Movatterモバイル変換


[0]ホーム

URL:


Vai al contenuto
WikipediaL'enciclopedia libera
Ricerca

Clima

Da Wikipedia, l'enciclopedia libera.
(Reindirizzamento daAgenti atmosferici)
Esempio di dinamica atmosferico-climatica a livello globale (copertura nuvolosa) (NASA)

Ilclima (dalgreco anticoκλίμα?,klíma, "regione, tratto di paese") è lo statomedio deltempo atmosferico a varie scale spaziali (locale, regionale, nazionale, continentale, emisferico o globale) rilevato nell'arco di almeno 30 anni (secondo la definizione ufficiale fornita dallaOrganizzazione meteorologica mondiale).

È in massima parte una funzione dell'inclinazione deiraggi solari sullasuperficie della Terra al variare dellalatitudine; a ciascunafascia climatica-latitudinale della Terra corrispondono caratteristiche fisico-ambientali diverse in termini diflora efauna dettibiomi (es.foreste pluviali,deserti,foreste temperate,steppe,taiga,tundra ebanchisa polare), influenzando fortemente leattività economiche, leabitudini e lacultura dellepopolazioni che abitano il territorio.

La principale caratteristica del clima rispetto al comune "tempo meteorologico", oltre all'intervallo temporale di osservazione e studio, è l'avere un andamento che tende a mantenersi stabile nel corso degli anni pur con unavariabilità climatica interannuale dovuta allestagioni e di medio-lungo periodo che vi si sovrappone. L'attenzione scientifica negli ultimi decenni si è spostata sempre più sulla comprensione o ricerca approfondita dei meccanismi che regolano il clima terrestre, specie in rapporto ai temuticambiamenti climatici osservati negli ultimi decenni (ad esempio ilriscaldamento globale).

La disciplinascientifica che studia tutti questi aspetti è laclimatologia.

Descrizione

[modifica |modifica wikitesto]

Clima e tempo meteorologico

[modifica |modifica wikitesto]
Lo stesso argomento in dettaglio:Climatologia, Tempo meteorologico e Variabilità climatica.

"Tempo meteorologico" e "clima" sono termini che nel linguaggio comune vengono spesso usati comesinonimi; dal punto di vista strettamente scientifico invece i loro significati sono distinti.

Distribuzione dellatemperatura sulla superficie terrestre. In rosso le aree atemperatura più elevata, in blu le aree a temperatura meno elevata (NASA).

Quando si parla di "clima" ci si riferisce alle condizioni ambientali che persistono in una zona per periodi lunghi almeno qualche decina di anni (da minimo 30 anni a migliaia di anni) e condizioni atmosferiche che tendono a ripetersi stagionalmente, mentre variazioni meteo giornaliere, stagionali o annuali devono essere considerate variazioni del tempo meteorologico di una zona. In pratica quando si parla di clima si parla non soltanto delle condizioni meteo, ma soprattutto all'ambiente ad esse associate: una variazione del clima è una variazione stabile non solo delle condizioni meteo di un'area ma anche dell'ambiente di quell'area (ambiente come piante, animali, morfologia, ecc.).

Il clima è riferito ad aree terrestri che vanno dalla piccola estensione fino ad aree molto vaste (ad esempio, lefasce climatiche o intericontinenti). In particolare l'Organizzazione Meteorologica Mondiale (OMM) ha stabilito che la durata minima delleserie storico-temporali di dati continui per poter individuare le caratteristiche climatiche di una data località è di minimo 30 anni.

Risulta pertanto evidente come anche il clima di una regione, sebbene mostri una certa regolarità nel tempo, possa essere soggetto a cambiamenti temporali, anche con periodi piccoli comparabili con la durata media della vita umana; succede quindi abbastanza di frequente che una persona, nella sua vita, si trovi a sperimentare dei piccolicambiamenti climatici. A maggior ragione, quindi, possono esserci cambiamenti climatici su periodi lunghi, in risposta a variazioni nei fattori sotto elencati.

In questo contesto vengono ad assumere particolare importanza gli studi di"analisi climatica" delle suddette serie storiche che evidenziano itrend e le ciclicità statistiche delle grandezze meteo-climatiche osservate, ovvero leanomalie e le regolarità dei parametri rispetto alla media del periodo di riferimento (hanno scarso senso climatico invece le analisi di breve periodo riferite a singoli eventi meteorologici in quanto rientranti invece nella comunevariabilità meteorologica). Seguono poi in genere gli studi di attribuzione delle cause dei cambiamenti climatici stessi. Tecnicamente parlando si può dire che il tempo atmosferico ècaotico a bassa temporalità ovvero a breve periodo, andando poi a regime ovvero mostrando una certa regolarità nel lungo periodo (vediattrattore di Lorenz).

Definizioni amministrative e normative

[modifica |modifica wikitesto]

Secondo ilGlossario DinamicoISPRA-CATAP, per clima si intende la sintesi statistica dei parametri atmosferici (temperatura,precipitazioni,umidità,pressione atmosferica,venti) che interessano un territorio per un periodo di tempo sufficientemente lungo.

Elementi del clima

[modifica |modifica wikitesto]
Lo stesso argomento in dettaglio:Clima terrestre.
Stazione meteo-climatica di raccolta dati inAntartide

Gli elementi climatici sono dellegrandezze fisiche misurabili, la cui misurazione viene effettuata per mezzo di opportuna strumentazione da parte dellestazioni meteorologiche (capanne standard di legno colorato di bianco), e sono:

Essi sono gli stessi elementi che caratterizzano il tempo atmosferico, ma coerentemente con la definizione di Clima di essi sono rilevanti solo ivalori medi assunti su un lungo periodo di tempo.

Fattori climatici

[modifica |modifica wikitesto]
Effetti dellalatitudine sull'incidenza dellaradiazione solare

Ifattori climatici sono le condizioni che producono variazioni sugli elementi climatici. Si possono distinguere tra fattori zonali, che agiscono regolarmente dall'equatore ai poli, e fattori geografici, che agiscono in modo diverso per ogni località.

Sono fattori zonali:

  • latitudine (distanza di un punto dall'equatore);
  • circolazione generale atmosferica, che influisce attraverso gli scambi di calore tra le regioni calde e le regioni più fredde.
  • effetto serra
  • albedo

Sono fattori geografici:

  • altitudine (con l'altezza diminuiscono la temperatura di 6 gradi ogni 1000 m circa, la pressione e l'umidità, mentre aumentano l'irraggiamentosolare e, fino a una certa quota, lapiovosità);
  • presenza di catene montuose (che bloccano i venti,costringendoli ad alzarsi a quote più elevate,dove la temperatura è più bassa,facendo condensare il vaporeacqueo e provocando pioggia);
Mappa dellecorrenti oceaniche
  • esposizione a solatio o a bacio (che modifica l'angolo di incidenza della luce solare);
  • vicinanza al mare (che influenza la temperatura e l'umidità, riducendo l'escursione termica perché abbassa le temperature massime e alza quelle minime);
  • correnti marine(che possono essere calde e fredde;quelle calde rendono il clima delle coste che lambiscono caldo e umido,mentre quelle fredde lo rendono fresco e secco);
  • vegetazione (mitiga il clima grazie alla maggior presenza di vapore acqueo,rendendo,quindi,il clima più umido);
  • attività umana (che agisce sul clima in quanto capace di modificare l'ambiente naturale e gli equilibri degli ecosistemi).
  • irradiazione solare.
  • vicinanza a grandi bacini d'acqua (la funzione mitigatrice di questi bacini favorisce delle escursioni termiche meno accentuate rispetto ad una regione che ne è sprovvista, favorendo il caratteristico clima mite)

Classificazione dei climi

[modifica |modifica wikitesto]
Lo stesso argomento in dettaglio:Classificazione dei climi di Köppen, Classificazione climatica di Thornthwaite e Primati climatologici mondiali.
Mappa dei climi del mondo

Celebre è la classificazione del Clima ad opera diWladimir Köppen secondo la quale i climi si distinguono in:

Clima dei pianeti circostanti

[modifica |modifica wikitesto]
Venere, famoso per il suo intensoeffetto serra
  • L'atmosfera diVenere ha unapressione di 94 volte quella terrestre, ed è composta per il 97% da CO2. L'assenza di acqua impedì l'estrazione dell'anidride carbonica dall'atmosfera, che si accumulò provocando un intensoeffetto serra che aumentò la temperatura superficiale sino a 465 °C, superiore alpunto di fusione delpiombo. Probabilmente la distanza inferiore dal Sole è stata determinante per produrre nel pianeta le condizioni attuali. Bisogna ricordare che piccoli cambiamenti possono scatenare un meccanismo di retroazione e se questo è sufficientemente ampio si può raggiungere un livello non controllabile, dominato da alcuni fattori, e avere condizioni estreme come quelle di Venere.
  • L'atmosfera diMarte ha una pressione di solo seimillibar e, sebbene sia composta per il 96% da CO2, l'effetto serra è scarso e non può impedire né una oscillazione diurna della temperatura dell'ordine di 55 °C, né le basse temperature superficiali che raggiungono minimi di -86 °C nelle medie latitudini. Pare che nel passato godette di migliori condizioni, per cui vi era acqua liquida sulla superficie come dimostrano la moltitudine di canali e valli erosive; questo fu causato da un aumento della concentrazione del diossido di carbonio nella sua atmosfera, proveniente dalle emissioni dei grandivulcani marziani che provocarono un processo di degassificazione analogo a quello accaduto sul nostro pianeta. La differenza sostanziale è che ildiametro di Marte misura la metà rispetto a quello terrestre, per cui il calore interno era molto inferiore e il pianeta si raffreddò già molto tempo fa. Senza l'attività vulcanica Marte era condannato e la CO2 sfuggì dall'atmosfera facilmente, a causa anche della ridottaforza di gravità rispetto alla Terra. Inoltre è possibile che qualche processo di tipo minerale assorbisse la CO2 e, non compensato dalle emissioni vulcaniche, provocasse una sua diminuzione drastica. Il pianeta quindi si raffreddò progressivamente fino a congelare la poca CO2 rimasta nellecalotte polari odierne.

Funzionamento del sistema climatico

[modifica |modifica wikitesto]
Lo stesso argomento in dettaglio:Circolazione atmosferica, Retroazione, Ciclo dell'acqua e Ciclo del carbonio.
Circolazione atmosferica

Il sistema climatico è il risultato dell'accoppiamentoatmosfera-oceano-biosfera-criosfera con scambi dicalore sensibile,vapore acqueo,quantità di moto (attraverso i venti sul moto ondoso) e elementi chimici vari (attraverso icicli biogeochimici) all'interfaccia di separazione dei vari mezzi. Il motore del sistema climatico è ilSole (forzante esogena) che riscalda la superficie terrestre con intensità variabile (decrescente) con la latitudine causando un gradiente termico tra ipoli e l'equatore laddove l'insolazione è rispettivamente minima e massima. L'influsso degli oceani si fa sentire anche attraverso ipattern di circolazione accoppiati con l'atmosfera e dettiteleconnessioni atmosferiche.

Come conseguenza di ciò e dellarotazione terrestre il ripristino dell'equilibrio termico planetario latitudinale è affidato allacircolazione generale dell'atmosfera la quale può essere suddivisa in 3 grosse macrocelle per emisfero: lacella di Hadley che va dalla fascia equatoriale fino a quella tropicale, lacella di Ferrel che copre le medie latitudini e lacella polare che staziona sui polo fino al circolo polare. Ognuna di queste celle comunica con la confinante scambiandosi masse d'aria a temperatura e umidità diverse. Una caratteristica fondamentale dell'atmosfera terrestre è l'effetto serra ovvero l'intrappolamento del calore da parte dei gas atmosferici.

Il sistema climatico è un sistema in equilibrio dinamico con le sue forzanti esterne (esogene), quali appunto il Sole, e interne (endogene), quali icicli oceanici e la concentrazione digas serra, ovvero modifica il suo stato di equilibrio termico al variare dell'intensità delle forzanti stesse. All'interno del sistema in virtù dei mutamenti delle forzanti di origine naturale è definibile anche il concetto divariabilità climatica.

In una rappresentazionefisico-matematica tramitespazio delle fasi del sistema climatico ovvero tramite l'attrattore risultante, le singoletraiettorie di stato rappresentano la normale evoluzione meteorologica (riferibile a ciascun parametro meteorologico) con una chiara variabilità intrastagionale e interannuale (caos) delle traiettorie stesse, mentre la ciclicità regolare climatica è rappresentata invece dalla forma complessiva dell'attrattore (farfalla o doppio lobo) dove si evidenzia l'equilibrio del sistema come 'media' delle singole traiettorie. Al variare delle forzanti l'equilibrio nel tempo delle traiettorie (densità e baricentro), quindi del sistema, si sposta in un lobo oppure nell'altro.

Ciclo dell'acqua

Di rilevante importanza sono i processi diretroazione ofeedback del sistema climatico sulle forzanti originarie al sistema stesso, sia positivi che negativi (albedo, ghiacci, nubi ecc...), che spesso di natura non-lineare assieme agli altri processi non-lineari rendono il sistema climatico propriamente unsistema complesso il quale manifesta cioè uncomportamento emergente solo in corrispondenza della computazione in toto di tutti processi ("il tutto è maggiore della somma delle singole parti"). L'energia esterna ricevuta è dunque assorbita e redistribuita in tutto il sistema tramite i vari processi interagenti e all'equilibrio parte di questa energia è ceduta nuovamente allo spazio; in virtù di ciò il sistema climatico è anche un sistema aperto ovvero non isolato cioèdissipativo. A ciò si aggiunge la rilevante capacità di autoregolazione della temperatura globale da parte degli oceani in grado di fungere da grandi serbatoi di accumulo del calore grazie alla loro notevolecapacità termica.

L'evidente difficoltà di studio tramite riproduzione in laboratorio dell'intero sistema e la necessità di tenere in considerazione tutti i processi rappresentativi in legame strettamente non-lineare ha portato negli ultimi decenni ad un approccio di studio simulato, col ricorso a laboratori virtuali ovvero all'uso accoppiato disupercalcolatori emodelli matematici al fine di otteneresimulazioni sul clima passato e su quello futuro, preservando così, attraverso la validazione del modello sui dati passati, uno dei requisiti cardine della scienza fisica moderna qual è la riproducibilitàgalileiana dell'osservabile fisico nonché il superamento definitivo dell'approccio qualitativo con quello ben più rigoroso di tipo quantitativo pesando i contributi di ciascun fattore[1].

Indici climatici e teleconnessioni

[modifica |modifica wikitesto]
Lo stesso argomento in dettaglio:Teleconnessioni atmosferiche.
Il fenomeno dell'ENSO

Gli indici climatici vengono utilizzati dagli scienziati per meglio caratterizzare e comprendere i meccanismi del clima; proprio come accade con gli indici borsistici, per esempio ilDow Jones, che rappresentano le fluttuazioni complessive di più titoli azionari, così gli indici climatici in un certo senso "riassumono" le caratteristiche essenziali del clima, e sono perciò definitisemplici ecompleti, nel senso che danno una descrizione generale dello stato dell'atmosfera o degli oceani. Essi quantificano le fasi delle cosiddetteteleconnessioni atmosferiche cioè i modi o pattern di variabilità atmosferica e oceanica a media, bassa e alta frequenza.

Con il nome di "El Niño Southern Oscillation" (o più brevemente "ENSO") si denomina un importante fenomeno sia oceanico che atmosferico. El Niño (e il fenomeno opposto, La Niña) sono fluttuazioni della temperatura delle acque superficiali dell'Oceano Pacifico Orientale, tra le più importanti e influenti teleconnessioni oceaniche-atmosferiche.

Modelli climatici

[modifica |modifica wikitesto]
Lo stesso argomento in dettaglio:Modello del clima.
Schema del grigliato di un modello globale del Clima

Per lo studio del clima futuro, anche in relazione al problema deicambiamenti climatici, sono stati messi a punto svariati modelli climatici a partire dagli anni settanta, sia globali (Global Climate Models, GCMs) sia regionali (Regional Climate Models, RCMs) ottenuti con operazioni didownscaling dai modelli globali.

Le equazioni di base dei modelli climatici sono sostanzialmente le stesse deimodelli meteorologici, ma in ambito climatico oltre ai modelli ditrasferimento radiativo-convettivo e a quellifluidodinamici, già presenti in quelli meteorologici, vengono aggiunte equazioni relative a processi fisici che hanno scarsa influenza a scala meteorologica (breve periodo), ma peso molto maggiore a scala climatica (medio-lungo periodo) come ad esempio l'effetto della copertura nevosa sull'albedo terrestre, l'interazione tra atmosfera e biosfera attraverso ilciclo del carbonio per la valutazione dell'impatto delforcing antropico, le variazioni dellecorrenti oceaniche (modelli oceanici), ovvero tutte le possibiliretroazioni alle forzanti energetiche del sistema.

Cambia inoltre radicalmente il tipo di "risoluzione matematica" del modello: mentre nei modelli meteorologici hanno estrema importanza lecondizioni iniziali da cui parte laprevisione meteo (inizializzazione) e in virtù delle quali questa perde significato oltre i 15 giorni, i modelli climatici (pur inizializzati) mirano al calcolo dell'equilibrio medio generale del sistema climatico ovvero dei suoi parametri caratteristici medi visualizzabili tramite un semplice attrattore, il cui risultato a regime è indipendente dunque dalle condizioni iniziali, ma dipende unicamente dal bilancio delle forzanti energetiche del sistema unite in maniera non-lineare ai processi di retroazione.

Ciclo del carbonio

Il livello di dettaglio dei modelli climatici è quindi tale da escludere la riproduzione della comune variabilità meteorologica interannuale e intrastagionale ovvero ilcaos intrinseco dell'atmosfera evidenziando invece itrend sul lungo periodo dei vari parametri atmosferici in funzione delle sole forzanti significative; in altri termini i risultati (output) dei modelli climatici sono puramente indicativi dello stato futuro 'medio' dell'atmosfera, cioè forniscono delletendenze a medio-lungo termine del tutto in linea quindi con la definizione statistica di "clima" e l'analisi o prognosi richiesta, lasciando a quelli meteorologici ad alta definizione spazio-temporale i dettagli di breve periodo propri della comunevariabilità meteorologica.

Prevedere il clima, ovvero itrend, è quindi sulla carta più semplice che prevedere il tempo meteorologico, a patto di conoscere tutte le forzanti; secondo alcuni l'unica difficoltà starebbe nella modellizzazione accurata di tutti i processi compresi ifeedback per rendere il modello il più possibile realistico ovvero fedele alla realtà. In realtà anche modelli semplici possono avere una loro concreta validità nel lungo periodo grazie all'esclusione di determinati processi rilevanti solo nel più breve periodo.

Come per i modelli meteorologici anche i modelli climatici si differenziano tra loro per le diverseparametrizzazioni usate di alcuni processi fisici.

In base alla complessità del modello si distinguono inoltre modelli a bilancio energetico a singolo punto, modelli a complessità intermedia (EMICs), modellifull complexity (ma dall'alta onerosità computazionale) dinamici come gli AOGCMs, ovvero modelli con accoppiamento del sistema oceano-atmosfera-biosfera-criosfera che operano su un grigliato atmosferico e infine modelli arete neurale.

Nell'ambito della teoria ufficiale delriscaldamento globale che vuole le cause di natura prevalentemente antropica (effetto serra), data l'incertezza sui quantitativi digas serra futuri rilasciati dalle attività umane, le previsioni suicambiamenti climatici futuri sono espresse in termini di "scenari" ovvero previsioni in base a diverse ipotesi di emissioni di gas serra ottenute a loro volta sulla base di modelli economici di sviluppo mondiale.

Come per i modelli meteorologici, un recente sviluppo delle previsioni climatiche è rappresentato dalle previsioni diEnsemble Multimodels le quali, attraverso i fondamenti della fisica stocastica, cercano di ridurre l'incertezza derivante dalla presenza dei numerosi modelli climatici, ovvero delle molte diverse parametrizzazioni, mediando opportunamente glioutput tra i vari modelli.

Altri ambiti di studio climatologici

[modifica |modifica wikitesto]

Cambiamenti climatici

[modifica |modifica wikitesto]
Dinamica annuale della Co2 sulla Terra in un anno (NASA)
Lo stesso argomento in dettaglio:Cambiamento climatico.

Con il terminecambiamenti climatici si indicano le variazioni del clima dellaTerra, ovvero variazioni a diverse scale spaziali (regionale, continentale, emisferica e globale) e storico-temporali (decennale, secolare, millenaria e ultramillenaria) di uno o più parametri ambientali e climatici nei loro valori medi:temperature (media, massima e minima),precipitazioni,nuvolosità, temperature deglioceani, distribuzione e sviluppo di piante e animali.

Paleoclima

[modifica |modifica wikitesto]

Lo studio del clima passato è oggetto dellapaleoclimatologia. Secondo le conoscenze attuali il clima terrestre avrebbe subito nelle varie ere geologiche passate importanticambiamenti climatici di origine naturale dovuti principalmente a variazioni orbitali terrestri (cicli di Milanković), variazioni dell'attività solare e modificazioni della composizione chimica dell'atmosfera terrestre in particolare nella concentrazione digas serra evidenziando fasi alterne diraffreddamento eriscaldamento globale come ad esempioglaciazioni e periodi interglaciali. Tali risultati emergono da vari studi di carotaggi sui ghiacci polari e sui sedimenti geologici nonché, per quanto riguarda gli ultimi due millenni, dai risultati delladendroclimatologia, cioè dalle analisi sull'accrescimento degli anelli degli alberi.

Microclima

[modifica |modifica wikitesto]
Lo stesso argomento in dettaglio:Microclima.

In ambito locale si parla spesso dimicroclima per indicare le caratteristiche climatiche di un dato luogo che si differenziano da quelle di un luogo attiguo per caratteristiche geo-morfologiche proprie (es. esposizione a nord o sud,vegetazione ecc...).

Clima e vegetazione

[modifica |modifica wikitesto]

Lo studio degli aspetti del clima che condizionano la distribuzione dei vegetali costituisce lafitoclimatologia.Per definire il tipo di fitoclima di una regione si deve tenere conto dell'interazione fratemperatura eprecipitazioni: la quantità di acqua necessaria alla vegetazione aumenta con l'aumento della temperatura a causa dell'incremento dell'evaporazione e dellatraspirazione.

Tuttavia fattore più importante della quantità totale di pioggia è la sua distribuzione nel corso dell'anno e l'umidità dell'aria.Sono state riconosciute forme di vegetazione molto diverse in relazione al clima, che possono rappresentare categorie di base per individuare significati adattativi in relazione al clima. Risultano spesso caratteristiche dei diversibiomi presenti alla differenti latitudini e altitudini.

Note

[modifica |modifica wikitesto]
  1. ^Antonello Pasini,I Cambiamenti Climatici. Meteorologia e Clima Simulato, Editore Mondadori Bruno, Milano 2003

Bibliografia

[modifica |modifica wikitesto]

Voci correlate

[modifica |modifica wikitesto]

Altri progetti

[modifica |modifica wikitesto]

Altri progetti

Collegamenti esterni

[modifica |modifica wikitesto]
V · D · M
Tipi diclima
secondoKöppen
Classe A (Climi tropicali)Equatoriale ·Monsonico ·Savana
Classe B (Climi aridi)Desertico ·Steppico
Classe C (Climi temperati)Sinico ·Temperato umido ·Mediterraneo ·Subtropicale umido
Classe D (Climi boreali)Foreste ·Transiberiano
Classe E (Climi nivali)Tundra ·Glaciale
Controllo di autoritàThesaurus BNCF12963 ·LCCN(ENsh85027036 ·GND(DE4031170-3 ·BNF(FRcb119540674(data) ·J9U(EN, HE987007283937805171 ·NDL(EN, JA00565788
Estratto da "https://it.wikipedia.org/w/index.php?title=Clima&oldid=142407771"
Categoria:
Categorie nascoste:

[8]ページ先頭

©2009-2025 Movatter.jp