| この記事は 英語版の対応するページを翻訳することにより充実させることができます。(2024年5月)翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。 - 英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。
- 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。
- 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。
- 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。
- 翻訳後、
{{翻訳告知|en|Median|…}}をノートに追加することもできます。 - Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります。
|
中央値(ちゅうおうち、英:median)あるいは中位数(ちゅういすう)、メジアン、メディアンとは、データや集合の代表値の一つで、順位が中央である値のことである。ただし、データの大きさが偶数の場合は、中央順位2個の値の算術平均をとる。
例えば5人の年齢10歳、32歳、96歳、100歳、105歳からなるデータの中央値は、順位が上からも下からも3である96(歳)となる。0歳の子供が2人増えて7人になると、中央値は32歳となる。
最頻値・中央値・平均値の図示中央値は平均値と同様に集団の代表値を得る目的で使う。例えば年収からなるデータの場合を考えてみると分かりやすい。
一部の富裕層が平均年収をつり上げてしまう例を考える。人口100人の集落で、90人が年収200万円だとしても、10人が年収5000万円であれば平均年収は680万円となる。
一方中央値は、年収が低い順(高い順)に国民を並べたときにちょうど真ん中になる人の年収を表している。この場合、中央値はあいかわらず200万円であり、一部の富裕層の年収が中央値に与える影響はない。
例えば1人の億万長者が人口の少ない町に引っ越してくれば平均年収はつり上がってしまうが、年収の中央値はせいぜい1順位上がるに過ぎない。
実確率変数X の累積分布関数をF(x) とするとき、F(x) は実数値非単調減少関数、右連続関数となる。この時、次の不等式を満たす実数m を中央値(メディアン)と呼ぶ。

ただし、積分記号はリーマン=スティルチェス積分の意味である。
データの大きさが有限値(n とする)である場合は、以下のように簡単に記述することができる。(ただし、同一の順位が無いと仮定する。)
データの値をx1,x2, …,xn とする。それらを小さい順に並べ替えたものをx′1,x′2, …,x′n とするとき、
の中央値
は

により定義される。なお、単純に
とならないのは、
の添字が0, …,n ではなく1, …,n だからである。
中央値は平均絶対誤差(英語版) (mean absolute error, MAE)

を最小にする性質をもっている(ただし、そうなる値は一意ではない)。データの大きさが偶数のときは、その値t は一意には定まらないが便宜上、上で述べた定義を採用する。
1次元の確率分布f(x) に対し、

を満たすm を、中央値と呼ぶ。