Tra i massimi esponenti del pensiero occidentale, nonché una delle poche figure di "genio universale", la sua applicazione intellettuale a quasi tutte le discipline del sapere ne rende l'opera vastissima e studiata ancor oggi trasversalmente[2]: a lui e aIsaac Newton vengono generalmente attribuiti l'introduzione e i primi sviluppi delcalcolo infinitesimale, in particolare il concetto diintegrale, per il quale si usano ancora oggi molte sue notazioni, i termini "dinamica"[3] e "funzione",[4] che egli usò per individuare le proprietà di unacurva, tra cui l'andamento, lapendenza, lacorda, laperpendicolare in unpunto.
Considerato il precursore dell'informatica, dellaneuroinformatica e del calcolo automatico, fu inventore di unacalcolatrice meccanica dettaMacchina di Leibniz; inoltre alcuni ambiti della sua filosofia aprirono numerosi spiragli sulla dimensione dell'inconscio che solo nelXIX secolo si riconoscerà come realtà istintuale effettiva, specialmente negli scritti antesignani diNietzsche, ma che si tenterà di formalizzare scientificamente solo nelXX secolo, conSigmund Freud.
Lipsia: Scuola di san Nicola, che Leibniz frequentò per sei anni
Leibniz nacque, secondo ilcalendario giuliano, ancora vigente nei territoriprotestanti delSacro Romano Impero, il 21 giugno[5] 1646 aLipsia e due giorni dopo fu battezzato nella chiesa di San Nicola (Lipsia).[6] Il padre Friedrich Leibnütz (1597–1652), nativo diAltenberg, era un giurista e professore dietica presso l'Università di Lipsia, la madre Caterina era figlia del professore e giurista di Lipsia Wilhelm Schmuck; la famiglia paterna era di originesoraba e il suo cognome originario era Lubeniecz, poi germanizzato in Leibnütz e infine in Leibniz.[7][8]
Tra gli otto e i dodici anni di età Leibniz, con l'aiuto della biblioteca paterna, apprese da autodidatta le linguelatina egreca. Dal 1655 al 1661 frequentò la Scuola di San Nicola a Lipsia. Nel 1661 s'iscrisse all'Università di Lipsia e intraprese gli studi filosofici, seguendo i corsi del teologo Johann Adam Schertzer[9] e del filosofo teoreticoJakob Thomasius. Il 20 giugno 1663 si immatricolò all'Università di Jena, dove studiòmatematica,fisica e astronomia sotto la guida diErhard Weigel.
A 20 anni volle conseguire la laurea in diritto, ma il Decano della facoltà si oppose sostenendo che era troppo giovane;[10] per aggirare l'ostacolo il 4 ottobre 1666 si immatricolò aNorimberga presso l'Università di Altdorf, dove il 15 novembre presentò la sua tesiDisputatio de casi perplexibus in jure, sotto la docenza del giuristaJohann Wolfgang Textor, ottenendo il 22 febbraio 1667 il titolo diJuris Utriusque Doctor.[11]
Nel 1667 divenne segretario di una società segreta dialchimisti, però giunse presto a ridicolizzare i loro esperimenti.[12]
Successivamente fino al 1672 fu al servizio dell'arcivescovo diMagonzaJohann Philipp von Schönborn. Durante il periodo trascorso aMagonza visse a Boyneburger Hof, la residenza del maresciallo dell'Elettorato di Magonza Johann Christian von Boyneburg, che riuscì a procurargli un posto di collaboratore del consigliere di corte Hermann Andreas Lasser. Insieme con Lasser lavorò a una riforma del diritto romano (Corpus juris reconcinnatum), un compito affidatogli dal principe elettore. La sua opera del 1667Nova methodus discendae docendaeque jurisprudentiae (Il nuovo metodo di apprendere e insegnare la giurisprudenza) ottenne nei circoli specializzati un buon apprezzamento.
Nel 1670 Leibniz, nonostante la sua fede luterana, salì al grado di consigliere presso il tribunale supremo di appello.[13] Nel 1672, su incarico di Boyneburg, Leibniz si recò a Parigi come diplomatico e vi rimase fino al 1676. In questo periodo fa la conoscenza diChristian Huygens, sotto la cui guida approfondì gli studi di matematica e di fisica. Durante il suo soggiorno a Parigi, sottopose aLuigi XIV un piano per una campagna di occupazione dell'Egitto,[14] per distoglierlo dalle guerre di occupazione in Europa, ma il re respinse il progetto. Nel 1672/73 completò il suo progetto dellaprima calcolatrice meccanica in grado di eseguiremoltiplicazioni edivisioni, che presentò allaRoyal Society diLondra.
Nel 1682–1686 Leibniz si occupò dei problemi tecnici delle miniere dell'Oberharz; egli si recava frequentemente aClausthal e diede numerosi consigli per il miglioramento delle miniere.[18]
Copia del busto di Leibniz nelLeibniztempel a Hannover
Dal 1685 Leibniz viaggiò attraverso l'Europa per conto del casato deiWelfen allo scopo di scrivere una storia di quella famiglia; nel 1688 ebbe l'occasione di ottenere udienza aVienna dall'imperatoreLeopoldo I d'Asburgo e gli espose i suoi piani per una riforma monetaria, del commercio e dell'industria, per il finanziamento delle guerre turche, la costruzione degli archivi imperiali e molte altre cose, ma tutto ciò gli procurò solo grande attenzione da parte dell'Imperatore.
Nel 1698 andò ad abitare a Hannover, nella casa che oggi da lui prende il nome; qui egli poco dopo accolse il suo allievo e segretarioRafael Levi.[19]
Nel 1700, dopo trattative con il principe elettore del BrandeburgoFederico III, il futuro re Federico I di Prussia, furono realizzati i progetti per un'Accademia Reale Prussiana delle Scienze, sul modello di quelle francese e inglese. L'accademia venne fondata con il sostegno della moglie di Federico,Sofia Carlotta, alla cui corte nelcastello di Charlottenburg Leibniz fu frequentemente ospite, ed egli ne fu il primo presidente.
Nel 1704 vi furono aDresda trattative per la fondazione di un'accademia sassone. Egli fondò in totale tre accademie, che sono ancor oggi attive: la Società brandeburghese delle Scienze[20] (oggi ancora attiva come Società berlinese delle Scienze e anche comeAccademia delle scienze di Berlino) come le accademie di Vienna e di San Pietroburgo.
Gottfried Wilhelm Leibniz fu, presumibilmente verso la fine del 1711, elevato al rango di nobile dall'imperatoreCarlo VI con il titolo di barone,[21] ma tuttavia ne manca la relativa documentazione.
Poco prima della sua morte i rapporti con la casa di Hannover, ora guidata daGiorgio I Ludovico, si raffreddarono.
Lapide commemorativa nella chiesa luterana di San Giovanni a Hannover
Leibniz, sempre più solo, morì aHannover il 14 novembre 1716, all'età di 70 anni e la sua salma venne inumata nella chiesa luterana di San Giovanni. La cornice in cui si svolse la cerimonia della sepoltura è controversa. Molti sostengono che la salma fosse accompagnata solo dal suo segretario[22] e che nessun prete abbia accompagnato la sepoltura.[23]
Al contrario Johann Georg von Eckhart (suo segretario e collaboratore dalla fine del 1698) e Johann Hermann Vogler (suo ultimo assistente ecopista) sostengono che la sepoltura abbia avuto luogo il 14 dicembre 1716 con la partecipazione del predicatore di corte David Rupert Erythropel.[24] Eckhart, che pochi giorni dopo la morte di Leibniz fu nominato Consigliere di corte e suo successore come bibliotecario e storiografo del casato degli Hannover,[25] racconta che tutti i colleghi, gli impiegati di corte, erano stati invitati alla sepoltura, ma che solo lui stesso vi partecipò come unico rappresentante del suostato sociale.[26]
Sulla bara il consigliere Eckhart fece apporre un ornamento che mostrava un 1 all'interno di uno 0, con l'iscrizioneOMNIA AD UNUM, quale indicazione del sistema numerico binario sviluppato da Leibniz.[27]
«Nulla va considerato come un male assoluto: altrimenti Dio non sarebbe sommamente sapiente per afferrarlo con la mente, oppure non sarebbe sommamente potente per eliminarlo.»
(Gottfried Leibniz, Lettera a Magnus Wedderkopf - maggio 1671)
Nel 1673 Leibniz presentò allaRoyal Society diLondra il progetto dellaprima calcolatrice meccanica in grado di eseguiremoltiplicazioni edivisioni. L'innovazione principale rispetto allapascalina e alla calcolatrice diSchickard (peraltro ignota all'epoca), che erano essenzialmente delle "addizionatrici", fu l'introduzione del traspositore, che permetteva di "memorizzare" un numero per sommarlo ripetutamente[28]. L'invenzione gli fruttò l'ammissione alla Royal Society, ma non ebbe immediata applicazione per le difficoltà costruttive, all'epoca insormontabili. Solo nel 1820Xavier Thomas de Colmar riuscì a produrre la prima calcolatrice commerciale, l'aritmometro, basato su un progetto quasi identico. Il cilindro traspositore di Leibniz, sia pur modificato, fu poi l'elemento principale di molte calcolatrici successive, fino allaCurta.
Un'altra grande intuizione di Leibniz fu alla base del primo tentativo di costruire una calcolatrice che utilizzava ilsistema numerico binario, peraltro già introdotto daJuan Caramuel. La macchina funzionava con dellebiglie. La presenza o meno di una biglia in una posizione determinava il valore 1 o 0. Anche questa idea non ebbe un seguito immediato e si dovette attendereGeorge Boole e lo sviluppo deicalcolatori elettronici perché venisse ripresa e sviluppata.
Leibniz fu il primo a far conoscere in Europa l'antico testo cineseI Ching con la sua pubblicazione del 1697Novissima sinica (Ultime notizie dalla Cina). Leibniz vide in quel simbolismo (linea spezzata = 0; linea unita = 1) un perfetto esempio dinumerazione binaria come illustrò nel suo saggio del 1705,Spiegazione dell'aritmetica binaria. Il sistema numerico posizionale in base 2 o notazione binaria, verrà poi, come è noto, "riscoperto" nel XIX secolo daGeorge Boole[29][30].
Grazie a Leibniz lascienza tedesca tornò ad rivestire un ruolo rilevante nella cultura europea, dopo il declino dovuto allaguerra dei trent'anni. La necessità di risolvere sia le lacune che i contrasti tra la concezionefinalistica degliscolastici e quellameccanicistica cartesiana e spinoziana, lo condusse a cimentarsi, mentre si trovava a Parigi presso la corte di Luigi XIV,[31] con problemi dianalisi matematica, cercando nuovi metodi per collegare laquadratura delle curve e la determinazione delletangenti, due grandi problemi dell'epoca.[33]
Illustrazione all'articoloG.G.L.Constructio propria problematis de Curva Isochrona Paracentrica pubblicato sugliActa Eruditorum del 1694
Dopo la fondazione degli "Acta eruditorum", nel 1677 Leibniz aveva in mente di pubblicare una memoria sulcalcolo infinitesimale, ma non lo fece, volendola rendere più perfetta. Quindi, nel 1684, dopo qualche discussione con Tschirnhaus, pubblicò un'esposizione sistematica del calcolo differenziale,[35] nella quale si deve riconoscere che l'opera di Leibniz non solo non ha ricalcato pedissequamente quella di Newton, ma l'ha sopravanzata di molto.[37] La differenza tra i due sta anche nel fatto che, a differenza di Newton, Leibniz inventò il calcolo infinitesimale a partire da considerazioni essenzialmente filosofiche, diventando "la base di un sistema generale delle cose".[39] Già nella sua tesi di laurea del 1666, con il titoloDissertatio de Arte Combinatoria, Leibniz afferma che, se fosse possibile risolvere tutti i concetti complessi in elementi semplici ed esprimere quest'ultimi con pochi simboli caratteristici, si avrebbe di fatto un procedimento, non solo per esprimere con esattezza le verità già note, ma anche per scoprirne delle nuove.[41] Quindi Leibniz va in cerca di una nuova scienza (la caratteristica universale) che sia in grado di sostituire l'algebra di Cartesio, che non poteva compiere la funzione attribuitale dal suo autore. Quindi l'algebra di Leibniz dovrà produrre simboli nuovi, capaci di esprimere con esattezza anche le più complesse relazioni tra le differenze infinitamente piccole.
In conclusione, è stata l'esigenza di una caratteristica universale ciò che ha spinto Leibniz a inventare i simboli differenziali, egli scrive:
«Ai simboli è da richiedere che essi si prestino alla ricerca; ciò succede principalmente quando essi esprimono in modo conciso e quasi dipingono l'intima natura della cosa, perché essi allora risparmiano mirabilmente lo sforzo del pensiero.»
Al riguardo, il matematicoLouis Couturat scrive: «Non v'ha dubbio che l'invenzione più celebre di Leibniz, quella del calcolo infinitesimale, procede dalla sua ricerca costante di simboli nuovi e più generali, e inversamente essa ha molto contribuito a confermarlo nella sua opinione circa la capitale importanza di una buona caratteristica per la scienza deduttiva».[senza fonte]
La disputa sulle priorità nell'invenzione del calcolo infinitesimale non fu promossa direttamente daNewton e Leibniz, ma da personaggi di secondo piano. Nel 1699 Leibniz osserva che nell'opera diJohn Wallis sono state riprodotte lettere sue e di Newton, e spiega che Wallis gli aveva chiesto il permesso di pubblicazione e che lo aveva lasciato libero di intervenire sui testi, ma che, per mancanza di tempo, egli gli aveva detto di fare come meglio credesse.Nicolas Fatio de Duillier attaccò Leibniz apertamente in un suo lavoro, chiamandolosecondo scopritore del calcolo e suggerendo senza mezzi termini che avesse copiato daNewton[42]. A rendere la situazione ancor più sgradevole, ci fu il fatto che il testo di de Duiller venne edito con l'imprimatur dellaRoyal Society. Di fronte alle rimostranze di Leibniz, tuttavia, sia Wallis sia il segretario della Royal Society gli porsero le proprie scuse.
Un'illustrazionescolastica dell'ordinegerarchico dell'essere, recuperato da Leibniz nella suaMonadologia.
Il suo contributo filosofico allametafisica è basato sullaMonadologia, che introduce lemonadi come «forme sostanziali dell'essere». Le monadi sono una sorta di atomi spirituali, centri diforza che permeano lamateria di un'energia vivente (vis viva), contrapposta da Leibniz allavis mortuainerziale dei cartesiani: eterne, non scomponibili, individuali, esse seguono delle leggi proprie, non interagiscono tra loro «non avendo porte nè finestre», ma ognuna riflette l'intero universo secondo un'armonia prestabilita come tanti orologi sincronizzati tra loro.
Dio e l'uomo sono anche monadi: tutte differiscono tra loro, secondo unascala gerarchica, per il grado dicoscienza che ognuna ha di sé e diDio; in quest'ultimo si ha l'autocoscienza massima, chiamata «appercezione».
Nel modo abbozzato in precedenza, il concetto di monade risolve il problema dell'interazione tra mente e materia che sorgeva nel sistema diCartesio, così come il dissolvimento delleindividualità nel sistema diBaruch Spinoza, che presentava le singole creature come mere modificazioni accidentali di un'unica sostanza.
LaTheodicée (Teodicea) tenta di giustificare le imperfezioni apparenti delmondo sostenendo che esso è «il migliore tra i mondi possibili». Il mondo deve essere il migliore e il più equilibrato, perché è stato creato da un Dio perfetto. In questo modo ilproblema del male è risoltoa priori; nona posteriori con un premio ultraterreno per i giusti, che Kant userà per argomentare l'immortalità dell'anima.
Leibniz ha scoperto lamatematica dei limiti e ilprincipio degli indiscernibili, utilizzato nellescienze, secondo il quale due cose che appaiono uguali - e fra le quali quindi la ragione non trova differenze - sono in realtà la stessa cosa, poiché due cose identiche non possono esistere. Da questo principio deduce il principio di ragion sufficiente per il quale ogni cosa che è, ha unacausa. Questo principio implica il primo, nel senso che per parlare di differenza deve esserci un motivo (vedere delle differenze, appunto), rendendo inutile operare "distinguo" a tutti i costi.
Ilprincipio di ragion sufficiente lo obbligava a trovare una giustificazione alla presenza del male nel mondo, senza negarne l'esistenza a differenza della posizione diSant'Agostino e di altri filosofi. La frase "Viviamo nel migliore dei mondi possibili", molto spesso decontestualizzata, fu guardata con scherno e malignità da alcuni suoi contemporanei, soprattuttoVoltaire, che parodiò Leibniz nella sua novellaCandide, dove il filosofo tedesco appare sotto le spoglie di un certo "Dottor Pangloss". Secondo alcuni critici, tuttavia, Pangloss non rappresenterebbe una maligna e superficiale caricatura di Leibniz, ma diMaupertuis, celebre scienziato e presidente dell'Accademia delle Scienze di Berlino, nei riguardi del qualeVoltaire nutriva una pubblica inimicizia, e che aveva già attaccato inMicromégas e nell'Histoire du Docteur Akakia et du natif de St-Malo. Altri critici invece sostengono che ilCandido sia una risposta alla lettera scritta da Rousseau in risposta alPoema sul disastro di Lisbona di Voltaire.
A ogni modo, la critica di Voltaire rimane filosofica perché mossa non su un piano metafisico, ma sul lato pratico delle esperienze umane, l'unico in cui è debole (come notava lo stesso Leibniz).[43] Da quest'opera deriva il terminepanglossismo, che allude al tentativo di Leibniz, mai concluso, di creare un linguaggio universale, basato su degli elementi minimi comuni a tutte le lingue, ma viene usato per denotare persone che sostengono di vivere nel miglior mondo possibile.
Illustrazione all'articoloDe causa gravitatis, et defensio sententiae autoris de veris naturae legibus contra Cartesianos (fig. 4), pubblicato sugliActa Eruditorum del 1690
La concezione di Leibniz eracontrapposta allatesi di Newton di ununiverso costituito da un moto casuale diparticelle che interagiscono secondo la solalegge di gravità. Tale legge, secondo Leibniz, era insufficiente a spiegare l'ordine, la presenza di strutture organizzate e della vita nell'universo e più razionale del continuo intervento dell'"Orologiaio" creatore dell'universo ipotizzato da Newton. Leibniz è ritenuto la prima persona ad aver suggerito che il concetto diretroazione fosse utile per spiegare molti fenomeni in diversi campi di studio.
La collezione dei manoscritti di Leibniz, custodita presso laGottfried Wilhelm Leibniz Bibliothek di Hannover, comprende circa50 000 testi, pari a100 000 pagine, che includono circa20 000 lettere indirizzate a circa 1 300 corrispondenti. Di questi manoscritti approssimativamente il 40% è in latino, il 35% in francese e il 25% in tedesco.[44]
Imanoscritti di Leibniz sono stati catalogati nel 1895 da Eduard Bodemann che li ha classificati in 41 rubriche nel volumeDie Leibniz-Handschriften der Königlichen Öffentlichen Bibliothek zu Hannover; si riportano le più Importanti:
I. TeologiaII. GiurisprudenzaIII. MedicinaIV. FilosofiaV. FilologiaVI. GeografiaVII. CronologiaVIII. Genealogia e AraldicaIX. ArcheologiaX. NumismaticaXI. Storia generaleXXXIII. Diritto internazionaleXXXIV. Politica ed economiaXXXV. MatematicaXXXVI. MilitariaXXXVII. Fisica. Meccanica. Chimica e storia naturaleXXXVIII. TecnicaXXXIX. Storia della letteraturaXL. Società [scientifiche], Archivi e BibliotecheXLI. Sulla vita di Leibniz [scritti autobiografici].
Molti testi sono ancora inediti; alcuni degli scritti principali sono:
Disputatio Metaphysica de Principio Individui (1663)
Examen religionis christianae (Systema theologicum) (1686), che difende la posizionecattolica su questioni teologiche come latransustanziazione, la giustificazione delpeccatore e la venerazione delleimmagini
Sono indicate le principali raccolte, alcune ancora necessarie fino al completamento dell'edizione critica:
S. Clarke (ed.),A Collection of Papers, which Passed Between the Late Learned Mr. Leibnitz, and Dr. Clarke, in the Years 1715 and 1716, Londra, 1717; Amsterdam, 1719
Monadologie, traduzione tedesca di Heinrich Köhler, Francoforte, 1720 traduzione latina di M. G. Hansche Francoforte e Leipzig 1721; prima edizione del testo francese in J .E. Erdmann (ed.)G. G. Leibnitii opera philosophica omnia, Berlino, 1840.
R. E. Raspe (ed.),Œuvres philosophiques latines & françoises du feu MR. de Leibnitz, Schreuder, Amsterdam-Leipzig, 1765, 1 vol. in-4°.[46]
L. Dutens (ed.),Gothofredi Guillelmi Leibnitii, Opera omnia, nunc primum collecta, in Classes distributa, præfationibus & indicibus exornata, studio Ludovici Dutens, Fratres De Tournes, Genevæ, 1768, 6 volumi in-4º.[47] (ristampa: Hildesheim, Georg Olms, 1989).
I -Theologica.
II - Pars I:Logica & Metaphysica. Pars II:Physica generalis, Chymia, Medicina, Botanica, Historia Naturalis, Artes.
III -Mathematica.
IV - Pars I:Philosophia in genere, Opuscula Sinenses attingentia. Pars II:Historia & Antiquitates. Pars III:Jurisprudentia.
V -Philologica.
VI -Philologicorum continuatio & Collectanea Etymologica.
G. E. Guhrauer (ed.),Leibniz's Deutsche Schriften, Berlino: 1838-1840, due volumi.
J. E. Erdmann (ed.),God. Guil. Leibnitii Opera Philosophica quae extant Latina, Gallica, Germanica omnia, Berlino 1839-1840, due volumi (ristampa: Aale, Scientia Verlag, 1974).
M. A. Jacques (éd.),OEuvres de Leibniz, adattamento in frances dell'edizione di Erdmann (due volumi)..
G. H. Pertz (ed.),Leibnizens gesammelte Werke, quattro volumi, Hannover, 1843-47.
I - Matematica
II - Filosofia (contiene la prima edizione della corrispondenza con Arnauld)
III - Storia
IV - Corrispondenza con Christian Wolff
L.-A. Foucher de Careil (ed.),Lettres et opuscules inédits de Leibniz, Parigi, 1854 (ristampa: Hildesheim, Georg Olms, 1975).
L.-A. Foucher de Careil (ed.),Nouvelles lettres et opuscules inédits de Leibniz, Parigi, 1857 (ristampa: Hildesheim, Georg Olms, 1971).
L.-A. Foucher de Careil (ed.),Œuvres de Leibniz publiées pour la première fois d'après les manuscrits originaux, avec notes et introductions, Parigi, 1861-1875, sette volumi (ristampa: Hildesheim, Georg Olms, 1969).
L.-A. Foucher de Careil (ed.),Réfutation inédite de Spinoza par Leibniz, Parigi, Institut de France, 1854.
O. Klopp (ed.),Die Werke von Leibniz. Reihe 1: Historisch-politische und staatswissenschaftliche Schriften, Hannover, 1864-84, undici volumi, (ristampa: Hildesheim, Georg Olms, 1970-73).
P. Janet (éd,),Œuvres philosophiques de Leibniz, Parigi, Ladrange, 1866, due volumi (seconda edizione rivista e aumentata in un volume, Parigi, Alcan, 1900)
C. I. Gerhardt (ed.),Die philosophischen Schriften von Gottfried Wilhelm Leibniz, Weidmannsche Buchhandlung, Berlin, 1875-1890, sette volumi in-8º[48] (ristampa: Hildesheim, Georg Olms, 1962).
I - Correspondenza con: Thomasius, Johann Friedrich von Brunswig-Luneburg, Arnauld, Hobbes, Otto von Guericke, Spinoza, Conring, Eckhart, Molanus, Malebranche, Foucher, 1875.
II - Correspondenza con: Ernst von Hessen-Rheinfels, Arnauld, de Volder, de Bosses, Nicaise, 1879.
III - Correspondenza con: Huet, Bayle, Basnage de Beauval, Thomas Burnet, Lady Masham, Coste, Jacquelot,Hartsoeker,Bourguet, Rémond, Hugony, 1887.
IV - Scritti filosofici (1663-1671), scritti contro Descartes e i Cartesiani (1677-1702), Scritti filosofici (1684-1703), 1880.
V - Nuovi saggi sull'intelletto umano e altri scritti su Locke, 1882.
VI - Saggi di Teodicea, Scritti filosofici (1702-1716), 1885.
VII - Scientia Generalis, Characteristica, Scritti filosofici, Corrispondenza con Clarke, Appendice ai primi tre volumi, 1890.
C. I. Gerhardt (ed.),Leibnizens mathematische Schriften, Berlin-Halle, 1849-1863, sette volumi in-8º (ristampa: Hildesheim, Georg Olms, 1961).
C. I. Gerhardt (ed.),Briefwechsel zwischen Leibniz und Christian Wolff, Halle, 1860, (ristampa: Hildesheim: Georg Olms, 1963).
C. I. Gerhardt (ed.),Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern, Berlino, 1899; (ristampa: Hildesheim: Georg Olms, 1962).
Georg Mollat (ed.),Mittheilungen aus Leibnizens ungedruckten Schriften, Leipzig, H. Haessel, 1893 (contiene alcuni scritti giuridici non disponibili altrove)
Louis Couturat (ed.),Opuscules et fragments inédits, extraits des manuscrits de la bibliothèque de Hanovre, 1903 (ristampa: Hildesheim. Georg Olms, 1988).
E. Gerland (ed.),Leibnizens nachgelassene Schriften physikalischen, mechanischen und technischen Inhalts, Leipzig, 1906 (ristampa: New York: Johnson Reprint Corp., 1973)
Gaston Grua (ed.),Textes inédits d'aprés les manuscrits de la Bibliothèque provinciale d'Hanovre, Paris, Presses universitaire de France, 1948, (ristampa 1998) due volumi, (197 testi di etica, teologia e giurisprudenza).
Antonio Lamarra, Gregorio Palaia (eds.),Essais scientifiques et philosophiques : les articles publiés dans les journaux savants, Hildesheim. Georg Olms, 2005 (tre volumi)
L'edizione critica delle opere di Leibniz pubblicata dall'Accademia di Berlino (Akademie-Ausgabe):Sämtliche Schriften und Briefe, Leipzig-Berlin, Akademie Verlag, 1923 ss., su cui si veda Herma Kliege-Biller,Introduction to the Academy Edition è divisa in otto sezioni (per ogni sezione sono indicati i volumi pubblicati):
I. Corrispondenza politica, storica e generale: 27 volumi (1668-dicembre 1707) dal 1986 al 2019.
II. Corrispondenza filosofica: vol. II.1A: 1663-1685: Introduzione (Darmstadt 1926; seconda edizione Berlino 1987); vol. II.1B: I. Leipzig e Magonza, 1663 - marzo 1672; II. Parigi, marzo 1672 - novembre 1676; III. Hannover, dicembre 1676-1685 (Darmstadt 1926; seconda edizione Berlino 1987); vol. II.2A: 1686-1694: Introduzione; vol. II.2B: I. Hannover 1686 - ottobre 1687; II. Germania, Vienna e Italia novembre 1687 - giugno 1690; Hannover luglio 1690 - 1694 (Berlino 1989); IIIA. 1695-1700: Introduzione (Berlino 2013); IIIB. Lettere 1695-1700 (2014); IV.1701-1707 (2021).
III. Corrispondenza matematica, scientifica e tecnica: 10 volumi (1672 - 1707) dal 1988 al 2019.
IV. Scritti politici: 10 volumi (1667-1705) dal 1931 al 2022.
V. Scritti storici e linguistici: nessun volume pubblicato (gli scritti linguistici sono pubblicati nell'edizione Dutens (1768), volumi V e VI)..
VI. Scritti filosofici: VI.1: 1663-1672 (Darmstadt 1930; seconda edizione Berlino 1990); VI.2: 1663-1672 (Berlino 1966; seconda edizione 1990); VI.3: 1672-1676 (Berlino 1981); VI.4: 1677-giugno 1690 (Berlino 1999, in quattro tomi: A, B, C, D); VI.5 (luglio 1690-1703: Vorausedition = edizione preliminare); VI.6:Nouveaux Essais (Berlino 1962, ristampa 1990).
VII. Scritti matematici: 8 volumi (1672-1676) dal 1990 al 2024.
VIII. Scritti scientifici, medici e tecnici: VIII.1 (1668-1676 Naturwissenschaft und Technik) (2009); VIII.2 (1668-1676 Naturwissenschaft, Medizin und Technik) (2016); VIII.4 (Naturwissenschaftliche Schriften:Mechanik 1:1671-1675) (2021); VIII.4 (Naturwissenschaftliche Schriften:Mechanik 2': 1676-1715) (2024)
Il completamento dell'edizione è previsto per il 2050[49].
Commercium philosophicum et mathematicum (1745), raccolta di lettere tra Leibniz eJohann Bernoulli
Le lettere di Leibniz (come quelle di Cartesio e Spinoza) sono una parte importante della sua opera; alcune delle edizioni più importanti pubblicate con traduzione inglese, francese o tedesca sono:
Correspondance avec Thomasius, [1663-1672] testo latino e traduzione francese commentata di R. Bodeüs, Parigi,Vrin, 1993 (Jakob Thomasius (1622-1684) è stato il primo maestro di Leibniz).
Discours de Métaphysique et Correspondance avec Arnauld, [1686-1690] introduzione, testo francese e commento di G. Le Roy. Parigi,Vrin, 1993. (Leibniz aveva inviato ad Antoine Arnauld (1612-1694) un "Abrégé" (riassunto) del suoDiscorso di Metafisica[50], le lettere sono una discussione e un approfondimento degli argomenti ivi trattati).
Leibniz and Ludolf on Things Linguistic. Excerpts from Their Correspondence, 1688-1703, a cura di John T. Waterman, Berkeley, University of California Press, 1978 (Hiob Ludolf (1624-1704), filologo tedesco).
Controversie intellettuali: Leibniz e Bayle (1686 - 1706), a cura di Emilio Maria De Tommaso, Soveria Mannelli : Rubbettino, 2006 (con antologia di testi in italiano, pp. 87-240)
Correspondance G. W. Leibniz - Ch. I. Castel De Saint-Pierre, a cura di André Robinet, Parigi, Centre de philosophie du droit, 1995.
The Leibniz-De Volder Correspondence. With Selections from the Correspondence Between Leibniz and Johann Bernoulli [1698-1706], a cura di Paul Lodge, New Haven, Yale University Press, 2013 (Burchard de Volder 1643-1709), filosofo olandese).
The Leibniz-Des Bosses Correspondence, [1706-1716] edita e tradotta in inglese con introduzione di Brandon C. Look e Donald Rutherford, Yale, Yale University Press, 2007 (le lettere scambiate con il Gesuita Barthélemy Des Bosses (1668-1738) sono un documento importante dell'ultima fase del pensiero di Leibniz).
G. W. Leibniz and Samuel Clarke Correspondence, [1715-1716] a cura di R. Ariew, Indianapolis, Hackett, 2000 (corrispondenza con Samuel Clarke (1675-1729), tra i temi trattati, la teoria dello spazio di Newton, il problema della libertà del volere e la priorità della scoperta del calcolo infinitesimale).
The Leibniz–Caroline–Clarke Correspondence, a cura di Gregory Brown, New York, Oxford University Press, 2023.
Leibniz and the Two Sophies:The Philosophical Correspondence, a cura di Lloyd Strickland, Toronto, Iter Inc. Centre for Reformation and Renaissance Studies, 2011 (corrispondenza con Sofia del Palatinato (1630-1714) e sua figlia Sofia Carlotta di Hannover (1668-1705).
G. W. Leibniz. Der Briefwechsel mit den Jesuiten in China (1689-1714), a cura di R. Widmaier, Hamburg, Meiner, 2006 (corrispondenza con i missionari Gesuiti in Cina, testo francese/latino e traduzione tedesca).
Briefe über China (1694 – 1716). Die Korrespondenz mit Barthélemy des Bosses S. J. und anderen Mitgliedern des Ordens, testi scelti e introdotti da Rita Widmaier, Amburgo, Felix Meiner 2017.
Der Briefwechsel zwischen Leibniz und Conrad Henfling: ein Beitrag zur Musiktheorie des 17. Jahrhunderts, a cura di Rudolf Haase, Francoforte, Vittorio Klostermann, 1982.
Matteo Campori (a cura di),Corrispondenza tra L.A. Muratori e G.G. Leibniz, collanaAtti e memorie della R. Deputazione di storia patria per le provincie modenesi, serie IV, volume 3, Modena, 1892.
I manoscritti di Leibniz sono stati catalogati nel 1895 dal bibliotecario Eduard Bodemann (1827-1906) in due volumi che costituiscono uno strumento indispensabile per lo studio degli inediti:
Eduard Bodemann,Die Leibniz-Handschriften der Königlichen Öffentlichen Bibliothek zu Hannover.
Eduard Bodemann,Der Briefwechsel des Gottfried Wilhelm Leibniz in der Königlichen Öffentlichen Bibliothek zu Hannover.
Di questi volumi è disponibile una ristampa anastatica: Hildesheim, Georg Olms, 1966.
Scritti politici e di diritto naturale, a cura diVittorio Mathieu, Torino, UTET, 1965 (2ª ed.).
Scritti di logica, a cura di Francesco Barone, Roma-Bari, Laterza, 1992, 2 voll., (prima ed. Bologna, Zanichelli, 1968).
Ricerche generali sull'analisi delle nozioni e delle verità e altri scritti, a cura diMassimo Mugnai, Pisa, Edizioni della Scuola Normale Superiore, 2008.
Dialoghi filosofici e scientifici, Milano, Bompiani, 2007 (testo latino e francese a fronte).
Saggi di Teodicea sulla bontà di Dio, la libertà dell'uomo e l'origine del male, Milano, Bompiani, 2005 (testo francese a fronte).
Nuovi saggi sull'intelletto umano, Milano, Bompiani, 2011 (testo francese a fronte).
Discorso di metafisica - Verità prime, a cura di Salvatore Cariati, Milano, Bompiani, 1999.
Monadologia - Principi razionali della natura e della grazia, Milano, Bompiani, 2001 (testo francese a fronte).
Spinoza «contra» Leibniz. Documenti di uno scontro intellettuale (1676-1678), a cura di V. Morfino, Milano, Unicopli, 1994.
Disputazione metafisica sul Principio di Individuazione, a cura di Giovanni Alberti, Bari, Levante, 1999.
L'armonia delle lingue, testi scelti, introdotti e commentati da Stefano Gensini; prefazione di Tullio De Mauro, Bari, Laterza, 1995.
Confessio philosophi e altri scritti, a cura di Francesco Piro, Napoli, Cronopio, 2003.
De summa rerum traduzione di Emilio Maria De Tommaso, Roma, Aracne, 2013.
La disputa Leibniz-Newton sull'analisi, a cura di Gianfranco Cantelli, Torino, Boringhieri, 1969.
Filosofia, scienza, storia, antologia a cura di C. Ferrandi, Lavis (TN), La Finestra Editrice, 2011.
Obiezioni contro la teoria medica di Georg Ernst Stahl. Sui concetti di anima, vita, organismo, a cura di Antonio M. Nunziante, Macerata, Quodlibet, 2011.
Ricerche sul linguaggio: due inediti giovanili: Liber observationum e Loci rhetorici, introduzione, trascrizione e note a cura di Giovanna Varani, Padova, Il poligrafo, 1999.
Storia universale ed escatologia. Il frammento sull'Apokatástasis (1715), Genova, Il melangolo, 2001.
La riforma della dinamica secondo G. W. Leibniz. Testi originali e loro interpretazione moderna, a cura di Antonino Drago, Benevento, Hevelius edizioni, 2003.
La Cina, Milano, Spirali, 1987.
La teologia naturale dei Cinesi, Macerata, Quodlibet, 2014.
Il nuovo metodo di apprendere e insegnare la giurisprudenza, introduzione traduzione e note a cura di Carmelo Massimo de Iuliis, Milano, Giuffrè, 2012.
I casi perplessi in diritto, introduzione traduzione e note a cura di Carmelo Massimo de Iuliis, Milano, Giuffrè, 2014.
Saggio di questioni filosofiche estratte dalla giurisprudenza e Dissertazione sui casi perplessi in diritto, a cura di Alberto Artosi, Bernardo Pieri, Giovanni Sartor; traduzione di Bernardo Pieri; con due saggi introduttivi di Alberto Artosi e Bernardo Pieri, Torino, Giappichelli, 2015.
Doctrinaconditionum (Dottrina delle condizioni), introduzione, traduzione e note a cura di Carmelo Massimo de Iuliis, Milano, Giuffrè, 2020.
Sull'Etica di Spinoza, Introduzione, traduzione e commento di Alberto Tettamanti, Roma, Armando, 2025
^Maria Rosa Antognazza,Leibniz. Una biografia intellettuale, p. 352; il termine latinodynamica è un neologismo creato da Leibniz nel 1690 sul modello del termine aristotelico δύναμις = dynamis, mentre redigeva il trattatoDynamica de potentia et legibus naturae corporeae. (Michel Fichant, "De la puissance à l'action : la singularité stylistique de la Dynamique",Revue de Métaphysique et de Morale, Janvier-Mars 1995), pp. 49-81).
^Utilizzato per la prima volta nelDe linea ex lineis numero infinitis..., pubblicato inActa Eruditorum, 1692, cfr: Gerhardt (ed.),Leibniz Mathematische Schriften, vol. III, p. 268.
^M. R. Antognazza,Leibniz. Una biografia intellettuale, p. 35.
^"Leubniziorum sive Lubeniecziorum nomen Slavonicum", (Leibniz, or Lubeniecz, è un nome slavo),Vita Leibnitii a se ipso breviter delineata, inNouvelles Lettres et Opuscules Inédits de Leibniz, précedés par une introduction par A. Foucher de Careil, Parigi, 1857, p. 379.
^D. Huylebrouck, Z. Ognjanic, L. Radovic,Leibniz, a Sorb, "The Mathematical Intelligencer", 2017, 39, 2017, pp. 53-55.
^L'unica testimonianza che abbiamo su questa vicenda è quella del segretario di Leibniz, Johann Georg von Eckhart (1664-1730),Lebensbeschreibung des Freyherrn von Leibniz, scritta nel 1717, ma pubblicata nel 1779 da Christoph Gottlieb von Murr, nelJournal zur Kunstgeschichte und zur allgemeinen Literatur, VII, Nürnberg 1779, pp. 137-140.
^Kurt Müller, Gisela Krönert,Leben und Werk von Gottfried Wilhelm Leibniz. Eine Chronik, Frankfurt am Main, Vittorio Klostermann, 1969, pp. 9-10.
^George MacDonald Ross, "Leibniz and the Nuremberg Alchemical Society",Studia Leibnitiana, vol. 6, 1974, pp. 222-248.
^G. W. Leibniz,Consilium Aegyptiacum. Un grande progetto di Crociata contro i Turchi (1671-1672), Rimini, Il Cerchio, 2012
^(DE) Annette von Boetticher (Red.),Leibnizstätten und Leibniz-Institutionen in Hannover, inLeibniz und Hannover – dem Universalgenie auf der Spur, hrsg. vom Präsidium der Leibniz Universität Hannover, Hannover [sine anno, 2009], pp. 22–25; vedi p. 23
^(DE) Annette von Boetticher (Red.),Gottfried Wilhelm Leibniz: Leben, Werk, Denkansätze, inLeibniz und Hannover – dem Universalgenie auf der Spur, edito dal Präsidium der Leibniz Universität Hannover, Hannover [sine anno, 2009], pp. 13–19; vedi p. 15
^Lloyd Strickland (ed.),Leibniz and the Two Sophies: The Philosophical Correspondence, Toronto, Iter Inc. Centre for Reformation and Renaissance Studies, 2011.
^(DE) Jürgen Gottschalk:Technische Verbesserungsvorschläge im Oberharzer Bergbau. InErwin Stein, Albert Heinekamp (Hrsg.),Gottfried Wilhelm Leibniz – Das Wirken des großen Philosophen und Universalgelehrten als Mathematiker, Physiker, Techniker. Gottfried-Wilhelm-Leibniz-Gesellschaft, Hannover 1990, pp. 62–71.ISBN 3-9800978-4-6.
^Peter Schulze,Rafael Levi, inStadtlexikon Hannover, p. 512
^(DE) Adolf Harnack,Geschichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Berlin 1900;Leibniz und seine Akademie: ausgewählte Quellen zur Geschichte der Berliner Sozietät der Wissenschaften 1697–1716, hrsg. von Hans-Stephan Brather, Berlin 1993.
^Johann Jakob Brucker:Historia critica philosophiae a mundi incunabulis ad nostram usque aetatem deducta, Bd. V, Leipzig 1766,p. 364
^(DE) Hans Joachim Störig,Kleine Weltgeschichte der Wissenschaft. Zürich 1965, p. 252
^(DE) Kuno Fischer,Geschichte der neuern Philosophie: Leibniz und seine Schule. Bd. 2, Friedrich Bassermann, Mannheim 1855, p. 22
^(DE) Wilhelm Totok, Carl Haase (Hrsg.),Leibniz. Sein Leben, sein Wirken, seine Welt. Verlag für Literatur und Zeitgeschehen, Hannover 1966, p. 85
^(DE) Eike Christian Hirsch,Der berühmte Herr Leibniz. Eine Biographie. C. H. Beck, München 2000, p. 616,ISBN 3-406-45268-X
^(DE) Ludwig Grote,Leibniz und seine Zeit. Carl Brandes, Hannover 1869, pp. 550ss
^(DE) Ludwig Grote,Leibniz und seine Zeit. Carl Brandes, Hannover 1869, p. 553
^In effetti, Schickard aveva previsto di associare alla sua addizionatrice deibastoncini di Nepero che fornivano un valido aiuto nell'eseguire moltiplicazioni e divisioni.
^ Ubaldo Nicola,Atlante illustrato di filosofia, Giunti editore, 2005, pp. 322-323.
^sotto consiglio del fisico Huygens e influenzato dagli scritti di Euclide, Cartesio, Pascal (forse l'influenza maggiore l'ha avuta proprio da lui) e i vari matematici che si erano occupati di questioni infinitesimali.
^ Ludovico Geymonat,Leibniz e i suoi continuatori, inStoria e filosofia dell'analisi infinitesimale, p. 137.
^I suoi studi avrebbero avuto una svolta quando, trovandosi aLondra, grazie all'aiuto diHenry Oldenburg fu informato che recentemente Newton aveva portato a termine ricerche significative, ancora inedite, sui problemi infinitesimali, rispondendo che anche lui era giunto a risultati notevoli al riguardo. Nonostante non lo conobbe mai di persona, la figura diNewton ebbe una particolare rilevanza per Leibniz, soprattutto per quanto riguarda ilcalcolo infinitesimale. Infatti, anche dopo essere tornato aParigi, mediante l'Oldenburg e mediante il matematicoWalther von Tschirnhaus il filosofo cercò di ricevere notizie riguardanti le scoperte dell'inglese. Nel 1676, dopo molte insistenze, Leibniz ottenne finalmente, sempre grazie all'Oldenburg, alcune informazioni più particolari. Infatti Newton gli inviò (per tramite dell'Oldenburg) due famose lettere, nella prima delle quali sono riportati il teorema del binomio per esponenti razionali qualunque e gli sviluppi in serie di alcune importanti funzioni, mentre nella seconda sono riportati molti risultati riguardanti le quadrature di curve, oltre a un metodo per calcolare𝛑 in modo più rapido che non con la serie di Leibniz. In questa seconda lettera si trovano poi alcune indicazioni sul metodo delleflussioni, date però a mezzo di veri crittogrammi indecifrabili. Rispondendo all'Olenburg, Leibniz dichiarò che le ricerche di Newton avevano scopo analogo alle sue, ma nonostante ciò erano diverse; allo stesso tempo enumerò varie questioni che egli era in grado di risolvere, ma senza svelare il proprio metodo di risoluzione.[32]
^ Ludovico Geymonat,Leibniz e i suoi continuatori, inStoria e filosofia dell'analisi infinitesimale, p. 139.
^celebre memoria con il titoloNova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus. In questa non menzionò le corrispondenti ricerche di Newton, che invece aveva accennato a Leibniz nelloscolio del primo libro dei suoiPrincipia. Questo evento fu un accenno alla grande diatriba tra Leibniz e Newton, che tuttavia iniziò soltanto nel 1699 per opera diNicolas Fatio de Duillier. Questa faccenda fu talmente importante che la contesa continuò anche dopo la morte di Leibniz e nella terza edizione deiPrincipia Newton fece modificare lo scolio in cui venivano riconosciuti i meriti del tedesco. Essa non finì nemmeno con la morte di Newton, ma si trasformò in una specie di conflitto scientifico tra Inghilterra e Germania (poi tra Inghilterra e continente). Infatti, la forma differenziale fu adottata dai matematici continentali e respinta invece dagli inglesi, i quali proprio per questa loro posizione di principio incontrarono non pochi ostacoli nello sviluppo delle ricerche infinitesimali[34]
^ Ludovico Geymonat,Leibniz e i suoi continuatori, inStoria e filosofia dell'analisi infinitesimale, p. 140.
^Al riguardoGuido Castelnuovo scrive: «Nel calcolo infinitesimale odierno si trovano maggiori tracce dei procedimenti formali di Leibniz che di quelli, sostanzialmente equivalenti, dovuti al sommo matematico inglese», mentreHermann Hankel precisa: «Anche se Leibniz avesse conosciuto tutti i metodi del suo rivale, sarebbe stato sufficiente il suo solo algoritmo a renderlo immortale; già lo stesso linguaggio comune l'ha riconosciuto con sicuro istinto, attribuendo il nome di "metodo delle flussioni e delle fluenti" alla scoperta di Newton, e quello invece più importante di "calcolo differenziale e integrale" alla scoperta di Leibniz».[36]
^ Ludovico Geymonat,Leibniz e i suoi continuatori, inStoria e filosofia dell'analisi infinitesimale, p. 141.
^e infattiAndré Bloch scrive: «Leibniz aspirava a dare un sistema completo di tutte le nostre percezioni, e il punto di vista metafisico si mescolava strettamente, in lui, con il punto di vista matematico. Procedendo in un modo tutto diverso, Newton non separava mai le considerazioni infinitesimali dai dati fisici o cinematici che servono a interpretarli».[38] La sua visione, che spazia al di là del campo logico e del campo fisico… ha bisogno di un'altra legge più mobile, più vitale… Il finalismo contrapposto al meccanicismo, il carattere giuridico e architettonico dell'ordine universale, sono tutti sforzi in questa direzione, tentativi di formare questa legge.» (Eugenio Colorni).
^ Ludovico Geymonat,Leibniz e i suoi continuatori, inStoria e filosofia dell'analisi infinitesimale, p. 144.
^la ricerca di una "caratteristica universale" rimase per tutta la sua vita uno dei suoi motivi ispiratori e uno dei progetti più ambiziosi della sua filosofia. Infatti, secondo lui, non solo la matematica classica, ma anche la matematica futura, avrebbe dovuto risultare ricavabile da quella "arte combinatoria"; è qui che si inserisce la critica di Leibniz all'algebra, considerata come "calcolo delle grandezze finite".Per spiegare ciò bisogna capire che una delle preoccupazioni fondamentali della filosofia di Leibniz è la ricerca ovunque delle piccole differenze, quindi, come questo accade nella psicologia e nella natura, ciò deve accadere anche nella matematica, dove accanto al calcolo simbolico delle grandezze finite è indispensabile farne sorgere uno delle grandezze infinitesime. Su questo, Bloch spiega: «Le nostre idee presentano fra loro una serie di differenze continue… Ma le differenze infinitamente piccole non possono entrare utilmente nei nostri calcoli, se non troviamo dei simboli nuovi adatti ad esse, e se non le sottoponiamo a speciali operazioni. Di qui la necessità di creare un'algebra infinitesimale, se si vuole giungere a una logica universale.[40]
^La critica di Voltaire all'ottimismo metafisico leibniziano appare di carattere emotivo ed empirico: perché essa abbia un qualche valore, bisognerebbe attribuire a Leibniz la convinzione che non ci siano mai stati disastri naturali, il che è assurdo.
^Il titolo 'Primae veritates' nell'edizione dell'Accademia (VI, 4, n. 324, pp. 1643-1649) è stato cambiato in 'Principia Logico-Metaphysica'.
^Contiene l'editio princeps deiNouveaux Essais sur l'entendement humain, curati, assieme alle altre opere della raccolta, daRudolf Erich Raspe.
^Contiene solo una scelta degli scritti già pubblicati. Resta tuttavia una delle migliori edizioni, indispensabile per gli scritti filologici (volumi V e VI).
^Edizione di riferimento per le opere filosofiche non ancora pubblicate nell'edizione critica dell'Accademia di Berlino.
^Christia Mercer,Times Literary Supplement 18 ottobre 2002, pp. 7-9
^Lettera dell'11 febbraio 1686 al Langravio von Hessen-Rheinfels,
(FR) Gottfried Wilhelm von Leibniz,[Opere], A Hambourg, chez Abram Vandenhoeck, 1734.URL consultato il 6 marzo 2015.
(FR) Gottfried Wilhelm von Leibniz,[Opere]. 1, A Amsterdam, chez Francois Changuion, 1740.URL consultato il 6 marzo 2015.
(FR) Gottfried Wilhelm von Leibniz,[Opere]. 2, A Amsterdam, chez Francois Changuion, 1740.URL consultato il 6 marzo 2015.
(LA) Gottfried Wilhelm von Leibniz,[Opere. Lettere e carteggi]. 1, Lausanne & Genevae, sumpt. Marci-Michaelis Bousquet & socior., 1745.URL consultato il 6 marzo 2015.
(LA) Gottfried Wilhelm von Leibniz,[Opere. Lettere e carteggi]. 2, Lausanne & Genevae, sumpt. Marci-Michaelis Bousquet & socior., 1745.URL consultato il 6 marzo 2015.