire (2024年12月6日). “Following killing of UnitedHealthcare CEO, stories flood social media of denied insurance claims” (英語). CNN . https://edition.cnn.com/2024/12/06/business/insurance-claim-denials-unitedhealthcare-ceo/index.html 2024年12月6日閲覧。 ^ Luhby, Tami; Duffy, Claire (2024年12月6日). “Following killing of UnitedHealthcare CEO, stories flood social media of denied insurance claims” (英語). CNN . https://edition.cnn.com/2024/12/06/business/insurance-claim-denials-unitedhealthcare-ceo/index.html 2024年12月6日閲覧。 ^ “Electricity 2024 – Analysis ” (英語). IEA (2024年1月24日). 2024年7月13日閲覧。 ^ Calvert, Brian (2024年3月28日). “AI already uses as much energy as a small country. It’s only the beginning. ” (英語). Vox . 2025年2月19日閲覧。 ^ Bender, Emily M.; Gebru, Timnit; McMillan-Major, Angelina; Shmitchell, Shmargaret (2021-03-01). “On the Dangers of Stochastic Parrots: Can Language Models be Too Big? 🦜” . Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency . FAccT '21. New York, NY, USA: Association for Computing Machinery. pp. 610–623. doi :10.1145/3442188.3445922 . ISBN 978-1-4503-8309-7 . https://dl.acm.org/doi/10.1145/3442188.3445922 ^ Dhar, Payal (2020-08-01). “The carbon impact of artificial intelligence” (英語). Nature Machine Intelligence 2 (8): 423–425. doi :10.1038/s42256-020-0219-9 . ISSN 2522-5839 . オリジナル の2024-08-14時点におけるアーカイブ。. https://web.archive.org/web/20240814145516/https://www.nature.com/articles/s42256-020-0219-9 . ^ Halper, Evan; O'Donovan, Caroline (2024年6月21日). “AI is exhausting the power grid. Tech firms are seeking a miracle solution.” (英語). Washington Post . https://www.washingtonpost.com/business/2024/06/21/artificial-intelligence-nuclear-fusion-climate/?utm_campaign=wp_post_most&utm_medium=email&utm_source=newsletter&wpisrc=nl_most&carta-url=https%3A%2F%2Fs2.washingtonpost.com%2Fcar-ln-tr%2F3e0d678%2F6675a2d2c2c05472dd9ec0f4%2F596c09009bbc0f20865036e7%2F12%2F52%2F6675a2d2c2c05472dd9ec0f4 ^ Tyler Kendall (2024年9月30日). “エヌビディアCEO「原発は良い選択肢」、データセンター電力供給で ”. Bloomberg.com . 2025年2月19日閲覧。 ^ 望月崇; 小田翔子 (2024年10月18日). “エヌビディア出資の日本企業、原発近くでAIデータセンター新設検討” . ブルームバーグ. https://www.bloomberg.co.jp/news/articles/2024-10-18/SLHGKKT0AFB400 ^ “Microsoft、スリーマイル島原発の電力を独占購入へ—AI需要に対応する20年契約” . Ledge Inc. (2024年9月27日). https://ledge.ai/articles/microsoft_three_mile_island_ai_power_agreement_2024 ^ “米グーグルやアマゾンが小型モジュール原子炉からの電力購入などを発表” . 日本貿易振興機構 (ジェトロ). (2024年10月17日). https://www.jetro.go.jp/biznews/2024/10/9f4e0fc76c0a2f04.html ^ “原発被災地にデータセンター、AI半導体で新産業育成” . 日本経済新聞. (2024年9月18日). https://www.nikkei.com/article/DGXZQOCC178WJ0X10C24A9000000/ ^ “AI Data Centers and the Coming YS Power Demand Surge ”. Goldman Sachs . 2024年5月3日時点のオリジナル よりアーカイブ。2025年2月19日閲覧。 ^ Ryan, Carol (2024年4月12日). “Energy-Guzzling AI Is Also the Future of Energy Savings ” (英語). WSJ . 2025年2月19日閲覧。 ^ Russell & Norvig (2021) , p. 989.^a b Russell & Norvig (2021) , pp. 987–990. ^ Russell & Norvig (2021) , p. 988.^ Robitzski (2018) ;Sainato (2015) ^ Harari (2018) .^ Buckley, Chris; Mozur, Paul (2019年5月22日). “How China Uses High-Tech Surveillance to Subdue Minorities” (英語). The New York Times . ISSN 0362-4331 . https://www.nytimes.com/2019/05/22/world/asia/china-surveillance-xinjiang.html 2025年2月19日閲覧。 ^ “Security lapse exposed a Chinese smart city surveillance system ” (2019年5月3日). 2021年3月7日時点のオリジナルよりアーカイブ 。2020年9月14日閲覧。 ^ Urbina et al. (2022) .^a b E. McGaughey, 'Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy' (2022),51(3) Industrial Law Journal 511–559 .Archived 27 May 2023 at theWayback Machine .. ^ Ford & Colvin (2015) ;McGaughey (2022) ^ IGM Chicago (2017) .^ Arntz, Gregory & Zierahn (2016) , p. 33.^ Lohr (2017) ;Frey & Osborne (2017) ;Arntz, Gregory & Zierahn (2016 , p. 33)^ Morgenstern (2015) .^ Zhou, Viola (2023年4月11日). “AI is already taking video game illustrators' jobs in China ”. Rest of World . 2024年2月21日時点のオリジナルよりアーカイブ 。2023年8月17日閲覧。 ^ Carter, Justin (2023年4月11日). “China's game art industry reportedly decimated by growing AI use ”. Game Developer . 2023年8月17日時点のオリジナルよりアーカイブ 。2023年8月17日閲覧。 ^ “Data Points: Report claims AI will create millions of net jobs ” (英語). Data Points: Report claims AI will create millions of net jobs (2025年1月13日). 2025年1月17日閲覧。 ^ “AIに奪われる職はわずか5%、MITの著名経済学者が現実チェック ”. Bloomberg . 2024年10月3日閲覧。 ^ “MITのアセモグル教授が、AI開発に警戒する理由 ”. 独立行政法人経済産業研究所 . 2023年6月26日閲覧。 ^ “「人間の主体性奪うAI開発を抑制せよ」MITアセモグル教授の警鐘 ”. 日経ビジネス . 2023年5月12日閲覧。 ^ “Big Tech is spending more than VC firms on AI startups ” (英語). Ars Technica (2023年12月27日). 2024年1月10日時点のオリジナルよりアーカイブ 。2025年2月19日閲覧。 ^ “The Future of AI Is GOMA ” (英語). The Atlantic (2023年10月24日). 2024年1月5日時点のオリジナルよりアーカイブ 。2025年2月19日閲覧。 ^ “Big tech and the pursuit of AI dominance” . The Economist . (2023年3月26日). オリジナル の2023年12月29日時点におけるアーカイブ。. https://web.archive.org/web/20231229021351/https://www.economist.com/business/2023/03/26/big-tech-and-the-pursuit-of-ai-dominance ^ Fung, Brian (2023年12月19日). “Where the battle to dominate AI may be won” (英語). CNN Business . オリジナル の2024年1月13日時点におけるアーカイブ。. https://web.archive.org/web/20240113053332/https://www.cnn.com/2023/12/19/tech/cloud-competition-and-ai/index.html ^ Metz, Cade (2023年7月5日). “In the Age of A.I., Tech's Little Guys Need Big Friends” . The New York Times . https://www.nytimes.com/2023/07/05/business/artificial-intelligence-power-data-centers.html ^ Cellan-Jones (2014) .^ Russell & Norvig 2021 , p. 1001.^ Bostrom (2014) .^ Russell (2019) .^ Bostrom (2014) ;Müller & Bostrom (2014) ;Bostrom (2015) .^ Trisnawati, Winda; Putra, Randi Eka; Balti, Levandra (2023-11-10). “The Impact of Artificial Intelligent in Education toward 21st Century Skills: A Literature Review” (英語). PPSDP International Journal of Education 2 (2): 501–513. doi :10.59175/pijed.v2i2.152 . ISSN 2829-5196 . http://ejournal.ppsdp.org/index.php/pijed/article/view/152 . ^ Harari (2023) .^ Leaders' concerns about the existential risks of AI around 2015:Rawlinson (2015) ,Holley (2015) ,Gibbs (2014) ,Sainato (2015) ^ “"Godfather of artificial intelligence" talks impact and potential of new AI” . CBS News . (2023年3月25日). オリジナル の2023年3月28日時点におけるアーカイブ。. https://web.archive.org/web/20230328225221/https://www.cbsnews.com/video/godfather-of-artificial-intelligence-talks-impact-and-potential-of-new-ai 2023年3月28日閲覧。 ^ Pittis, Don (2023年5月4日). “Canadian artificial intelligence leader Geoffrey Hinton piles on fears of computer takeover” . CBC . オリジナル の2024年7月7日時点におけるアーカイブ。. https://web.archive.org/web/20240707032135/https://www.cbc.ca/news/business/ai-doom-column-don-pittis-1.6829302 2024年10月5日閲覧。 ^ “'50–50 chance' that AI outsmarts humanity, Geoffrey Hinton says ”. Bloomberg BNN (2024年6月14日). 2024年7月6日閲覧。 ^ Valance (2023) .^ Taylor, Josh (2023年5月7日). “Rise of artificial intelligence is inevitable but should not be feared, 'father of AI' says” . The Guardian . オリジナル の2023年10月23日時点におけるアーカイブ。. https://web.archive.org/web/20231023061228/https://www.theguardian.com/technology/2023/may/07/rise-of-artificial-intelligence-is-inevitable-but-should-not-be-feared-father-of-ai-says 2023年5月26日閲覧。 ^ Colton, Emma (2023年5月7日). “'Father of AI' says tech fears misplaced: 'You cannot stop it'” . Fox News . オリジナル の2023年5月26日時点におけるアーカイブ。. https://web.archive.org/web/20230526162642/https://www.foxnews.com/tech/father-ai-jurgen-schmidhuber-says-tech-fears-misplaced-cannot-stop 2023年5月26日閲覧。 ^ Jones, Hessie (2023年5月23日). “Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life's Work Won't Lead To Dystopia” . Forbes . オリジナル の2023年5月26日時点におけるアーカイブ。. https://web.archive.org/web/20230526163102/https://www.forbes.com/sites/hessiejones/2023/05/23/juergen-schmidhuber-renowned-father-of-modern-ai-says-his-lifes-work-wont-lead-to-dystopia/ 2023年5月26日閲覧。 ^ McMorrow, Ryan (2023年12月19日). “Andrew Ng: 'Do we think the world is better off with more or less intelligence?'” . Financial Times . オリジナル の2024年1月25日時点におけるアーカイブ。. https://web.archive.org/web/20240125014121/https://www.ft.com/content/2dc07f9e-d2a9-4d98-b746-b051f9352be3 2023年12月30日閲覧。 ^ Levy, Steven (22 Dec 2023). “How Not to Be Stupid About AI, With Yann LeCun” . Wired . オリジナル の28 December 2023時点におけるアーカイブ。. https://web.archive.org/web/20231228152443/https://www.wired.com/story/artificial-intelligence-meta-yann-lecun-interview/ 2023年12月30日閲覧。 . ^ Arguments that AI is not an imminent risk:Brooks (2014) ,Geist (2015) ,Madrigal (2015) ,Lee (2014) ^ Christian (2020) , pp. 67, 73.^ “The Strange Disappearance of an Anti-AI Activist ”. The Atlantic . 2026年1月17日閲覧。 ^a b “How to be ‘anti-AI’ in the 21st century: overcoming the inevitability narrative ”. University of Birmingham, UK . 2026年1月17日閲覧。 ^a b c d “「反AIマーケティング」が世界で拡大──Dove・Polaroid・Aerieに見る“人間らしさ”の逆襲 ”. Amp . 2026年1月17日閲覧。 ^ “An Anti-A.I. Movement Is Coming. Which Party Will Lead It? ”. The NewYork Times . 2026年1月17日閲覧。 ^ “静かに広がる「アンチ深層学習」「アンチAI」 ”. 日経ビジネス . 2026年1月17日閲覧。 ^a b “クリエイターに聞く、「Procreate」の反AI声明に共感が広がる理由 ”. CNET . 2026年1月17日閲覧。 ^ “Robots sacked, screenings shut down: a new movement of luddites is rising up against AI ”. The Guardian . 2026年1月17日閲覧。 ^ “Why 2026 could be the year of anti-AI marketing ”. CNN . 2026年1月17日閲覧。 ^ “The hot new trend in marketing: hating on AI ”. Business Insider . 2026年1月17日閲覧。 ^ “The hot new trend in marketing: hating on AI ”. Business Insider . 2026年1月17日閲覧。 ^a b “"Why Fears of a Trillion-Dollar AI Bubble Are Growing" ”. "bloomberg" (2025年11月24日). 2025年11月28日閲覧。 ^ “"NVIDIA「循環投資」とAI株のリスク 収益力弱くとも膨らむ市場" ”. "日経新聞" (2025年10月20日). 2025年11月28日閲覧。 ^ “"AI企業の「循環取引」はバブルの兆候か" ”. "毎日新聞" (2025年10月30日). 2025年11月28日閲覧。 ^ “"売上高の9割が虚構だった上場AIベンチャー オルツ" ”. "日経BP" (2025年9月25日). 2025年11月28日閲覧。 ^ “"期待の新興企業、実態伴わず 旧経営陣逮捕、問われる上場審査―オルツ粉飾決算・東京地検" ”. "時事通信" (2025年10月12日). 2025年11月28日閲覧。 ^ “"オルツ元社長ら4人告発" ”. "中国新聞" (2025年10月28日). 2025年11月28日閲覧。 ^ “[https://prtimes.jp/main/html/rd/p/000000111.000111359.html "オルツ、経済産業省およびNEDOによる国内生成AIの開発力強化プロジェクト「GENIAC」に採択~労働力の補完とパーソナルAIの実現を目的とした、世界最高性能の日本語言語処理技術の研究を推進~"]”. "PRTIMES" (2024年10月21日). 2025年11月28日閲覧。 ^ 情報通信白書 2024 , pp. 52, 59.^ 情報通信白書 2024 , p. 59.^ EU日本政府代表部 2024 , p. 1.^ EU日本政府代表部 2024 , pp. 1, 40.^ EU日本政府代表部 2024 , p. 4.^ EU日本政府代表部 2024 , p. 3.^ EU日本政府代表部 2024 , pp. 10, 28.^ 野口ケルビン (米国特許弁護士) (2024年11月1日). “AIトレーニングデータは著作権保護対象外?:ドイツにおける初の判決が示唆するポストAIの世界とアメリカとの違い ”. Open Legal Community (知財メディアサイト) . 2024年11月9日閲覧。 ^ Ehle, Kristina (弁護士事務所パートナー); Tüzün, Yeşim (弁護士事務所アソシエート).“To Scrape or Not to Scrape? First Court Decision on the EU Copyright Exception for Text and Data Mining in Germany” [データ収集すべきか否か? ドイツでテキストおよびデータマイニング (TDM) に関するEU著作権例外規定の初判決] (英語). Morrison & Foerster LLP. (法律事務所). 2024年11月9日閲覧 . ^ “2024 WIPO IP Judges Forum Informal Case Summary – Hamburg Regional Court, Germany [2024 : Robert Kneschke v. LAION e.V., Case No. 310 O 227/23]” [2024年 WIPO 知的財産法フォーラム用非公式判例要約 - 2024年ドイツ・ハンブルク地裁: ロベルト・クネシュケ対LAION (事件番号: 310 O 227/23)] (英語). WIPO . 2024年11月9日閲覧。 ^a b 柏木亮二 (野村総合研究所 IT事業戦略分析 エキスパート研究員)『AIイノベーション 日本型生成AI規制の可能性 』(PDF)(レポート)野村総合研究所 、2024年9月、10–11頁。https://www.nri.com/-/media/Corporate/jp/Files/PDF/knowledge/publication/kinyu_itf/2024/09/itf_202409_05.pdf 。 ^ Fried, Ina (2024年7月17日). “Scoop: Meta won't offer future multimodal AI models in EU ” [スクープ: Meta社はマルチもダルAIモデルをEUに提供しない方針] (英語). Axios Media. 2024年11月18日時点のオリジナルよりアーカイブ 。2024年11月19日閲覧。 ^a b 田口和裕 (2024年7月19日). “AI大手、規制警戒で“EU離れ” メタもマルチモーダルAI提供見送りへ ”. ASCII x AI . 角川アスキー総合研究所. 2024年9月26日時点のオリジナルよりアーカイブ 。2024年11月19日閲覧。 ^ デジタル庁 「世界で進むデータ駆動社会への戦略的取組 」(PDF)『令和4年9月6日データ戦略推進WG第4回 資料2』、デジタル庁 、5頁、2022年9月6日。https://www.digital.go.jp/assets/contents/node/basic_page/field_ref_resources/b565c818-75f4-4990-9125-dd43af8362ba/6aa338b4/20220906_meeting_data_strategy_outline_02.pdf 。 ^a b c Will Knight 2019 . ^a b 高橋ミレイ 2019 , p. 後編. ^a b c 塚本紺 2017 , p. 2017年10月5日 20時0分. ^ Kurzweil, Singularity (2005) p. 260 ^ Searle, John (1980), "Minds, Brains and Programs", Behavioral and Brain Sciences, 3 (3): 417–457, doi:10.1017/S0140525X00005756, ^ Daniel Dennett (1991). "Chapter 14. Consciousness Imagined". Consciousness Explained. Back Bay Books. pp. 431–455. ^ Ipe, Navin (2021年6月2日),Facts and Anomalies to Keep in Perspective When Designing an Artificial Intelligence ,doi :10.36227/techrxiv.12299945 ^ 合原 et al. 2017 , p. 34.^ 合原 et al. 2017 , p. 38.^a b 合原 et al. 2017 , p. 42. ^ 合原 et al. 2017 , pp. 46–47.^ “人間より有能なAIの存在は「幻想」に過ぎない ”. 東洋経済オンライン (2016年8月29日). 2023年12月3日閲覧。 ^ “講談社選書メチエ AI原論―神の支配と人間の自由 ”. 紀伊國屋書店ウェブストア|オンライン書店|本、雑誌の通販、電子書籍ストア . 2023年12月2日閲覧。 ^ “人間より有能なAIの存在は「幻想」に過ぎない ”. 東洋経済オンライン (2016年8月29日). 2023年12月4日閲覧。 ^a b “Hopes for 2024 from Anastasis Germanidis, Sara Hooker, Percy Liang, Sasha Luccioni, Pelonomi Moiloa, Kevin Scott ” (英語). Hopes for 2024 from Anastasis Germanidis, Sara Hooker, Percy Liang, Sasha Luccioni, Pelonomi Moiloa, Kevin Scott (2023年12月27日). 2023年12月28日閲覧。 ^a b “AI For Everyone ”. Coursera . 2023年11月30日閲覧。 ^a b “A beginner’s guide to demystifying the buzzword- AI ”. www.linkedin.com . 2023年11月30日閲覧。 ^ “AI Can Learn From Simple Tasks to Solve Hard Problems ” (英語). AI Can Learn From Simple Tasks to Solve Hard Problems (2021年9月29日). 2023年12月11日閲覧。 学術書・辞事典 教育研究機関・研究開発機関 政府機関 報道 英語資料 関連項目 が多すぎます。
関連の深い項目だけに絞ってください。(2023年10月 )
教育研究・研究開発
研究開発・応用科学
開発事例・応用事例
研究課題
関連分野
深層学習・機械学習に関連する数学、物理学
AIに関する哲学的項目