A combination of box and violin plots along with raw (unjittered) data pointsfor within-subjects designs with statistical details included in the plot asa subtitle.
Usage
ggwithinstats(data,x,y, type="parametric", pairwise.display="significant", p.adjust.method="holm", effsize.type="unbiased", bf.prior=0.707, bf.message=TRUE, results.subtitle=TRUE, xlab=NULL, ylab=NULL, caption=NULL, title=NULL, subtitle=NULL, digits=2L, conf.level=0.95, nboot=100L, tr=0.2, centrality.plotting=TRUE, centrality.type=type, centrality.point.args=list(size=5, color="darkred"), centrality.label.args=list(size=3, nudge_x=0.4, segment.linetype=4), centrality.path=TRUE, centrality.path.args=list(linewidth=1, color="red", alpha=0.5), point.args=list(size=3, alpha=0.5, na.rm=TRUE), point.path=TRUE, point.path.args=list(alpha=0.5, linetype="dashed"), boxplot.args=list(width=0.2, alpha=0.5, na.rm=TRUE), violin.args=list(width=0.5, alpha=0.2, na.rm=TRUE), ggsignif.args=list(textsize=3, tip_length=0.01, na.rm=TRUE), ggtheme=ggstatsplot::theme_ggstatsplot(), package="RColorBrewer", palette="Dark2", ggplot.component=NULL,...)
Arguments
- data
A data frame (or a tibble) from which variables specified are tobe taken. Other data types (e.g., matrix,table, array, etc.) willnotbe accepted. Additionally, grouped data frames from
{dplyr}
should beungrouped before they are entered asdata
.- x
The grouping (or independent) variable from
data
. In case of arepeated measures or within-subjects design, ifsubject.id
argument isnot available or not explicitly specified, the function assumes that thedata has already been sorted by such an id by the user and creates aninternal identifier. So if your data isnot sorted, the resultscanbe inaccurate when there are more than two levels inx
and there areNA
s present. The data is expected to be sorted by user insubject-1, subject-2, ..., pattern.- y
The response (or outcome or dependent) variable from
data
.- type
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
- pairwise.display
Decideswhich pairwise comparisons to display.Available options are:
"significant"
(abbreviation accepted:"s"
)"non-significant"
(abbreviation accepted:"ns"
)"all"
You can use this argument to make sure that your plot is not uber-clutteredwhen you have multiple groups being compared and scores of pairwisecomparisons being displayed. If set to
"none"
, no pairwise comparisonswill be displayed.- p.adjust.method
Adjustment method forp-values for multiplecomparisons. Possible methods are:
"holm"
(default),"hochberg"
,"hommel"
,"bonferroni"
,"BH"
,"BY"
,"fdr"
,"none"
.- effsize.type
Type of effect size needed forparametric tests. Theargument can be
"eta"
(partial eta-squared) or"omega"
(partialomega-squared).- bf.prior
A number between
0.5
and2
(default0.707
), the priorwidth to use in calculating Bayes factors and posterior estimates. Inaddition to numeric arguments, several named values are also recognized:"medium"
,"wide"
, and"ultrawide"
, corresponding tor scale valuesof1/2
,sqrt(2)/2
, and1
, respectively. In case of an ANOVA, thisvalue corresponds to scale for fixed effects.- bf.message
Logical that decides whether to display Bayes Factor infavor of thenull hypothesis. This argument is relevant onlyforparametric test (Default:
TRUE
).- results.subtitle
Decides whether the results of statistical tests areto be displayed as a subtitle (Default:
TRUE
). If set toFALSE
, onlythe plot will be returned.- xlab
Label for
x
axis variable. IfNULL
(default),variable name forx
will be used.- ylab
Labels for
y
axis variable. IfNULL
(default),variable name fory
will be used.- caption
The text for the plot caption. This argument is relevant onlyif
bf.message = FALSE
.- title
The text for the plot title.
- subtitle
The text for the plot subtitle. Will work only if
results.subtitle = FALSE
.- digits
Number of digits for rounding or significant figures. May alsobe
"signif"
to return significant figures or"scientific"
to return scientific notation. Control the number of digits by adding thevalue as suffix, e.g.digits = "scientific4"
to have scientificnotation with 4 decimal places, ordigits = "signif5"
for 5significant figures (see alsosignif()
).- conf.level
Scalar between
0
and1
(default:95%
confidence/credible intervals,0.95
). IfNULL
, no confidence intervalswill be computed.- nboot
Number of bootstrap samples for computing confidence intervalfor the effect size (Default:
100L
).- tr
Trim level for the mean when carrying out
robust
tests. In caseof an error, try reducing the value oftr
, which is by default set to0.2
. Lowering the value might help.- centrality.plotting
Logical that decides whether centrality tendencymeasure is to be displayed as a point with a label (Default:
TRUE
).Function decides which central tendency measure to show depending on thetype
argument.mean for parametric statistics
median for non-parametric statistics
trimmed mean for robust statistics
MAP estimator for Bayesian statistics
If you want default centrality parameter, you can specify this using
centrality.type
argument.- centrality.type
Decides which centrality parameter is to be displayed.The default is to choose the same as
type
argument. You can specify thisto be:"parameteric"
(formean)"nonparametric"
(formedian)robust
(fortrimmed mean)bayes
(forMAP estimator)
Just as
type
argument, abbreviations are also accepted.- centrality.point.args, centrality.label.args
A list of additional aestheticarguments to be passed to
ggplot2::geom_point()
andggrepel::geom_label_repel()
geoms, which are involved in mean plotting.- centrality.path.args, point.path.args
A list of additional aestheticarguments passed on to
ggplot2::geom_path()
connecting raw data pointsand mean points.- point.args
A list of additional aesthetic arguments to be passed tothe
ggplot2::geom_point()
.- point.path, centrality.path
Logical that decides whether individualdata points and means, respectively, should be connected using
ggplot2::geom_path()
. Both default toTRUE
. Note thatpoint.path
argument is relevant only when there are two groups (i.e., in case of at-test). In case of large number of data points, it is advisable to setpoint.path = FALSE
as these lines can overwhelm the plot.- boxplot.args
A list of additional aesthetic arguments passed on to
ggplot2::geom_boxplot()
.- violin.args
A list of additional aesthetic arguments to be passed tothe
ggplot2::geom_violin()
.- ggsignif.args
A list of additional aestheticarguments to be passed to
ggsignif::geom_signif()
.- ggtheme
A
{ggplot2}
theme. Default value istheme_ggstatsplot()
. Any of the{ggplot2}
themes (e.g.,ggplot2::theme_bw()
), or themes from extension packages are allowed(e.g.,ggthemes::theme_fivethirtyeight()
,hrbrthemes::theme_ipsum_ps()
,etc.). But note that sometimes these themes will remove some of the detailsthat{ggstatsplot}
plots typically contains. For example, if relevant,ggbetweenstats()
shows details about multiple comparison test as alabel on the secondary Y-axis. Some themes (e.g.ggthemes::theme_fivethirtyeight()
) will remove the secondary Y-axis andthus the details as well.- package, palette
Name of the package from which the given palette is tobe extracted. The available palettes and packages can be checked by running
View(paletteer::palettes_d_names)
.- ggplot.component
A
ggplot
component to be added to the plot preparedby{ggstatsplot}
. This argument is primarily helpful forgrouped_
variants of all primary functions. Default isNULL
. The argument shouldbe entered as a{ggplot2}
function or a list of{ggplot2}
functions.- ...
Currently ignored.
Details
For details, see:https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html
Summary of graphics
graphical element | geom used | argument for further modification |
raw data | ggplot2::geom_point() | point.args |
point path | ggplot2::geom_path() | point.path.args |
box plot | ggplot2::geom_boxplot() | boxplot.args |
density plot | ggplot2::geom_violin() | violin.args |
centrality measure point | ggplot2::geom_point() | centrality.point.args |
centrality measure point path | ggplot2::geom_path() | centrality.path.args |
centrality measure label | ggrepel::geom_label_repel() | centrality.label.args |
pairwise comparisons | ggsignif::geom_signif() | ggsignif.args |
Centrality measures
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Type | Measure | Function used |
Parametric | mean | datawizard::describe_distribution() |
Non-parametric | median | datawizard::describe_distribution() |
Robust | trimmed mean | datawizard::describe_distribution() |
Bayesian | MAP | datawizard::describe_distribution() |
Two-sample tests
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
between-subjects
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | 2 | Student's or Welch'st-test | stats::t.test() |
Non-parametric | 2 | Mann-WhitneyU test | stats::wilcox.test() |
Robust | 2 | Yuen's test for trimmed means | WRS2::yuen() |
Bayesian | 2 | Student'st-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | 2 | Cohen'sd, Hedge'sg | Yes | effectsize::cohens_d() ,effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::akp.effect() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
within-subjects
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | 2 | Student'st-test | stats::t.test() |
Non-parametric | 2 | Wilcoxon signed-rank test | stats::wilcox.test() |
Robust | 2 | Yuen's test on trimmed means for dependent samples | WRS2::yuend() |
Bayesian | 2 | Student'st-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | 2 | Cohen'sd, Hedge'sg | Yes | effectsize::cohens_d() ,effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::wmcpAKP() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
One-way ANOVA
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
between-subjects
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | > 2 | Fisher's or Welch's one-way ANOVA | stats::oneway.test() |
Non-parametric | > 2 | Kruskal-Wallis one-way ANOVA | stats::kruskal.test() |
Robust | > 2 | Heteroscedastic one-way ANOVA for trimmed means | WRS2::t1way() |
Bayes Factor | > 2 | Fisher's ANOVA | BayesFactor::anovaBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | > 2 | partial eta-squared, partial omega-squared | Yes | effectsize::omega_squared() ,effectsize::eta_squared() |
Non-parametric | > 2 | rank epsilon squared | Yes | effectsize::rank_epsilon_squared() |
Robust | > 2 | Explanatory measure of effect size | Yes | WRS2::t1way() |
Bayes Factor | > 2 | Bayesian R-squared | Yes | performance::r2_bayes() |
within-subjects
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | > 2 | One-way repeated measures ANOVA | afex::aov_ez() |
Non-parametric | > 2 | Friedman rank sum test | stats::friedman.test() |
Robust | > 2 | Heteroscedastic one-way repeated measures ANOVA for trimmed means | WRS2::rmanova() |
Bayes Factor | > 2 | One-way repeated measures ANOVA | BayesFactor::anovaBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | > 2 | partial eta-squared, partial omega-squared | Yes | effectsize::omega_squared() ,effectsize::eta_squared() |
Non-parametric | > 2 | Kendall's coefficient of concordance | Yes | effectsize::kendalls_w() |
Robust | > 2 | Algina-Keselman-Penfield robust standardized difference average | Yes | WRS2::wmcpAKP() |
Bayes Factor | > 2 | Bayesian R-squared | Yes | performance::r2_bayes() |
Pairwise comparison tests
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
between-subjects
Hypothesis testing
Type | Equal variance? | Test | p-value adjustment? | Function used |
Parametric | No | Games-Howell test | Yes | PMCMRplus::gamesHowellTest() |
Parametric | Yes | Student'st-test | Yes | stats::pairwise.t.test() |
Non-parametric | No | Dunn test | Yes | PMCMRplus::kwAllPairsDunnTest() |
Robust | No | Yuen's trimmed means test | Yes | WRS2::lincon() |
Bayesian | NA | Student'st-test | NA | BayesFactor::ttestBF() |
Effect size estimation
Not supported.
within-subjects
Hypothesis testing
Type | Test | p-value adjustment? | Function used |
Parametric | Student'st-test | Yes | stats::pairwise.t.test() |
Non-parametric | Durbin-Conover test | Yes | PMCMRplus::durbinAllPairsTest() |
Robust | Yuen's trimmed means test | Yes | WRS2::rmmcp() |
Bayesian | Student'st-test | NA | BayesFactor::ttestBF() |
Effect size estimation
Not supported.
Examples
# for reproducibilityset.seed(123)library(dplyr, warn.conflicts=FALSE)# create a plotp<-ggwithinstats( data=filter(bugs_long,condition%in%c("HDHF","HDLF")), x=condition, y=desire, type="np")# looking at the plotp
# extracting details from statistical testsextract_stats(p)#> $subtitle_data#># A tibble: 1 × 14#>parameter1parameter2statisticp.valuemethodalternative#><chr><chr><dbl><dbl><chr><chr>#>1 desire condition17960.000430 Wilcoxon signed rank test two.sided#>effectsizeestimateconf.levelconf.lowconf.highconf.methodn.obs#><chr><dbl><dbl><dbl><dbl><chr><int>#>1 r (rank biserial)0.4870.950.2850.648 normal 90#>expression#><list>#>1<language>#>#> $caption_data#> NULL#>#> $pairwise_comparisons_data#> NULL#>#> $descriptive_data#> NULL#>#> $one_sample_data#> NULL#>#> $tidy_data#> NULL#>#> $glance_data#> NULL#>#> attr(,"class")#> [1] "ggstatsplot_stats" "list"# modifying defaultsggwithinstats( data=bugs_long, x=condition, y=desire, type="robust")
# you can remove a specific geom by setting `width` to `0` for that geomggbetweenstats( data=bugs_long, x=condition, y=desire,# to remove violin plot violin.args=list(width=0, linewidth=0),# to remove boxplot boxplot.args=list(width=0),# to remove points point.args=list(alpha=0))