Movatterモバイル変換


[0]ホーム

URL:


Vai al contenuto
WikipediaL'enciclopedia libera
Ricerca

FeRAM

Da Wikipedia, l'enciclopedia libera.
FeRAM da 256Kb

Ininformatica edelettronica unaFeRAM (oFRAM oppureF-RAM,acronimo dell'ingleseFerroelectric Random Access Memory,lett. "memoria ferroelettrica ad accesso casuale") è un tipo dimemoria non volatile. Essa è simile nel processo costruttivo alla memoriaDRAM, usata come memoria principale nella maggior parte dei computer odierni, ma usa uno strato di materialeferroelettrico per ottenere la proprietà di non-volatilità. Malgrado il mercato delle memorie non volatili sia dominato dalla tecnologiaFlash, la FeRAM offre numerosi vantaggi rispetto alla Flash: minor consumo, velocità di scrittura più elevata e un numero di cicli di scrittura/cancellazione maggiore (oltre i 1016 per i dispositivi da 3,3 V).

Descrizione

[modifica |modifica wikitesto]

Le memorieDRAM consistono in una griglia di piccolicondensatori insieme alla circuiteria associata necessaria per il funzionamento e per l'accesso ai dati. Ogni elemento di memorizzazione, unacella, consiste in un condensatore e un transistor, un cosiddetto dispositivo "1T-1C". Le celle DRAM scalano direttamente con la dimensione del processo di fabbricazione utilizzato. Per esempio, con il processo da 90 nm usato nel2007 dalla maggior parte dei costruttori di memorie per creare le DRAM DDR2, la dimensione della cella è di 0.22 µm², inclusi capacità, transistor, collegamenti e un po' di "spazio isolante" tra le varie parti, sembra che il 35% di utilizzo sia tipico, lasciando il 65% dello spazio sprecato.

Densità

[modifica |modifica wikitesto]

Il primo fattore di costo di un sistema di memorizzazione è la densità dei componenti utilizzati. Pochi e più piccoli componenti significano che più celle possono essere contenute in un singolochip e ciò consente di produrne molte da un singolowafer di silicio; questi miglioramenti influiscono significativamente sul costo del componente.

Abbassare il limite scala di fabbricazione è un punto importante di confronto, generalmente la tecnologia che permette di scalare la dimensione della cella alle dimensioni inferiori sarà la più economica per bit. Le FeRAM e le DRAM sono costruttivamente simili, e possono essere generalmente costruite su linee di produzioni simili a dimensioni comparabili. In ambedue i casi il limite inferiore sembra essere definito dalla quantità di carica necessario per poter stimolare gli amplificatori di rilevamento. Per le DRAM questo sembra essere un problema a circa 55 nm, punto oltre il quale la carica memorizzata nella capacità della cella è troppo piccola per contenere una carica sufficientemente grande da poter essere rilevata. Non è chiaro se le FeRAM possano scalare alla stessa dimensione, dato che la densità di carica dello stratoPZT potrebbe non essere la stessa delle placche di metallo di un normale condensatore.

Ciò detto, ad oggi gli unici dispositivi commerciali FeRAM sembrano siano stati prodotti con vecchi processi di fabbricazione, a 350 nm. Sono in corso esperimenti con processi da 180 nm e 130 nm. I primi modelli richiedevano due celle FeRAM per bit, che risultava in densità molto basse, ma questo limite è stato superato.

Consumo

[modifica |modifica wikitesto]

Il principale vantaggio delle memorie FeRAM rispetto alle DRAM deriva da cosa succedetra i cicli di lettura e scrittura. Nelle DRAM, la carica depositata sulle placche di metallo si disperde attraverso lo strato isolante e il transistor di controllo, e in un breve tempo svanisce. Per fare in modo che una memoria DRAM possa mantenere i dati per un tempo sufficiente, ogni cella deve essere periodicamente letta e riscritta (refresh). Ogni cella deve essere rinfrescata molte volte al secondo (circa ogni 65 ms[1]) e ciò richiede la fornitura continua di alimentazione.

Invece, le memorie di tipo FeRAM richiedono solamente potenza durante la lettura o la scrittura di una cella. La maggior parte della potenza utilizzata nelle DRAM viene usata per il rinfresco, e quindi sembra ragionevole supporre che la potenza assorbita da una FeRAM possa essere fino al 99% più bassa di quella di una DRAM.

Velocità

[modifica |modifica wikitesto]

La velocità delle DRAM è limitata dalla velocità alla quale la corrente immagazzinata nelle celle può essere estratta (per la lettura) o immagazzinata (per la scrittura). Generalmente questo finisce per essere definito dalla potenza dei transistor di controllo, dalla capacità delle linee di trasporto della corrente alle celle e dal calore che il consumo del sistema genera.

FeRAM è basata sul movimento meccanico degli atomi reagendo ad un campo di forza esterno, movimento estremamente veloce, il cui tempo di assestamento è di circa 1 ns. In teoria, ciò significa che le FeRAM possono essere molto più veloci delle DRAM. Comunque, dato che l'energia deve essere trasferita nella cella per la lettura e scrittura, i ritardi elettrici e di commutazione saranno molto simili a quelli delle DRAM. Non sembra ragionevole supporre che le FeRAM possano richiedere meno carica delle DRAM, dato che le DRAM utilizzano la "carica" minima necessaria per memorizzare in modo affidabile le informazioni. Detto questo, c'è un ritardo nella scrittura dato che la carica deve fluire attraverso il transistor di controllo, e questo limita la corrente.

In confronto alle memorie Flash i vantaggi sono più evidenti. Considerando che le operazioni di lettura sono comparabili dal punto di vista delle performance, la pompa di carica necessaria per la scrittura richiede un tempo considerevole per raggiungere il potenziale necessario, un processo assente nelle FeRAM. Le memorie Flash più diffuse necessitano di circa 1 ms per scrivere un bit, mentre le attuali FeRAMs sono almeno 100 volte più veloci.

Le prestazioni teoriche di una FeRAM non sono ancora completamente chiare. Dispositivi esistenti da 350 nm hanno tempi di lettura nell'ordine 50-60 ns. Malgrado lente in confronto alle moderne DRAMs, che possono arrivare a tempi nell'ordine dei 2 ns, le più diffuse DRAM da 350 nm operano con tempi di lettura di circa 35 ns,[2] per cui le prestazioni delle FeRAM sembrano comparabili usando lo stesso processo di fabbricazione.

Conclusioni

[modifica |modifica wikitesto]

La tecnologia FeRAM rimane una parte relativamente piccola del mercato dei semiconduttori. Nel 2005 le vendite mondiali di semiconduttori si attestavano sui 235 miliardi di dollari US (secondo il Gartner Group), con un mercato delle memorie flash di 18.6 miliardi di dollari US (secondo IC Insights).[senza fonte] Le vendite annuali per il 2005 di Ramtron, forse il più grande fornitore di FeRAM al mondo, furono di 32.7 milioni di dollari US.

Note

[modifica |modifica wikitesto]
  1. ^TN-47-16: Designing for High-Density DDR2 MemoryArchiviato il 20 settembre 2006 inInternet Archive.
  2. ^Articolo della IEEE sull'argomento

Voci correlate

[modifica |modifica wikitesto]

Altri progetti

[modifica |modifica wikitesto]

Altri progetti

Collegamenti esterni

[modifica |modifica wikitesto]
V · D · M
Tecnologie emergenti
AgricolturaAgricoltura di precisione ·Carne coltivata ·Skyfarming
ElettronicaMemristore ·Naso elettronico ·Spintronica
EnergiaEnergia da fusione ·Energie rinnovabili(Biocombustibile ·Centrale solare orbitale ·Concentrazione solare ·Economia dell'idrogeno ·Fotosintesi artificiale ·Kite Wind Generator) ·Immagazzinamento dell'energia(Accumulatore litio-ferro-fosfato ·Immagazzinamento rotazionale ·Immagazzinamento termico ·Supercondensatore) ·Reattore nucleare a sali fusi ·Smart grid ·Trasferimento di energia senza fili
Informazione e comunicazioneAtomtronica ·Computer ottico ·Computer quantistico ·Crittografia quantistica ·Disco ottico di 4ª generazione(Memoria olografica) ·GPGPU ·Intelligenza artificiale(Riconoscimento vocale ·Traduzione automatica ·Web semantico) · Memoria(FeRAM ·Memoria a cambiamento di fase ·Memoria Racetrack ·RRAM) ·Identificazione a radiofrequenza
NeuroscienzeElettroencefalografia ·Trasferimento della mente(Neuroinformatica) ·Neuroprotesi(Occhio bionico) ·Psicotronica(Teoria delle sevizie elettroniche)
ProduzioneAssemblatore molecolare ·Claytronica ·Nebbia utile ·Stampa 3D
RoboticaDomotica ·Esoscheletro ·Nanorobot ·Robotica degli sciami
SchermiAutostereoscopia
Scienza dei materialiBiomateriale ·Grafene ·Materia programmabile ·Metamateriale ·Nanotecnologia(Nanomateriali ·Nanotecnologia molecolare ·Nanotubo di carbonio) ·Punto quantico ·Superfluidità
Tecnologia biomedicaAnimazione sospesa ·Biologia di sintesi(Genomica di sintesi) ·Chirurgia robotica ·Crionica(Criopreservazione) ·Genetica personalizzata ·Ingegneria genetica(Terapia genica) ·Medicina rigenerativa(Ingegneria tissutale) ·Utero artificiale
TrasportiAereo da trasporto supersonico ·Autovettura autonoma ·Auto volante ·Ferrovia a levitazione aerodinamica ·Jet pack ·Motore ad onda di detonazione ·Motore al plasma(Propulsore magnetoplasmadinamico) ·Personal Rapid Transit ·Propulsore ionico ·Propulsione nucleare ad impulso ·Razzo a fusione nucleare ·Scramjet ·Spazioplano ·Treno a levitazione magnetica ·V2V ·Vactrain ·Vela solare ·Viaggio interstellare
AltroAntigravità ·Arcologia ·Demagnetizzazione adiabatica ·Scudo deflettore
Controllo di autoritàLCCN(ENsh85047879 ·GND(DE4830042-1 ·J9U(EN, HE987007529122905171
  Portale Informatica: accedi alle voci di Wikipedia che trattano di informatica
Estratto da "https://it.wikipedia.org/w/index.php?title=FeRAM&oldid=139119734"
Categoria:
Categorie nascoste:

[8]ページ先頭

©2009-2025 Movatter.jp