Lageodesia satellitare si occupa della misurazione della forma e delle dimensioni dellaTerra, della determinazione della posizione di oggetti sulla sua superficie e della ricostruzione del campo gravitazionale della Terra per mezzo di sistemi digeodesia basati sull'utilizzosatelliti artificiali. La geodesia satellitare appartiene all'ambito più ampio dellageodesia spaziale, la quale include anche tecniche di geodesia basate suinterferometria a lunga base (VLBI) elaser ranging lunare (anche se quest'ultimo potrebbe essere classificato come geodesia satellitare, essendo laLuna a tutti gli effetti un satellite terrestre).[1]
Gli scopi principali della geodesia satellitare sono:
I dati ricavati dalla geodesia satellitare possono essere applicati a diverse discipline, come lanavigazione, l'idrografia e lageofisica. La geodesia satellitare si basa in particolare sullameccanica orbitale.
La geodesia satellitare ebbe inizio subito dopo il lancio delloSputnik nel 1957. Le osservazioni effettuate dal satelliteVanguard 1 nel 1958 permisero una accurata misurazione delloschiacciamento dei poli[2]. Nel 1960 furono lanciati il satelliteTransit-1B, per la determinazione della posizione medianteeffetto Doppler, che permise la misura delle componenti armoniche delcampo gravitazionale terrestre.[3][4]. Il primo satellite dedicato alla geodesia fu ANNA-1B, lanciato nel 1962, frutto di una collaborazione tra laNASA, ilDipartimento della Difesa degli Stati Uniti e altre agenzie civili.[5]. Tra il 1960 e il 1966 furono lanciati i satelliti-palloneECHO 1, ECHO 2, ePAGEOS (PAssive Geodetic Earth Orbiting Satellite).
Queste missioni satellitari permisero la determinazione delle principali armoniche del campo gravitazionale e della forma del geoide.
Tra il 1968 e il 1978 l'Unione Sovietica lanciò la serie di 18 satelliti militari per geodesiaSFERA, con lo scopo di studiare laderiva dei continenti e migliorare i sistemi di localizzazione.
Il sistema di satellitiTransit fu usato in maniera estensiva per la navigazione e il posizionamento. Le osservazioni di satelliti portate avanti da reti di triangolazione su base mondiale permisero di stabilire ilSistema Geodetico Mondiale. Tra il 1976 e il 1992 vengono lanciati i satellitiLAGEOS per misure geodetiche tramitelaser ranging. A partire dagli anni '80 del XX secolo, il sistemaGPS da parte degli Stati Uniti permise lo sviluppo di sistemi di navigazione e posizionamento ad alta precisione e divenne presto uno strumento standard per la geodesia. Tra gli anni '80 e '90 del XX secolo la geodesia spaziale ha iniziato ad essere utilizzata per il monitoraggio di fenomeni geodinamici come laderiva dei continenti, la rotazione della Terra e la misura della polodia.
La geodesia satellitare si focalizza sullo sviluppo di reti geodetiche permanenti e di sistemi di riferimento. Vengono lanciati satelliti dedicati alla misura del campo gravitazionale terrestre, comeCHAMP,GRACE, eGOCE.
Le tecniche di geodesia satellitare possono essere classificate in base alla piattaforma strumentale.Un satellite può:
Un satellite può essere utilizzato come un bersaglio ad elevata altitudine per effettuare unatriangolazione e ricavare così i rapporti geometrici tra la posizione di diverse stazioni di osservazioni. L'inseguimento ottico con camere BC-4, PC-1000, MOTS o Baker-Nunn consiste nel fotografare il satellite, o lampi di luce riflessi dal satellite, con delle stelle di riferimento sullo sfondo. Le stelle di sfondo nella foto permettono di ricavare con precisione la direzione di puntamento della camera. Il posizionamento geodetico era realizzato quando tre camere puntavano contemporaneamente lo stesso satellite. Avendo una rete di stazioni a terra, con la triangolazione si poteva ricavare la geometria della rete di stazioni. Misurando poi la distanza tra due stazioni facenti parte della rete di osservazione, si può ricostruire con precisione la posizione di tutte le altre. Un grosso limite di questo sistema è che dipende fortemente dalle condizioni meteo, e le osservazioni simultanee di uno stesso satellite non sono sempre possibili. Per questo è stato soppiantato a partire dagli anni '70 del XX secolo da altri metodi, come quelli basati sull'effetto Doppler, che hanno anche l'ulteriore vantaggio di utilizzare strumentazione più economica e meno ingombrante.[7]
Le tecniche di posizionamento basate sull'effetto Doppler prevedono la misura dello spostamento Doppler di un segnale di frequenza stabile e nota emesso da un satellite, registrato mentre il satellite si avvicina e si allontana rispetto ad un osservatore a terra. La frequenza del segnale misurato dall'osservatore dipende dallavelocità radiale relativa del satellite, che a sua volta è descritta dalle leggi dellameccanica orbitale. Conoscendo l'orbita del satellite, dalla misura dell'effetto Doppler è possibile ricostruire la posizione dell'osservatore. Viceversa, se si conosce con precisione la posizione dell'osservatore, la misura dell'effetto Doppler può essere utilizzata per determinare con precisione l'orbita del satellite e studiare il campo gravitazionale della TerraNel caso del sistemaDORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), sviluppato dalCNES, il ricevitore è a bordo del satellite, mentre la stazione di terra emette il segnale.[8]
I sistemi di navigazione satellitare globale (GNSS) sono sistemi di posizionamento che permettono di determinare la posizione del ricevitore con l'approssimazione di alcuni metri. Il principale di questi sistemimGPS, consiste in una costellazione di 31 satelliti, di cui 24 operativi, in orbite circolari alte, conperiodo di 12 ore, distribuite su 6 piani coninclinazione di 55°.[9]Il principio su cui si basa la localizzazione è latriangolazione. Ogni satellite trasmette un segnale contenente leeffemeridi, le informazioni sulla sua posizione e un messaggio contenente il tempo esatto della trasmissione. Il ricevitore confronta il tempo della trasmissione con quello misurato da un proprio orologio interno, ricavando così il tempo impiegato dal segnale per arrivare dal satellite; questo intervallo di tempo è poi moltiplicato per la velocità della luce per ottenere una "pseudo-distanza", opseudorange. Per determinare tempo e posizione del ricevitore con un errore di pochi metri, sono necessari 4 pseudorange. Metodi di raffinamento come lacorrezione cinematica in tempo reale o ilGPS differenziale permettono di migliorare l'accuratezza portandola al livello del centimetro.
Nel campo della geodesia, i sistemi GNSS sono uno strumento economico ed efficace per misure ditopografia e come riferimento temporale. La presenza del segnale GPS nello spazio permette di utilizzarlo anche per ladeterminazione orbitale e per il posizionamento relativo di un satellite rispetto a un altro satellite.
La tecnica del laser ranging satellitare (SLR,Satellite Laser Ranging) consiste nella misura del tempo di volo di impulsilaser inviati da stazioni di Terra verso satelliti equipaggiati con appositiretroriflettori; in questo modo è possibile ricavare la posizione del satellite con la precisione di alcuni millimetri. Una rete mondiale di stazioni di laser ranging è gestita dall'International Laser Ranging Service[10], che si occupa di raccogliere e gestire i dati ricavati dalle stazioni di misura. I dati ottenuti dal laser ranging sono impiegati sia per impieghi di geodesia che per altri scopi scientifici, come lo studio dell'interazione Terra-Oceani-Atmosfera[11]. In particolare, i dati di laser ranging sono impiegati per definire ilSistema di Riferimento Terrestre Internazionale (ITRF,International Terrestrial Reference Frame).[12][13]Attualmente è la tecnologia più precisa a disposizione per determinare la posizione di un satellite nel sistema di riferimento geocentrico, permettendo una migliore calibrazione deiradioaltimetri e di altri strumenti a bordo dei satelliti.
Unradioaltimetro misura il tempo di volo di un impulso a microonde emesso dal satellite e riflesso dalla superficie della Terra per determinare la distanza del satellite dal suolo (altezza). Dall'altezza misurata vengono rimossi gli effetti dovuti all'atmosfera, alle maree e alle correnti per ottenere l'altezza del satellite rispetto al geoide. Conoscendo le effemeridi del satellite, è possibile determinare la distanza del satellite dal centro della Terra e il raggio dell'ellissoide terrestre nell'istante dell'osservazione; da questi dati si ricava quindi il geoide terrestre.[14]
Un altimetro laser misura il tempo di volo di un impulso laser (nello spettro visibile o infrarosso) emesso dal satellite e riflesso dalla superficie della Terra per determinare la distanza del satellite dal suolo (altezza). AltimetriLIDAR sono stati testati durante alcune missioni delloSpace Shuttle, e sono stati impiegati sui satellitiICESat e Calypso della NASA. AncheESA eJAXAhanno in programma missioni con tecnologia LIDAR.[15]
L'interferometria mediante Radar ad Apertura Sintetica (InSAR) è una tecnicaradar utilizzata nel campo della geodesia e del telerilevamento. La tecnica InSAR utilizza le immagini ottenute da due o piùradar ad apertura sintetica (SAR) per generare mappe delle deformazioni della superficie terrestre omodelli digitali di elevazione, mediante le differenze di fase delle onde riflesse verso il satellite.[16][17][18]Questa tecnica permette potenzialmente di misurare deformazioni dell'ordine del centimetro nell'arco di giorni o anni, e può quindi essere applicata per il monitoraggio di catastrofi naturali, terremoti, vulcani e frane.[19][20] Inoltre può essere utilizzata nell'ambito dell'ingegneria strutturale, in particolare per il monitoraggio dellasubsidenza o della stabilità strutturale.[21]
Ungradiometro gravimetrico è in grado di determinare in tempo reale le componenti del vettore accelerazione di gravità; ilgradiente di gravità è la derivata spaziale del vettore gravità. Il gradiente può essere visto come la variazione di una componente delvettore gravità misurata su una piccola distanza; quindi il gradiente può essere misurato determinando la differenza dell'accelerazione di gravità in due punti vicini ma distinti. Questo principio è impiegato in molti strumenti portatili per il rilievo geofisico.[22] Il gradiente di gravità in un punto è untensore, essendo la derivata di ogni componente del vettore gravità lungo ogni asse del sistema di riferimento. Quindi un satellite che portasse a bordo un gradiometro gravimetrico potrebbe misurare il valore di tutte le componenti del vettore gravità lungo la sua traiettoria; in questo modo è possibile ottenere un modello accurato del campo gravitazionale in tempo reale, mappando la componente normale del vettore gravità e le anomalie gravitazionali. Un sistema di questo tipo è stato impiegato per la prima volta nella missioneGOCE.[23][24].
Questa tecnica utilizza un satellite per tracciare la traiettoria di un altro satellite; ne esistono numerose varianti che possono essere utilizzate per scopi precisi come lo studio del campo gravitazionale o il miglioramento della determinazione delle orbite.
I sistemi di navigazione satellitare (GNSS) possono essere utilizzati per determinare la posizione di un satellite su una orbita bassa. I sistemi GNSS sono costituiti da costellazioni di satelliti suorbite alte di cui si conosce la posizione con elevata precisione, come ad esempio i sistemiGPS,GLONASS eGalileo.Questa tecnica è stata impiegata in alcune missioni, generalmente in accoppiamento con altre tecniche di posizionamento da stazioni di terra, come illaser ranging o il posizionamento mediante effetto Doppler; un esempio di applicazione sono le missioniJason 1,GOCE eGRACE.[26]
Controllo di autorità | LCCN(EN) sh93001592 ·GND(DE) 4051744-5 ·J9U(EN, HE) 987007551441005171 |
---|