Movatterモバイル変換


[0]ホーム

URL:


Vai al contenuto
WikipediaL'enciclopedia libera
Ricerca

Unità di misura di Planck derivate

Da Wikipedia, l'enciclopedia libera.
(Reindirizzamento daDensità di Planck)

Leunità di misura di Planck derivate sono quelle unità di misura derivate dalla combinazione delleunità di Planck fondamentali, come lalunghezza, lamassa e iltempo.

Tabella

[modifica |modifica wikitesto]
Unità derivate di Planck approssimate
DimensioneFormulaEspressioneValore, nelSI approssimata
Versione di Lorentz–Heaviside[1]Versione gaussiana[2][3][4][5]Valore nelSI

Lorentz-Heaviside

Valore nelSI

Gaussiana

Proprietà meccanico-fisiche
Area di PlanckArea[L]2{\displaystyle \left[L\right]^{2}}lP2=4πGc3{\displaystyle l_{\text{P}}^{2}={\frac {4\pi \hbar G}{c^{3}}}}lP2=Gc3{\displaystyle l_{\text{P}}^{2}={\frac {\hbar G}{c^{3}}}}3,2826881069m2{\displaystyle 3,282688\cdot 10^{-69}\;m^{2}}2,6122801070m2{\displaystyle 2,612280\cdot 10^{-70}\;m^{2}}
Volume di PlanckVolume[L]3{\displaystyle \left[L\right]^{3}}lP3=64π33G3c9{\displaystyle l_{\text{P}}^{3}={\sqrt {\frac {64\pi ^{3}\hbar ^{3}G^{3}}{c^{9}}}}}lP3=(Gc3)32=3G3c9{\displaystyle l_{\text{P}}^{3}=\left({\frac {\hbar G}{c^{3}}}\right)^{\frac {3}{2}}={\sqrt {\frac {\hbar ^{3}G^{3}}{c^{9}}}}}1,88080810103m3{\displaystyle 1,880808\cdot 10^{-103}\;m^{3}}4,22211110105m3{\displaystyle 4,222111\cdot 10^{-105}\;m^{3}}
Velocità di PlanckVelocità[L][T]1{\displaystyle \left[L\right]\left[T\right]^{-1}}vP=lPtP=c{\displaystyle v_{\text{P}}={\frac {l_{\text{P}}}{t_{\text{P}}}}=c}299.792.458ms{\displaystyle 299.792.458\;{\frac {m}{s}}}
Planck AngolareRadiante[L][L]1{\displaystyle \left[L\right]\left[L\right]^{-1}\to }adimensionaleθP=lPlP=1{\displaystyle \theta _{\text{P}}={\frac {l_{\text{P}}}{l_{\text{P}}}}=1}1rad{\displaystyle 1\;\mathrm {rad} }
Planck steradianteAngolo solido[L]2[L]2{\displaystyle \left[L\right]^{2}\left[L\right]^{-2}\to } adimensionaleθP2=lP2lP2=1{\displaystyle \theta _{\text{P}}^{2}={\frac {l_{\text{P}}^{2}}{l_{\text{P}}^{2}}}=1}1sr{\displaystyle 1\;\mathrm {sr} }
Quantità di moto di PlanckQuantità di moto[L][M][T]1{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-1}}mPc=lP=c34πG{\displaystyle m_{\text{P}}c={\frac {\hbar }{l_{\text{P}}}}={\sqrt {\frac {\hbar c^{3}}{4\pi G}}}}mPc=lP=c3G{\displaystyle m_{\text{P}}c={\frac {\hbar }{l_{\text{P}}}}={\sqrt {\frac {\hbar c^{3}}{G}}}}1,840608Ns{\displaystyle 1,840608\;\mathrm {N} \cdot s}6,524785kgms{\displaystyle 6,524785\;kg\cdot {\frac {m}{s}}}
Energia di PlanckEnergia[M][L]2[T]2{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}}EP=mPvP2=tP=c54πG{\displaystyle E_{\text{P}}=m_{\text{P}}v_{\text{P}}^{2}={\frac {\hbar }{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{4\pi G}}}}EP=mPc2=tP=c5G{\displaystyle E_{\text{P}}={{m}_{\text{P}}}{{c}^{2}}={\frac {\hbar }{{t}_{\text{P}}}}={\sqrt {\frac {\hbar {{c}^{5}}}{G}}}}5.518004108J{\displaystyle 5.518004\cdot 10^{8}\;\mathrm {J} }153,278kWh{\displaystyle 153,278\;k\mathrm {W} \cdot h}

3,4440671018GeV{\displaystyle 3,444067\cdot 10^{18}Ge\mathrm {V} }

1,956081109J{\displaystyle 1,956081\cdot 10^{9}\mathrm {J} }543,356kWh{\displaystyle 543,356\;k\mathrm {W} \cdot h}

1,2208901028eV{\displaystyle 1,220890\cdot 10^{28}e\mathrm {V} }

Forza di PlanckForza[M][L][T]2{\displaystyle \left[M\right]\left[L\right]\left[T\right]^{-2}}FP=mPaP=mPctP=c44πG{\displaystyle F_{\text{P}}=m_{\text{P}}a_{\text{P}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{4\pi G}}}FP=EPlP=lPtP=c4G{\displaystyle {{F}_{\text{P}}}={\frac {{E}_{\text{P}}}{{l}_{\text{P}}}}={\frac {\hbar }{{{l}_{\text{P}}}{{t}_{\text{P}}}}}={\frac {{c}^{4}}{G}}}9,6309081042N{\displaystyle 9,630908\cdot 10^{42}\;\mathrm {N} }1,2102561044N{\displaystyle 1,210256\cdot 10^{44}\;\mathrm {N} }
Potenza di PlanckPotenza[M][L]2[T]3{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-3}}PP=EPtP=tP2=c54πG{\displaystyle P_{\text{P}}={\frac {E_{\text{P}}}{t_{\text{P}}}}={\frac {\hbar }{t_{\text{P}}^{2}}}={\frac {c^{5}}{4\pi G}}}PP=EPtP=c5G{\displaystyle P_{\text{P}}={\frac {E_{\text{P}}}{t_{\text{P}}}}={\frac {c^{5}}{G}}}2,8872741051W{\displaystyle 2,887274\cdot 10^{51}\;\mathrm {W} }3,6282551052W{\displaystyle 3,628255\cdot 10^{52}\;\mathrm {W} }
Intensità radiante di PlanckIntensità angolare[L]2[M][T]3{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-3}}PPθP2=c54πG{\displaystyle {\frac {P_{\text{P}}}{\theta _{\text{P}}^{2}}}={\frac {c^{5}}{4\pi G}}}ιP=PPθP2=c5G{\displaystyle \iota _{\text{P}}={\frac {P_{\text{P}}}{\theta _{\text{P}}^{2}}}={\frac {c^{5}}{G}}}2,8872741051Wsr{\displaystyle 2,887274\cdot 10^{51}\;{\frac {\mathrm {W} }{\mathrm {sr} }}}3,6282551052Wsr{\displaystyle 3,628255\cdot 10^{52}\;{\frac {\mathrm {W} }{\mathrm {sr} }}}
Intensità di PlanckIntensità[M][T]3{\displaystyle \left[M\right]\left[T\right]^{-3}}iP=PPlP2=c816π2G2{\displaystyle i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{16\pi ^{2}\hbar G^{2}}}}iP=ρPEc=PPlP2=c8G2{\displaystyle i_{\text{P}}=\rho _{\text{P}}^{E}c={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{\hbar G^{2}}}}8,79545510119Wm2{\displaystyle 8,795455\cdot 10^{119}\;{\frac {\mathrm {W} }{m^{2}}}}1,38892310122Wm2{\displaystyle 1,388923\cdot 10^{122}\;{\frac {\mathrm {W} }{m^{2}}}}
Densità di PlanckDensità[M][L]3{\displaystyle \left[M\right]\left[L\right]^{-3}}ρP=mPlP3=tPlP5=c516π2G2{\displaystyle \rho _{\text{P}}={\frac {m_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {\hbar \,t_{\text{P}}}{l_{\text{P}}^{5}}}={\frac {c^{5}}{16\pi ^{2}\hbar G^{2}}}}ρP=mPlP3=c5G2{\displaystyle \rho _{\text{P}}={\frac {m_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{5}}{\hbar G^{2}}}}3,2643461094kgm3{\displaystyle 3,264346\cdot 10^{94}\;{\frac {kg}{m^{3}}}}5,1548491096kgm3{\displaystyle 5,154849\cdot 10^{96}\;{\frac {kg}{m^{3}}}}
Densità energetica di PlanckDensità di energia[L]1[M][T]2{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}uP=EPlP3=c716π2G2{\displaystyle u_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}uP=EPlP3=c7G2{\displaystyle u_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}}}={\frac {c^{7}}{\hbar G^{2}}}}2,93384810111Jm3{\displaystyle 2,933848\cdot 10^{111}\;{\frac {\mathrm {J} }{m^{3}}}}4,63294710113Jm3{\displaystyle 4,632947\cdot 10^{113}\;{\frac {\mathrm {J} }{m^{3}}}}
Frequenza angolare di PlanckFrequenza[T]1{\displaystyle \left[T\right]^{-1}}ωP=θPtP=c54πG{\displaystyle \omega _{\text{P}}={\frac {\theta _{P}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{4\pi \hbar G}}}}ωP=θPtP=c5G{\displaystyle \omega _{P}={\frac {\theta _{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{\hbar G}}}\;}5,2324581042rads{\displaystyle 5,232458\cdot 10^{42}{\frac {\mathrm {rad} }{s}}}1,8548581043rads{\displaystyle 1,854858\cdot 10^{43}{\frac {\mathrm {rad} }{s}}}
Accelerazione angolare di PlanckAccelerazione angolare[T]2{\displaystyle \left[T\right]^{-2}}ωPtP=tP2=c54πG{\displaystyle {\frac {\omega _{\text{P}}}{t_{\text{P}}}}=t_{\text{P}}^{-2}={\frac {c^{5}}{4\pi \hbar G}}}ωPtP=tP2=c5G{\displaystyle {\frac {\omega _{\text{P}}}{t_{\text{P}}}}=t_{\text{P}}^{-2}={\frac {c^{5}}{\hbar G}}}2,7378621085rads2{\displaystyle 2,737862\cdot 10^{85}\;{\frac {\mathrm {rad} }{s^{2}}}}3,4404981086rads2{\displaystyle 3,440498\cdot 10^{86}\;{\frac {\mathrm {rad} }{s^{2}}}}
Accelerazione di PlanckAccelerazione[L][T]2{\displaystyle \left[L\right]\left[T\right]^{-2}}aP=vPtP=c74πG{\displaystyle a_{\text{P}}={\frac {v_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{7}}{4\pi \hbar G}}}}aP=ctP=c7G{\displaystyle a_{\text{P}}={\frac {c}{t_{\text{P}}}}={\sqrt {\frac {c^{7}}{\hbar G}}}}1,5686521051ms2{\displaystyle 1,568652\cdot 10^{51}\;{\frac {m}{s^{2}}}}5,5607261051ms2{\displaystyle 5,560726\cdot 10^{51}\;{\frac {m}{s^{2}}}}
Momento inerziale di PlanckMomento di inerzia[L]2[M]{\displaystyle \left[L\right]^{2}\left[M\right]}mPlP2=4π3Gc5{\displaystyle m_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {4\pi \hbar ^{3}G}{c^{5}}}}}mPlP2=3Gc5{\displaystyle m_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {\hbar ^{3}G}{c^{5}}}}}2,015441077kgm2{\displaystyle 2,01544\cdot 10^{-77}kg\cdot m^{2}}5,685461078kgm2{\displaystyle 5,68546\cdot 10^{-78}kg\cdot m^{2}}
Momento angolare di PlanckMomento angolare[L]2[M][T]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}}P=mPlP2ωP=lPmPc=EPtP={\displaystyle \hbar _{\text{P}}=m_{\text{P}}l_{\text{P}}^{2}\omega _{\text{P}}=l_{\text{P}}m_{\text{P}}c=E_{\text{P}}t_{\text{P}}=\hbar }1.0545718171034Js{\displaystyle 1.054571817\ldots \cdot 10^{-34}\;\mathrm {J} s}
Coppia di PlanckTorque[L]2[M][T]2{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}}τP=FPlP=PtP=c54πG{\displaystyle \tau _{\text{P}}=F_{\text{P}}l_{\text{P}}={\frac {\hbar _{P}}{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{4\pi G}}}}τP=FPlP=PtP=c5G{\displaystyle \tau _{\text{P}}=F_{\text{P}}l_{\text{P}}={\frac {\hbar _{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\hbar c^{5}}{G}}}}5,518004108Nm{\displaystyle 5,518004\cdot 10^{8}\mathrm {N} \cdot m}1,956081109Nm{\displaystyle 1,956081\cdot 10^{9}\mathrm {N} \cdot m}
Pressione di PlanckPressione[M][L]1[T]2{\displaystyle \left[M\right]\left[L\right]^{-1}\left[T\right]^{-2}}pP=FPlP2=lP3tP=c716π2G2{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {\hbar }{l_{\text{P}}^{3}t_{\text{P}}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}pP=FPlP2=c7G2{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}\;}2,93384810111Pa{\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} }4,63294710113Pa{\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Tensione superficiale di PlanckTensione superficiale[M][T]2{\displaystyle \left[M\right]\left[T\right]^{-2}}FPlP=c1164π3G3{\displaystyle {\frac {F_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {c^{11}}{64\pi ^{3}\hbar G^{3}}}}}FPlP=c11G3{\displaystyle {\frac {F_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {c^{11}}{\hbar G^{3}}}}}1,6809411077Nm{\displaystyle 1,680941\cdot 10^{77}{\frac {\mathrm {N} }{m}}}7,4880241078Nm{\displaystyle 7,488024\cdot 10^{78}{\frac {\mathrm {N} }{m}}}
Forza superficiale universale di PlanckForza superficiale universale[L]1[M][T]2{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}pP=FPlP2=c716π2G2{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}pP=FPlP2=c7G2{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}}2,93384810111Pa{\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} }4,63294710113Pa{\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Durezza di indentazione di PlanckDurezza di indentazione[L]1[M][T]2{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}pP=FPlP2=c716π2G2{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{16\pi ^{2}\hbar G^{2}}}}pP=FPlP2=c7G2{\displaystyle p_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{7}}{\hbar G^{2}}}}2,93384810111Pa{\displaystyle 2,933848\cdot 10^{111}\mathrm {Pa} }4,63294710113Pa{\displaystyle 4,632947\cdot 10^{113}\mathrm {Pa} }
Durezza assoluta di PlanckDurezza Assoluta

[L]1[M][T]2{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}}

aFP=9,806654πGc4{\displaystyle {\frac {a_{\oplus }}{F_{\text{P}}}}={\frac {_{9,80665}\,4\pi G}{c^{4}}}}aFP=9,80665Gc4{\displaystyle {\frac {a_{\oplus }}{F_{\text{P}}}}={\frac {_{9,80665}G}{c^{4}}}}1,018251042kgf{\displaystyle 1,01825\cdot 10^{-42}kg\cdot f}8,102961044kgf{\displaystyle 8,10296\cdot 10^{-44}kg\cdot f}
Flusso di massa di PlanckRapporto di flusso di massa[M][T]1{\displaystyle \left[M\right]\left[T\right]^{-1}}trs1=mPtP=c2πrs=c34πG{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {c}{2\pi r_{s}}}={\frac {c^{3}}{4\pi G}}}trs1=mPtP=2crs=c3G{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {2c}{r_{s}}}={\frac {c^{3}}{G}}}3,2125251034kgs{\displaystyle 3,212525\cdot 10^{34}\;{\frac {kg}{s}}}4,0369781035kgs{\displaystyle 4,036978\cdot 10^{35}\;{\frac {kg}{s}}}
Viscosità di Planckviscosità dinamica[L]1[M][T]1{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-1}}ηP=PPtP=c964π3G3{\displaystyle \eta _{\text{P}}=P_{\text{P}}t_{\text{P}}={\sqrt {\frac {c^{9}}{64\pi ^{3}\hbar G^{3}}}}}ηP=PPtP=c9G3{\displaystyle \eta _{\text{P}}=P_{\text{P}}t_{\text{P}}={\sqrt {\frac {c^{9}}{\hbar G^{3}}}}}5,6070151068Pas{\displaystyle 5,607015\cdot 10^{68}\mathrm {Pa} \cdot s}2,4977361070Pas{\displaystyle 2,497736\cdot 10^{70}\mathrm {Pa} \cdot s}
Viscosità cinematica di Planckviscosità cinematica[L]2[T]1{\displaystyle \left[L\right]^{2}\left[T\right]^{-1}}ηPρP=lP2tP=4πGc{\displaystyle {\frac {\eta _{\text{P}}}{\rho _{\text{P}}}}={\frac {l_{\text{P}}^{2}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \hbar G}{c}}}}ηPρP=lP2tP=Gc{\displaystyle {\frac {\eta _{\text{P}}}{\rho _{\text{P}}}}={\frac {l_{\text{P}}^{2}}{t_{\text{P}}}}={\sqrt {\frac {\hbar G}{c}}}}1,7176531027m2s{\displaystyle 1,717653\cdot 10^{-27}{\frac {m^{2}}{s}}}4,8454111027m2s{\displaystyle 4,845411\cdot 10^{-27}{\frac {m^{2}}{s}}}
Portata volumetrica di PlanckRapporto di flusso volumetrico[L]3[T]1{\displaystyle \left[L\right]^{3}\left[T\right]^{-1}}QP=lP3tP=lP2vP=4πGc2{\displaystyle Q_{\text{P}}={\frac {l_{\text{P}}^{3}}{t_{\text{P}}}}=l_{\text{P}}^{2}v_{\text{P}}={\frac {4\pi \hbar G}{c^{2}}}}QP=lP3tP=lP2vP=Gc2{\displaystyle Q_{\text{P}}={\frac {l_{\text{P}}^{3}}{t_{\text{P}}}}=l_{\text{P}}^{2}v_{\text{P}}={\frac {\hbar \,G}{c^{2}}}}9,8412521061m3s{\displaystyle 9,841252\cdot 10^{-61}\;{\frac {m^{3}}{s}}}7,8314191062m3s{\displaystyle 7,831419\cdot 10^{-62}\;{\frac {m^{3}}{s}}}
Proprietà elettromagnetiche
Corrente di PlanckCorrente elettrica[Q][T]1{\displaystyle \left[Q\right]\left[T\right]^{-1}}IP=qPtP=ε0c64πG{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{6}}{4\pi G}}}}IP=qPtP=4πε0c6G{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{6}}{G}}}}2,7683991024A{\displaystyle 2,768399\cdot 10^{24}\;\mathrm {A} }3,4788731025A{\displaystyle 3,478873\cdot 10^{25}\;\mathrm {A} }
Forza magnetomotiva di PlanckCorrente elettrica[Q][T]1{\displaystyle \left[Q\right]\left[T\right]^{-1}}IP=qPtP=ε0c64πG{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{6}}{4\pi G}}}}IP=qPtP=4πε0c6G{\displaystyle I_{\text{P}}={\frac {q_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{6}}{G}}}}2,7683991024A{\displaystyle 2,768399\cdot 10^{24}\;\mathrm {A} }3,4788731025A{\displaystyle 3,478873\cdot 10^{25}\;\mathrm {A} }
Tensione di PlanckTensione[M][L]2[T]2[Q]1{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}\left[Q\right]^{-1}}VP=EPqP=c44πε0G{\displaystyle V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}}1,0429401027V{\displaystyle 1,042940\cdot 10^{27}\;\mathrm {V} }
Forza elettromotiva di PlanckTensione[M][L]2[T]2[Q]1{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-2}\left[Q\right]^{-1}}ϕP=VP=EPqP=c44πε0G{\displaystyle \phi _{\text{P}}=V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}}1.0429401027V{\displaystyle 1.042\;940\cdot 10^{27}\;\mathrm {V} }
Resistenza di PlanckResistenza elettrica[M][L]2[T]1[Q]2{\displaystyle \left[M\right]\left[L\right]^{2}\left[T\right]^{-1}\left[Q\right]^{-2}}ZP=VPIP=qP2=1ε0c=μ0c=Z0{\displaystyle Z_{\text{P}}={\frac {V_{\text{P}}}{I_{\text{P}}}}={\frac {\hbar }{q_{\text{P}}^{2}}}={\frac {1}{\varepsilon _{0}c}}=\mu _{0}c=Z_{0}}ZP=VPIP=14πε0c=Z04π{\displaystyle Z_{\text{P}}={\frac {V_{\text{P}}}{I_{\text{P}}}}={\frac {1}{4\pi \varepsilon _{0}c}}={\frac {Z_{0}}{4\pi }}}376,730Ω{\displaystyle 376,730\;\Omega }29,9792458Ω{\displaystyle 29,9792458\;\Omega }
Conduttanza di PlanckConduttanza elettrica[L]2[M]1[T][Q]2{\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]\left[Q\right]^{2}}GP=1RP=ε0c=1Z0{\displaystyle G_{\text{P}}={\frac {1}{R_{\text{P}}}}=\varepsilon _{0}c={\frac {1}{Z_{0}}}}GP=1RP=4πε0c=4πZ0{\displaystyle G_{\text{P}}={\frac {1}{R_{\text{P}}}}=4\pi \varepsilon _{0}c={\frac {4\pi }{Z_{0}}}}0,002654S{\displaystyle 0,002654\;\mathrm {S} }0,0333564095S{\displaystyle 0,0333564095\;\mathrm {S} }
Capacità elettrica di PlanckCapacità elettrica[L]2[M]1[T]2[Q]2{\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]^{2}\left[Q\right]^{2}}CP=qPVP=lPke=4πε02Gc3{\displaystyle {{C}_{\text{P}}}={\frac {{q}_{\text{P}}}{{V}_{\text{P}}}}={\frac {{l}_{P}}{{k}_{e}}}={\sqrt {\frac {4{\pi }\varepsilon _{0}^{2}\hbar G}{{c}^{3}}}}}CP=qPVP=lPke=16π2ε02Gc3{\displaystyle {{C}_{\text{P}}}={\frac {{q}_{\text{P}}}{{V}_{\text{P}}}}={\frac {{l}_{P}}{{k}_{e}}}={\sqrt {\frac {16{{\pi }^{2}}\varepsilon _{0}^{2}\hbar G}{{c}^{3}}}}}5,0729851046F{\displaystyle 5,072985\cdot 10^{-46}\;\mathrm {F} }1,7983261045F{\displaystyle 1,798326\cdot 10^{-45}\;\mathrm {F} }
Permittività di Planck

(Costante elettrica)

Permittività elettrica[L]3[M]1[T]2[Q]2{\displaystyle \left[L\right]^{-3}\left[M\right]^{-1}\left[T\right]^{2}\left[Q\right]^{2}}εP=CPlP=qPVPlP=FPVP2=ε0{\displaystyle \varepsilon _{\text{P}}={\frac {C_{\text{P}}}{l_{\text{P}}}}={\frac {q_{\text{P}}}{V_{\text{P}}l_{\text{P}}}}={\frac {F_{\text{P}}}{V_{\text{P}}^{2}}}=\varepsilon _{0}}εP=CPlP=FPVP2=1ke=4πε0{\displaystyle \varepsilon _{\text{P}}={\frac {C_{\text{P}}}{l_{\text{P}}}}={\frac {F_{\text{P}}}{V_{\text{P}}^{2}}}={\frac {1}{k_{\text{e}}}}=4\pi \varepsilon _{0}}8,8541878131012Fm{\displaystyle 8,854187813\cdot 10^{-12}{\frac {\mathrm {F} }{m}}}1,112650061010Fm{\displaystyle 1,11265006\cdot 10^{-10}{\frac {\mathrm {F} }{m}}}
Permeabilità di Planck

(Costante magnetica)

Permeabilità magnetica[L][M][Q]2{\displaystyle \left[L\right]\left[M\right]\left[Q\right]^{-2}}μP=LPlP=ϕPBlP=1ε0c2=μ0{\displaystyle \mu _{\text{P}}={\frac {L_{\text{P}}}{l_{\text{P}}}}={\frac {{\phi }_{\text{P}}^{B}}{l_{\text{P}}}}={\frac {1}{\varepsilon _{0}c^{2}}}=\mu _{0}}μP=LPlP=VPImP=14πε0c2=μ04π{\displaystyle \mu _{\text{P}}={\frac {L_{\text{P}}}{l_{\text{P}}}}={\frac {V_{\text{P}}}{{I_{m}}_{\text{P}}}}={\frac {1}{4\pi \,\varepsilon _{0}c^{2}}}={\frac {\mu _{0}}{4\pi }}}1,25663706212μHm{\displaystyle 1,25663706212{\frac {\mathrm {\mu H} }{m}}}10,0000000055μHm{\displaystyle 10,0000000055{\frac {\mathrm {\mu H} }{m}}}
Induttanza elettrica di PlanckInduttanza[L]2[M][Q]2{\displaystyle \left[L\right]^{2}\left[M\right]\left[Q\right]^{-2}}LP=EPIP=mPlP2qP2=4πGε02c7{\displaystyle L_{\text{P}}={\frac {E_{\text{P}}}{I_{\text{P}}}}={\frac {m_{\text{P}}l_{\text{P}}^{2}}{q_{\text{P}}^{2}}}={\sqrt {\frac {4\pi \hbar G}{\varepsilon _{0}^{2}c^{7}}}}}LP=EPIP2=mPlP2qP2=G16π2ε02c7{\displaystyle L_{\text{P}}={\frac {E_{\text{P}}}{I_{\text{P}}^{2}}}={\frac {m_{\text{P}}l_{\text{P}}^{2}}{q_{\text{P}}^{2}}}={\sqrt {\frac {G\hbar }{16\pi ^{2}\varepsilon _{0}^{2}c^{7}}}}}7,1998711041H{\displaystyle 7,199871\cdot 10^{-41}\mathrm {H} }1,616255181042H{\displaystyle 1,61625518\cdot 10^{-42}\mathrm {H} }
Resistività elettrica di PlanckResistività elettrica[L]3[M][T]1[Q]2{\displaystyle \left[L\right]^{3}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-2}}ZPρ=ZPlP=tPke=4πGε02c5{\displaystyle Z_{\text{P}}^{\rho }=Z_{\text{P}}l_{\text{P}}=t_{\text{P}}k_{\text{e}}={\sqrt {\frac {4\pi \hbar G}{\varepsilon _{0}^{2}c^{5}}}}}ZPρ=ZPlP=tPke=G16π2ε02c5{\displaystyle Z_{\text{P}}^{\rho }=Z_{\text{P}}l_{\text{P}}=t_{\text{P}}k_{\text{e}}={\sqrt {\frac {\hbar G}{16\pi ^{2}\varepsilon _{0}^{2}c^{5}}}}}2,158471032Ωm{\displaystyle 2,15847\cdot 10^{-32}\Omega \cdot m}4,845411034Ωm{\displaystyle 4,84541\cdot 10^{-34}\Omega \cdot m}
Conduttività elettrica di PlanckConduttività elettrica[L]3[M]1[T][Q]2{\displaystyle \left[L\right]^{-3}\left[M\right]^{-1}\left[T\right]\left[Q\right]^{2}}σP=1ZPρ=ε02c54πG{\displaystyle \sigma _{\text{P}}={\frac {1}{Z_{\text{P}}^{\rho }}}={\sqrt {\frac {\varepsilon _{0}^{2}c^{5}}{4\pi \hbar G}}}}σP=1ZPρ=16π2ε02c5G{\displaystyle \sigma _{\text{P}}={\frac {1}{Z_{\text{P}}^{\rho }}}={\sqrt {\frac {16\pi ^{2}\varepsilon _{0}^{2}c^{5}}{\hbar G}}}}4,6329181031Sm{\displaystyle 4,632918\cdot 10^{31}{\frac {\mathrm {S} }{m}}}2,0638091033Sm{\displaystyle 2,063809\cdot 10^{33}{\frac {\mathrm {S} }{m}}}
Densità di carica di PlanckDensità di carica[L]3[Q]{\displaystyle \left[L\right]^{-3}\left[Q\right]}ρeP=qPlP3=ε0c1064π32G3{\displaystyle {\rho _{e}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {\varepsilon _{0}c^{10}}{64\pi ^{3}\hbar ^{2}G^{3}}}}}ρeP=qPlP3=4πε0c102G3{\displaystyle {\rho _{e}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{10}}{\hbar ^{2}G^{3}}}}}2,8130561086Cm3{\displaystyle 2,813056\cdot 10^{86}{\frac {\mathrm {C} }{m^{3}}}}4,4422001086Cm3{\displaystyle 4,442200\cdot 10^{86}{\frac {\mathrm {C} }{m^{3}}}}
Forza del campo elettrico di PlanckCampo elettrico

[L][M][T]2[Q]1{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-2}\left[Q\right]^{-1}}

EP=FPqP=c716π2ε0G2{\displaystyle {\bf {E}}_{\text{P}}={\frac {F_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{7}}{16\pi ^{2}\varepsilon _{0}\hbar G^{2}}}}}EP=FPqP=c74πε0G2{\displaystyle {\bf {E}}_{\text{P}}={\frac {F_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{7}}{4\pi \varepsilon _{0}\hbar G^{2}}}}}1,8203061061Vm{\displaystyle 1,820306\cdot 10^{61}{\frac {\mathrm {V} }{m}}}6,4528171061Vm{\displaystyle 6,452817\cdot 10^{61}{\frac {\mathrm {V} }{m}}}
Forza del campo magnetico di PlanckCampo magnetico

[L]1[T]1[Q]{\displaystyle \left[L\right]^{-1}\left[T\right]^{-1}\left[Q\right]}

HP=IPlP=ε0c916π2G2{\displaystyle {\bf {H}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{9}}{16\pi ^{2}\hbar G^{2}}}}}HP=IPlP=4πε0c9G2{\displaystyle {\bf {H}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{9}}{\hbar G^{2}}}}}4,8318551058Am{\displaystyle 4,831855\cdot 10^{58}{\frac {\mathrm {A} }{m}}}2,1524281060Am{\displaystyle 2,152428\cdot 10^{60}{\frac {\mathrm {A} }{m}}}
Induzione elettrica di PlanckCorrente di spostamento[L]2[T]1[Q]{\displaystyle \left[L\right]^{-2}\left[T\right]^{-1}\left[Q\right]}DP=qPlP2=ε0c716π2G2{\displaystyle {\bf {D}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{2}}}={\sqrt {\frac {\varepsilon _{0}c^{7}}{16\pi ^{2}\hbar G^{2}}}}}DP=qPlP2=4πε0c7G2{\displaystyle {\bf {D}}_{\text{P}}={\frac {q_{\text{P}}}{l_{\text{P}}^{2}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{7}}{\hbar G^{2}}}}}1,6117331050Cm2{\displaystyle 1,611733\cdot 10^{50}{\frac {\mathrm {C} }{m^{2}}}}7,1797271051Cm2{\displaystyle 7,179727\cdot 10^{51}{\frac {\mathrm {C} }{m^{2}}}}
Induzione magnetica di PlanckCampo magnetico[M][T]1[Q]1{\displaystyle \left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}BP=FPlPIP=c516π2ε0G2{\displaystyle {\bf {B}}_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}I_{\text{P}}}}={\sqrt {\frac {c^{5}}{16\pi ^{2}\varepsilon _{0}\hbar G^{2}}}}}BP=FPlPIP=qPlP2=c54πε0G2{\displaystyle {\bf {B}}_{\text{P}}={\frac {F_{\text{P}}}{l_{\text{P}}I_{\text{P}}}}={\frac {\hbar }{q_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{5}}{4\pi \varepsilon _{0}\hbar G^{2}}}}}6,0718881052T{\displaystyle 6,071888\cdot 10^{52}\;\mathrm {T} }2,1524281053T{\displaystyle 2,152428\cdot 10^{53}\;\mathrm {T} }
Flusso elettrico di PlanckFlusso magnetico[L]2[M][T]1[Q]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}ϕPE=EPlP2=ϕPlP=cε0{\displaystyle {\phi }_{\text{P}}^{E}={\bf {E}}_{\text{P}}l_{\text{P}}^{2}=\phi _{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar c}{\varepsilon _{0}}}}}ϕPE=EPlP2=ϕPlP=c4πε0{\displaystyle {\phi }_{\text{P}}^{E}={\bf {E}}_{\text{P}}l_{\text{P}}^{2}=\phi _{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar c}{4\pi \varepsilon _{0}}}}}5,975498108Vm{\displaystyle 5,975498\cdot 10^{-8}\mathrm {V} \cdot m}1,685657108Vm{\displaystyle 1,685657\cdot 10^{-8}\mathrm {V} \cdot m}
Flusso magnetico di PlanckFlusso magnetico[L]2[M][T]1[Q]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}ϕPB=BPlP2=APlP=ε0c{\displaystyle {\phi }_{\text{P}}^{B}={\bf {B}}_{\text{P}}l_{\text{P}}^{2}={\bf {A}}_{\text{P}}l_{\text{P}}={\sqrt {\frac {\hbar }{\varepsilon _{0}c}}}}ϕPB=EPIP=APlP=qP=4πε0c{\displaystyle {\phi }_{\text{P}}^{B}={\frac {E_{\text{P}}}{I_{\text{P}}}}={\bf {A}}_{\text{P}}l_{\text{P}}={\frac {\hbar }{q_{\text{P}}}}={\sqrt {\frac {\hbar }{4\pi \varepsilon _{0}c}}}}1,9932111016Wb{\displaystyle 1,993211\cdot 10^{-16}\,\mathrm {Wb} }5,6227461017Wb{\displaystyle 5,622746\cdot 10^{-17}\;\mathrm {Wb} }
Potenziale elettrico di PlanckTensione[L]2[M][T]2[Q]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[Q\right]^{-1}}ϕP=VP=EPqP=c44πε0G{\displaystyle \phi _{\text{P}}=V_{\text{P}}={\frac {E_{\text{P}}}{q_{\text{P}}}}={\sqrt {\frac {c^{4}}{4\pi \varepsilon _{0}G}}}}1,0429401027V{\displaystyle 1,042940\cdot 10^{27}\;\mathrm {V} }
Potenziale magnetico di PlanckCorrente magnetica[L][M][T]1[Q]1{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-1}\left[Q\right]^{-1}}AP=EPqmP=FPIP=VPvP=BPlP=qPlP=c24πε0G{\displaystyle {{\bf {A}}_{\text{P}}}={\frac {{E}_{\text{P}}}{{{q}_{m}}_{\text{P}}}}={\frac {{F}_{\text{P}}}{{I}_{\text{P}}}}={\frac {{V}_{\text{P}}}{{v}_{\text{P}}}}={{\bf {B}}_{\text{P}}}{{l}_{\text{P}}}={\frac {\hbar }{{{q}_{\text{P}}}{{l}_{\text{P}}}}}={\sqrt {\frac {{c}^{2}}{4\pi {{\varepsilon }_{0}}G}}}}3,4788731018Tm{\displaystyle 3,478873\cdot 10^{18}\;\mathrm {T} \cdot m}
Densità di corrente di PlanckDensità di corrente elettrica[L]2[T]1[Q]{\displaystyle \left[L\right]^{-2}\left[T\right]^{-1}\left[Q\right]}JP=IPlP2=ρePvP=ε0c1264π32G3{\displaystyle {\bf {J}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}^{2}}}={{\rho }_{e}}_{\text{P}}v_{\text{P}}={\sqrt {\frac {\varepsilon _{0}c^{12}}{64\pi ^{3}\hbar ^{2}G^{3}}}}}JP=IPlP2=ρePvP=4πε0c122G3{\displaystyle {\bf {J}}_{\text{P}}={\frac {I_{\text{P}}}{l_{\text{P}}^{2}}}={{\rho }_{e}}_{\text{P}}v_{\text{P}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{12}}{\hbar ^{2}G^{3}}}}}8,4333291092Am2{\displaystyle 8,433329\cdot 10^{92}\;{\frac {\mathrm {A} }{m^{2}}}}1,3317381095Am2{\displaystyle 1,331738\cdot 10^{95}\;{\frac {\mathrm {A} }{m^{2}}}}
Momento elettrico di PlanckDipolo elettrico

[L][Q]{\displaystyle \left[L\right]\left[Q\right]}

dP=qPlP=4πε02Gc2{\displaystyle {d}_{\text{P}}=q_{\text{P}}l_{\text{P}}={\sqrt {\frac {4\pi \varepsilon _{0}\hbar ^{2}G}{c^{2}}}}}3,0313611053Cm{\displaystyle 3,031361\cdot 10^{-53}\;\mathrm {C} \cdot m}
Momento magnetico di PlanckDipolo magnetico

[L]2[T]1[Q]{\displaystyle \left[L\right]^{2}\left[T\right]^{-1}\left[Q\right]}

μdP=qmPlP=IPlP2=4πε02G{\displaystyle {\mu _{d}}_{\text{P}}={q_{m}}_{\text{P}}l_{\text{P}}=I_{\text{P}}l_{\text{P}}^{2}={\sqrt {4\pi \varepsilon _{0}\hbar ^{2}G}}}9,0877911045JT{\displaystyle 9,087791\cdot 10^{-45}\;{\frac {\mathrm {J} }{\mathrm {T} }}}
Monopolo magnetico di PlanckCarica magnetica[L][T]1[Q]{\displaystyle \left[L\right]\left[T\right]^{-1}\left[Q\right]}qmP=qPvP=FPBP=ε0c3{\displaystyle {{q}_{m}}_{\text{P}}=q_{\text{P}}v_{P}={\frac {F_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {{{\varepsilon }_{0}}\hbar {{c}^{3}}}}}qmP=qPvP=4πμ0ϕPB=4πε0c3{\displaystyle {{q}_{m}}_{\text{P}}=q_{\text{P}}v_{P}={\frac {4\pi }{\mu _{0}}}\phi _{\text{P}}^{B}={\sqrt {4\pi {{\varepsilon }_{0}}\hbar {{c}^{3}}}}}1.5861471010NT{\displaystyle 1.586147\cdot 10^{-10}{\frac {\mathrm {N} }{\mathrm {T} }}}5.6227461010Am{\displaystyle 5.622746\cdot 10^{-10}\mathrm {A} \cdot m}
Corrente magnetica di PlanckCorrente magnetica[L][T]2[Q]{\displaystyle \left[L\right]\left[T\right]^{-2}\left[Q\right]}ImP=qmPtP=qPaP=IPvP=ε0c84πG{\displaystyle {I_{m}}_{\text{P}}={\frac {{q_{m}}_{\text{P}}}{t_{\text{P}}}}={q_{\text{P}}}{a_{\text{P}}}={I_{\text{P}}}{v_{\text{P}}}={\sqrt {\frac {\varepsilon _{0}c^{8}}{4\pi G}}}}ImP=qmPtP=qPaP=4πε0c8G{\displaystyle {I_{m}}_{\text{P}}={\frac {{q_{m}}_{\text{P}}}{t_{\text{P}}}}={q_{\text{P}}}{a_{\text{P}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{8}}{G}}}}8,299451032VmH{\displaystyle 8,29945\cdot 10^{32}{\frac {\mathrm {V} \cdot m}{\mathrm {H} }}}1,042941034WTm{\displaystyle 1,04294\cdot 10^{34}{\frac {\mathrm {W} }{\mathrm {T} \cdot m}}}
Densità di corrente magnetica di PlanckCorrente magnetica[L]1[T]2[Q]{\displaystyle \left[L\right]^{-1}\left[T\right]^{-2}\left[Q\right]}ImPlP2=JPvP=IPlPtP=ε0c1464π32G3{\displaystyle {\frac {{I_{m}}_{\text{P}}}{l_{\text{P}}^{2}}}={\bf {J}}_{\text{P}}v_{\text{P}}={\frac {{I}_{\text{P}}}{l_{\text{P}}t_{\text{P}}}}={\sqrt {\frac {\varepsilon _{0}c^{14}}{64\pi ^{3}\hbar ^{2}G^{3}}}}}ImPlP2=JPvP=IPlPtP=4πε0c142G3{\displaystyle {\frac {{I_{m}}_{\text{P}}}{l_{\text{P}}^{2}}}={\bf {J}}_{\text{P}}v_{\text{P}}={\frac {{I}_{\text{P}}}{l_{\text{P}}t_{\text{P}}}}={\sqrt {\frac {4\pi \varepsilon _{0}c^{14}}{\hbar ^{2}G^{3}}}}}2,5282510101VmH{\displaystyle 2,52825\cdot 10^{101}{\frac {\mathrm {V} }{m\cdot \mathrm {H} }}}3,9924510103VmH{\displaystyle 3,99245\cdot 10^{103}{\frac {\mathrm {V} }{m\cdot \mathrm {H} }}}
Carica specifica di Planckcarica specifica[M]1[Q]{\displaystyle \left[M\right]^{-1}\left[Q\right]}qrs=qPmP=2πrsμ0=Gke=4πε0G{\displaystyle q_{r_{\text{s}}}={\frac {q_{\text{P}}}{m_{\text{P}}}}={\sqrt {\frac {2\pi {r_{\text{s}}}}{\mu _{0}}}}={\sqrt {\frac {G}{k_{e}}}}={\sqrt {4\pi \varepsilon _{0}G}}}8.6175171011HzT{\displaystyle 8.617517\cdot 10^{-11}\;{\frac {\mathrm {Hz} }{\mathrm {T} }}}
Monopolo specifica di Planck[non chiaro]carica magnetica specifica[L][T]1[M]1[Q]{\displaystyle \left[L\right]\left[T\right]^{-1}\left[M\right]^{-1}\left[Q\right]}qrsc=qPcmP=aPBP=4πε0c2G{\displaystyle q_{r_{\text{s}}}c={\frac {q_{\text{P}}c}{m_{\text{P}}}}={\frac {a_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {4\pi \varepsilon _{0}c^{2}G}}}qrsc=qPcmP=aPBP=4πGμ0{\displaystyle q_{r_{\text{s}}}c={\frac {q_{\text{P}}c}{m_{\text{P}}}}={\frac {a_{\text{P}}}{{\bf {B}}_{\text{P}}}}={\sqrt {\frac {4\pi G}{\mu _{0}}}}}0,0258347ms2T{\displaystyle 0,0258347{\frac {m}{s^{2}\cdot \mathrm {T} }}}0,0258347ms2T{\displaystyle 0,0258347{\frac {m}{s^{2}\cdot \mathrm {T} }}}
Proprietà termodinamiche
Temperatura di Planck in 2πTemperatura[Θ]{\displaystyle \left[\Theta \right]}ΘP2π=2πΘP=2πEPkB=πc5GkB2{\displaystyle {\Theta }_{\text{P}}^{_{2\pi }}=2\pi {\Theta _{\text{P}}}={\frac {2\pi E_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\pi \hbar c^{5}}{G{k_{\text{B}}^{2}}}}}}ΘP2π=2πΘP=2πmPc2kB=πc5GkB2{\displaystyle \Theta _{\text{P}}^{_{2\pi }}=2\pi {\Theta _{\text{P}}}={\frac {2\pi m_{\text{P}}c^{2}}{k_{\text{B}}}}={\sqrt {\frac {\pi \hbar c^{5}}{Gk_{\text{B}}^{2}}}}}2,5111851032K{\displaystyle 2,511185\cdot 10^{32}\mathrm {K} }8,9019171032K{\displaystyle 8,901917\cdot 10^{32}\mathrm {K} }
Entropia di PlanckEntropia[L]2[M][T]2[Θ]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}SP=EPΘP=kB{\displaystyle S_{\text{P}}={\frac {E_{\text{P}}}{\Theta _{\text{P}}}}=k_{\text{B}}}1,3806491023JK{\displaystyle 1,380649\cdot 10^{-23}{\frac {\mathrm {J} }{\mathrm {K} }}}
Entropia di Planck in 2 πEntropia[L]2[M][T]2[Θ]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}S2πP=EP2πΘP=kB2π{\displaystyle {S_{2\pi }}_{\text{P}}={\frac {E_{\text{P}}}{2\pi \Theta _{\text{P}}}}={\frac {k_{\text{B}}}{2\pi }}}2,1973711024JK{\displaystyle 2,197371\cdot 10^{-24}{\frac {\mathrm {J} }{\mathrm {K} }}}
Coefficiente di dilatazione termica di PlanckCoefficiente di dilatazione termica[Θ]1{\displaystyle \left[\Theta \right]^{-1}}αVP=1ΘP=kBEP=4πGkB2c5{\displaystyle {\alpha _{_{V}}}_{\text{P}}={\frac {1}{\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{E_{\text{P}}}}={\sqrt {\frac {4\pi G{k_{\text{B}}}^{2}}{\hbar c^{5}}}}}αVP=1ΘP=kBEP=GkB2c5{\displaystyle {\alpha _{_{V}}}_{\text{P}}={\frac {1}{\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{E_{\text{P}}}}={\sqrt {\frac {G{k_{\text{B}}}^{2}}{\hbar c^{5}}}}}2,50208010331K{\displaystyle 2,502080\cdot 10^{-33}{\frac {1}{\mathrm {K} }}}7,05823810331K{\displaystyle 7,058238\cdot 10^{-33}{\frac {1}{\mathrm {K} }}}
Capacità termica di PlanckCapacità termica -Entropia[L]2[M][T]2[Θ]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}CPΘ=EPΘP=kB{\displaystyle {C}_{\text{P}}^{\Theta }={\frac {E_{\text{P}}}{\Theta _{\text{P}}}}=k_{\text{B}}}1,3806491023JK{\displaystyle 1,380649\cdot 10^{-23}{\frac {\mathrm {J} }{\mathrm {K} }}}
Calore specifico di PlanckCalore specifico[L]2[T]2[Θ]1{\displaystyle \left[L\right]^{2}\left[T\right]^{-2}\left[\Theta \right]^{-1}}cpP=EPmPΘP=kBmP=4πGkB2c{\displaystyle {c_{p}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{m_{\text{P}}}}={\sqrt {\frac {4\pi Gk_{\text{B}}^{2}}{\hbar c}}}}cpP=EPmPΘP=kBmP=GkB2c{\displaystyle {c_{p}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{m_{\text{P}}}}={\sqrt {\frac {Gk_{\text{B}}^{2}}{\hbar c}}}}2,248761015JkgK{\displaystyle 2,24876\cdot 10^{-15}{\frac {\mathrm {J} }{kg\cdot \mathrm {K} }}}6,343631016JkgK{\displaystyle 6,34363\cdot 10^{-16}{\frac {\mathrm {J} }{kg\cdot \mathrm {K} }}}
Calore volumetrico di PlanckCalore volumetrico[L]1[M][T]2[Θ]1{\displaystyle \left[L\right]^{-1}\left[M\right]\left[T\right]^{-2}\left[\Theta \right]^{-1}}cVP=EPlP3ΘP=kBlP3=c9kB264π33G3{\displaystyle {c_{V}}_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {c^{9}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}}cVP=EPlP3ΘP=kBlP3=c9kB23G3{\displaystyle {c_{V}}_{\text{P}}={\frac {E_{\text{P}}}{l_{\text{P}}^{3}\Theta _{\text{P}}}}={\frac {k_{\text{B}}}{l_{\text{P}}^{3}}}={\sqrt {\frac {c^{9}k_{\text{B}}^{2}}{\hbar ^{3}G^{3}}}}}7,3407231079Jm3K{\displaystyle 7,340723\cdot 10^{79}{\frac {\mathrm {J} }{m^{3}\cdot \mathrm {K} }}}3,2700441081Jm3K{\displaystyle 3,270044\cdot 10^{81}{\frac {\mathrm {J} }{m^{3}\cdot \mathrm {K} }}}
Resistenza termica di PlanckResistenza termica[L]2[M]1[T]3[Θ]{\displaystyle \left[L\right]^{-2}\left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]}ΩΘP=ΘPPP=tPkB=4πGc5kB2{\displaystyle {\Omega _{\Theta }}_{\text{P}}={\frac {\Theta _{\text{P}}}{P_{\text{P}}}}={\frac {t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {4\pi \hbar G}{c^{5}k_{\text{B}}^{2}}}}}ΩΘP=ΘPPP=tPkB=Gc5kB2{\displaystyle {\Omega _{\Theta }}_{\text{P}}={\frac {\Theta _{\text{P}}}{P_{\text{P}}}}={\frac {t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\hbar G}{c^{5}k_{\text{B}}^{2}}}}}1,3842381020KW{\displaystyle 1,384238\cdot 10^{-20}{\frac {\mathrm {K} }{\mathrm {W} }}}3,9048641021KW{\displaystyle 3,904864\cdot 10^{-21}{\frac {\mathrm {K} }{\mathrm {W} }}}
Conduttanza termica di PlanckConduttanza termica[L]2[M][T]3[Θ]1{\displaystyle \left[L\right]^{2}\left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}}GΘP=kBtP=c5kB24πGAP2πα{\displaystyle {G_{\Theta }}_{\text{P}}={\frac {k_{\text{B}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}k_{\text{B}}^{2}}{4\pi \hbar G}}}\simeq {\bf {A}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}}GΘP=1ΩΘP=kBtP=c5kB2G{\displaystyle {G_{\Theta }}_{\text{P}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}}}={\frac {k_{\text{B}}}{t_{\text{P}}}}={\sqrt {\frac {c^{5}k_{\text{B}}^{2}}{\hbar G}}}}7,2241901019WK{\displaystyle 7,224190\cdot 10^{19}{\frac {\mathrm {W} }{\mathrm {K} }}}2,5609091020WK{\displaystyle 2,560909\cdot 10^{20}{\frac {\mathrm {W} }{\mathrm {K} }}}
Resistività termica di PlanckResistività termica

[L]1[M]1[T]3[Θ]{\displaystyle \left[L\right]^{-1}\left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]}

1λΘP=ΩΘPlP=lPtPkB=16π22G2c8kB2{\displaystyle {\frac {1}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}={\frac {l_{\text{P}}t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {16\pi ^{2}\hbar ^{2}G^{2}}{c^{8}k_{\text{B}}^{2}}}}}1λΘP=ΩΘPlP=lPtPkB=2G2c8kB2{\displaystyle {\frac {1}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}\,l_{\text{P}}={\frac {l_{\text{P}}t_{\text{P}}}{k_{\text{B}}}}={\sqrt {\frac {\hbar ^{2}G^{2}}{c^{8}k_{\text{B}}^{2}}}}}7,9309581055mKW{\displaystyle 7,930958\cdot 10^{-55}{\frac {m\cdot \mathrm {K} }{\mathrm {W} }}}6,3112561056mKW{\displaystyle 6,311256\cdot 10^{-56}{\frac {m\cdot \mathrm {K} }{\mathrm {W} }}}
Conducibilità termica di PlanckConducibilità termica

[L][M][T]3[Θ]1{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}}

λΘP=PPlPΘP=c8kB216π22G2BP2πα{\displaystyle {\lambda _{\Theta }}_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}\Theta _{\text{P}}}}={\sqrt {\frac {c^{8}k_{\text{B}}^{2}}{16\pi ^{2}\hbar ^{2}G^{2}}}}\simeq {\bf {B}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}}λΘP=PPlPΘP=c8kB22G2BP2πα{\displaystyle {\lambda _{\Theta }}_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}\Theta _{\text{P}}}}={\sqrt {\frac {c^{8}k_{\text{B}}^{2}}{\hbar ^{2}G^{2}}}}\simeq {\bf {B}}_{\text{P}}{\frac {2\pi }{\sqrt {\alpha }}}}1,2608811054WmK{\displaystyle 1,260881\cdot 10^{54}{\frac {\mathrm {W} }{m\cdot \mathrm {K} }}}1,5844711055WmK{\displaystyle 1,584471\cdot 10^{55}{\frac {\mathrm {W} }{m\cdot \mathrm {K} }}}
Isolatore termico di PlanckIsolatore termico[M]1[T]3[Θ]{\displaystyle \left[M\right]^{-1}\left[T\right]^{3}\left[\Theta \right]}lPλΘP=ΩΘPlP2=64π33G3c11kB2{\displaystyle {\frac {l_{\text{P}}}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {64\pi ^{3}\hbar ^{3}G^{3}}{c^{11}k_{\text{B}}^{2}}}}}lPλΘP=ΩΘPlP2=3G3c11kB2{\displaystyle {\frac {l_{\text{P}}}{{\lambda _{\Theta }}_{\text{P}}}}={\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}={\sqrt {\frac {\hbar ^{3}G^{3}}{c^{11}k_{\text{B}}^{2}}}}}4,544021089m2KW{\displaystyle 4,54402\cdot 10^{-89}{\frac {m^{2}\cdot \mathrm {K} }{\mathrm {W} }}}1,020061090m2KW{\displaystyle 1,02006\cdot 10^{-90}{\frac {m^{2}\cdot \mathrm {K} }{\mathrm {W} }}}
Trasmittanza termica di PlanckTrasmittanza termica[M][T]3[Θ]1{\displaystyle \left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-1}}λΘPlP=1ΩΘPlP2=c11kB264π33G3{\displaystyle {\frac {{\lambda _{\Theta }}_{\text{P}}}{l_{\text{P}}}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{11}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}}λΘPlP=1ΩΘPlP2=c11kB264π33G3{\displaystyle {\frac {{\lambda _{\Theta }}_{\text{P}}}{l_{\text{P}}}}={\frac {1}{{\Omega _{\Theta }}_{\text{P}}l_{\text{P}}^{2}}}={\sqrt {\frac {c^{11}k_{\text{B}}^{2}}{64\pi ^{3}\hbar ^{3}G^{3}}}}}2,2006931088Wm2K{\displaystyle 2,200693\cdot 10^{88}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} }}}9,8033461089Wm2K{\displaystyle 9,803346\cdot 10^{89}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} }}}
Flusso termico di PlanckIntensità luminosa[M][T]3{\displaystyle \left[M\right]\left[T\right]^{-3}}ϕqP=λΘPΘP=iP=PPlP2=c816π2G2{\displaystyle {\phi _{q}}_{\text{P}}={\lambda _{\Theta }}_{\text{P}}\Theta _{\text{P}}=i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{16\pi ^{2}\hbar G^{2}}}}ϕqP=λΘPΘP=iP=PPlP2=c8G2{\displaystyle {\phi _{q}}_{\text{P}}={\lambda _{\Theta }}_{\text{P}}\Theta _{\text{P}}=i_{\text{P}}={\frac {P_{\text{P}}}{l_{\text{P}}^{2}}}={\frac {c^{8}}{\hbar G^{2}}}}8,79545510119Wm2{\displaystyle 8,795455\cdot 10^{119}{\frac {\mathrm {W} }{m^{2}}}}1,38892310122Wm2{\displaystyle 1,388923\cdot 10^{122}{\frac {\mathrm {W} }{m^{2}}}}
Località di PlanckSeconda radiazione di costante[L][Θ]{\displaystyle \left[L\right]\left[\Theta \right]}C2P=ΘPlP=C22π=hc2πkB=EPlPkB{\displaystyle C_{2_{\text{P}}}={\Theta _{\text{P}}l_{\text{P}}}={\frac {C_{2}}{2\pi }}={\frac {hc}{2\pi \,{k}_{\text{B}}}}={\frac {{E}_{\text{P}}{l}_{\text{P}}}{{k}_{\text{B}}}}}0,002289885Km{\displaystyle 0,002289885\;\mathrm {K} \cdot m}
Località di Planck con costante di struttura fineSeconda radiazione di costante[L][Θ]{\displaystyle \left[L\right]\left[\Theta \right]}CαP=2πΘPlPα=C2α=hcαkB=2πEPlPαkBqPc2{\displaystyle C_{\alpha _{\text{P}}}={\frac {2\pi \Theta _{\text{P}}l_{\text{P}}}{\sqrt {\alpha }}}={\frac {C_{2}}{\sqrt {\alpha }}}={\frac {hc}{{\sqrt {\alpha }}{k}_{\text{B}}}}={\frac {2\pi {E}_{\text{P}}{l}_{\text{P}}}{{\sqrt {\alpha }}{k}_{\text{B}}}}\simeq q_{\text{P}}c^{2}}0,168427Km{\displaystyle 0,168427\;\mathrm {K} \cdot m}
Costante di Stefan-Boltzmann di PlanckCostante di proporzionalità[M][T]3[Θ]4{\displaystyle \left[M\right]\left[T\right]^{-3}\left[\Theta \right]^{-4}}σσP=PPlP2ΘP4=kB43c2=16π4c2C24{\displaystyle \sigma _{_{\sigma }{\text{P}}}={\frac {{P}_{\text{P}}}{{l}_{\text{P}}^{2}{\Theta }_{\text{P}}^{4}}}={\frac {{k}_{\text{B}}^{4}}{{\hbar }^{3}{c}^{2}}}={\frac {{16}\pi ^{4}\hbar {c}^{2}}{C_{2}^{4}}}}3,447174107Wm2K4{\displaystyle 3,447174\cdot 10^{-7}{\frac {\mathrm {W} }{m^{2}\cdot \mathrm {K} ^{4}}}}
Proprietà radioattive
Attività specifica di PlanckAttività specifica[T]1{\displaystyle \left[T\right]^{-1}}1tP=c54πG{\displaystyle {\frac {1}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{4\pi \hbar G}}}}1tP=c5G{\displaystyle {\frac {1}{t_{\text{P}}}}={\sqrt {\frac {c^{5}}{\hbar G}}}}5,2324581042Bq{\displaystyle 5,232458\cdot 10^{42}\mathrm {Bq} }1,8548581043Bq{\displaystyle 1,854858\cdot 10^{43}\mathrm {Bq} }
Esposizione radioattiva di PlanckRadiazioni ionizzanti[M]1[Q]{\displaystyle \left[M\right]^{-1}\left[Q\right]}qrs=qPmP=2πrsμ0=Gke=4πε0G{\displaystyle q_{r_{\text{s}}}={\frac {q_{\text{P}}}{m_{\text{P}}}}={\sqrt {\frac {2\pi {r_{\text{s}}}}{\mu _{0}}}}={\sqrt {\frac {G}{k_{e}}}}={\sqrt {4\pi \varepsilon _{0}G}}}8,6175181011Ckg{\displaystyle 8,617\;518\cdot 10^{-11}\;{\frac {\mathrm {C} }{kg}}}
Potenziale gravitazionale di Planckcalorie specifiche[L]2[T]2{\displaystyle \left[L\right]^{2}\left[T\right]^{-2}}ΦGP=EPmP=c2{\displaystyle {\Phi _{_{G}}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}}}=c^{2}}89.875.517.873.681.764Jkg{\displaystyle 89.875.517.873.681.764\;{\frac {\mathrm {J} }{kg}}}
Dose assorbita di PlanckDose assorbita[L]2[T]2{\displaystyle \left[L\right]^{2}\left[T\right]^{-2}}ΦGP=EPmP=c2{\displaystyle {\Phi _{_{G}}}_{\text{P}}={\frac {E_{\text{P}}}{m_{\text{P}}}}=c^{2}}8,9875521016Gy{\displaystyle 8,987552\cdot 10^{16}\;\mathrm {Gy} }
Velocità di dose assorbita di PlanckVelocità didose assorbita[L]2[T]3{\displaystyle \left[L\right]^{2}\left[T\right]^{-3}}ΦGPtP=c94πG{\displaystyle {\frac {{\Phi _{_{G}}}_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{9}}{4\pi \hbar G}}}}ΦGPtP=c9G{\displaystyle {\frac {{\Phi _{_{G}}}_{\text{P}}}{t_{\text{P}}}}={\sqrt {\frac {c^{9}}{\hbar G}}}}4,7027001059Gys{\displaystyle 4,702700\cdot 10^{59}\;{\frac {\mathrm {Gy} }{s}}}1,6670641060Gys{\displaystyle 1,667064\cdot 10^{60}\;{\frac {\mathrm {Gy} }{s}}}
Proprietà dei buchi neri
Massa lineare di PlanckMassa lineare

[M][L]1{\displaystyle \left[M\right]\left[L\right]^{-1}}

lrs1=mPlP=24πrs=c24πG{\displaystyle {l_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2}{4\pi r_{s}}}={\frac {c^{2}}{4\pi G}}}lrs1=mPlP=2rs=c2G{\displaystyle {l_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2}{r_{s}}}={\frac {c^{2}}{G}}}1,0715831026kgm{\displaystyle 1,071583\cdot 10^{26}\;{\frac {kg}{m}}}1,3465911027kgm{\displaystyle 1,346591\cdot 10^{27}\;{\frac {kg}{m}}}
Impedenza meccanica di PlanckImpedenza meccanica[M][T]1{\displaystyle \left[M\right]\left[T\right]^{-1}}trs1=mPtP=2c4πrs=c34πG{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{t_{\text{P}}}}={\frac {2c}{4\pi r_{s}}}={\frac {c^{3}}{4\pi G}}}trs1=mPlP=2crs=c3G{\displaystyle {t_{r}}_{\text{s}}^{-1}={\frac {m_{\text{P}}}{l_{\text{P}}}}={\frac {2c}{r_{s}}}={\frac {c^{3}}{G}}}3,2125251034kgs{\displaystyle 3,212525\cdot 10^{34}\;{\frac {kg}{s}}}4,0369781035kgs{\displaystyle 4,036978\cdot 10^{35}\;{\frac {kg}{s}}}
Gravità di superficieGravità di superficie

[L][M][T]2{\displaystyle \left[L\right]\left[M\right]\left[T\right]^{-2}}

ars14MFPmrs=mPctP=c44πG{\displaystyle {a_{r}}_{\text{s}}\equiv {\frac {1}{4M}}\equiv {\frac {F_{\text{P}}}{{m_{r}}_{\text{s}}}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{4\pi G}}}ars14MFPmrs=mPctP=c4G{\displaystyle {a_{r}}_{\text{s}}\equiv {\frac {1}{4M}}\equiv {\frac {F_{\text{P}}}{{m_{r}}_{\text{s}}}}={\frac {m_{\text{P}}c}{t_{\text{P}}}}={\frac {c^{4}}{G}}}9,6309081042kgms2{\displaystyle 9,630908\cdot 10^{42}{\frac {kg\cdot m}{s^{2}}}}1,2102561044kgms2{\displaystyle 1,210256\cdot 10^{44}{\frac {kg\cdot m}{s^{2}}}}
Costante di accoppiamento di PlanckTeoria dell'informazione

(adimensionale)

αGP=mrs2=(mPmP)2=4πGmP2c{\displaystyle {\alpha _{G}}_{\text{P}}={m_{r}}_{\text{s}}^{2}=\left({\frac {m_{\text{P}}}{m_{\text{P}}}}\right)^{2}={\frac {4\pi Gm_{\text{P}}^{2}}{\hbar c}}}αGP=mrs2=(mPmP)2=GmP2c{\displaystyle {\alpha _{G}}_{\text{P}}={m_{r}}_{\text{s}}^{2}=\left({\frac {m_{\text{P}}}{m_{\text{P}}}}\right)^{2}={\frac {Gm_{\text{P}}^{2}}{\hbar c}}}11
Limite di Bekenstein di Planck[6][7][8]Teoria dell'informazione

(adimensionale)

IbitsP2παGPlog[2]=2πlPEPc{\displaystyle {I_{_{bits}}}_{\text{P}}\leq {\frac {2\pi {\alpha _{G}}_{\text{P}}}{\log[2]}}={\frac {2\pi l_{\text{P}}E_{\text{P}}}{\hbar c}}}9,064720bits{\displaystyle 9,064720\ldots \mathrm {bits} }23,18{\displaystyle \approx 2^{3,18}}

1,133bytes{\displaystyle \approx 1,133\,\mathrm {bytes} }

Rapporto massa-massa di PlanckTeoria dell'informazione

(adimensionale)

mrs=mPmP{\displaystyle {m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}}1{\displaystyle 1}
Unità di PlanckUnita di Planck

(adimensionale)

αGP=mrs=mPmP{\displaystyle {\sqrt {{\alpha _{G}}_{\text{P}}}}={m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}}αGP=mrs=mPmP{\displaystyle {\sqrt {{\alpha _{G}}_{\text{P}}}}={m_{r}}_{\text{s}}={\frac {m_{\text{P}}}{m_{\text{P}}}}}1{\displaystyle 1}1{\displaystyle 1}

Nota:ke{\displaystyle k_{e}} è lacostante di Coulomb,μ0{\displaystyle \mu _{0}} è la permeabilità nel vuoto,Z0{\displaystyle Z_{0}} è l'impedenza di spazio libero,Y0{\displaystyle Y_{0}} è l'ammissione di spazio libero,R{\displaystyle R} è lacostante dei gas.

Nota:NA{\displaystyle N_{\text{A}}} è lacostante di Avogadro, anch'essa normalizzata a1{\displaystyle 1} in entrambe le versioni di unità di Planck.

Note

[modifica |modifica wikitesto]
  1. ^(EN)Units, natural units and metrology, suThe Spectrum of Riemannium.URL consultato il 22 marzo 2020.
  2. ^www.espenhaug.com, suespenhaug.com.URL consultato il 22 marzo 2020.
  3. ^Derived Planck Units - CODATA 2014 (PNG), suupload.wikimedia.org.
  4. ^ Alexander Bolonkin,Universe. Relations Between Time, Matter, Volume, Distance and Energy. Rolling Space, Time, Matter Into Point.URL consultato il 22 marzo 2020.
  5. ^Relations between Charge, Time, Matter, Volume, Distance, and Energy (PDF), supdfs.semanticscholar.org.
  6. ^(EN) Los Alamos National Laboratory, Operated by Los Alamos National Security, LLC, for the U. S. Department of Energy,System Unavailable, sulanl.gov.URL consultato il 5 aprile 2020.
  7. ^(EN) Jacob D. Bekenstein,Bekenstein bound, inScholarpedia, vol. 3, n. 10, 31 ottobre 2008, p. 7374,DOI:10.4249/scholarpedia.7374.URL consultato il 5 aprile 2020.
  8. ^(EN) Jacob D. Bekenstein,Bekenstein-Hawking entropy, inScholarpedia, vol. 3, n. 10, 31 ottobre 2008, p. 7375,DOI:10.4249/scholarpedia.7375.URL consultato il 5 aprile 2020.
  Portale Fisica: accedi alle voci di Wikipedia che trattano di fisica
Estratto da "https://it.wikipedia.org/w/index.php?title=Unità_di_misura_di_Planck_derivate&oldid=145815424"
Categoria:
Categoria nascosta:

[8]ページ先頭

©2009-2025 Movatter.jp