Bar charts for categorical data with statistical details included in the plotas a subtitle.
Usage
ggbarstats(data,x,y, counts=NULL, type="parametric", paired=FALSE, results.subtitle=TRUE, label="percentage", label.args=list(alpha=1, fill="white"), sample.size.label.args=list(size=4), digits=2L, proportion.test=results.subtitle, digits.perc=0L, bf.message=TRUE, ratio=NULL, conf.level=0.95, sampling.plan="indepMulti", fixed.margin="rows", prior.concentration=1, title=NULL, subtitle=NULL, caption=NULL, legend.title=NULL, xlab=NULL, ylab=NULL, ggtheme=ggstatsplot::theme_ggstatsplot(), package="RColorBrewer", palette="Dark2", ggplot.component=NULL,...)
Arguments
- data
A data frame (or a tibble) from which variables specified are tobe taken. Other data types (e.g., matrix,table, array, etc.) willnotbe accepted. Additionally, grouped data frames from
{dplyr}
should beungrouped before they are entered asdata
.- x
The variable to use as therows in the contingency table. Pleasenote that if there are empty factor levels in your variable, they will bedropped.
- y
The variable to use as thecolumns in the contingency table.Please note that if there are empty factor levels in your variable, theywill be dropped. Default is
NULL
. IfNULL
, one-sample proportion test(a goodness of fit test) will be run for thex
variable. Otherwise anappropriate association test will be run. This argument can not beNULL
forggbarstats()
.- counts
The variable in data containing counts, or
NULL
if each rowrepresents a single observation.- type
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
- paired
Logical indicating whether data came from a within-subjects orrepeated measures design study (Default:
FALSE
).- results.subtitle
Decides whether the results of statistical tests areto be displayed as a subtitle (Default:
TRUE
). If set toFALSE
, onlythe plot will be returned.- label
Character decides what information needs to be displayedon the label in each pie slice. Possible options are
"percentage"
(default),"counts"
,"both"
.- label.args
Additional aesthetic arguments that will be passed to
ggplot2::geom_label()
.- sample.size.label.args
Additional aesthetic arguments that will bepassed to
ggplot2::geom_text()
.- digits
Number of digits for rounding or significant figures. May alsobe
"signif"
to return significant figures or"scientific"
to return scientific notation. Control the number of digits by adding thevalue as suffix, e.g.digits = "scientific4"
to have scientificnotation with 4 decimal places, ordigits = "signif5"
for 5significant figures (see alsosignif()
).- proportion.test
Decides whether proportion test for
x
variable is tobe carried out for each level ofy
. Defaults toresults.subtitle
. Inggbarstats()
, onlyp-values from this test will be displayed.- digits.perc
Numeric that decides number of decimal places forpercentage labels (Default:
0L
).- bf.message
Logical that decides whether to display Bayes Factor infavor of thenull hypothesis. This argument is relevant onlyforparametric test (Default:
TRUE
).- ratio
A vector of proportions: the expected proportions for theproportion test (should sum to
1
). Default isNULL
, which means the nullis equal theoretical proportions across the levels of the nominal variable.E.g.,ratio = c(0.5, 0.5)
for two levels,ratio = c(0.25, 0.25, 0.25, 0.25)
for four levels, etc.- conf.level
Scalar between
0
and1
(default:95%
confidence/credible intervals,0.95
). IfNULL
, no confidence intervalswill be computed.- sampling.plan
Character describing the sampling plan. Possible options:
"indepMulti"
(independent multinomial; default)"poisson"
"jointMulti"
(joint multinomial)"hypergeom"
(hypergeometric).For more, seeBayesFactor::contingencyTableBF()
.
- fixed.margin
For the independent multinomial sampling plan, whichmargin is fixed (
"rows"
or"cols"
). Defaults to"rows"
.- prior.concentration
Specifies the prior concentration parameter, setto
1
by default. It indexes the expected deviation from the nullhypothesis under the alternative, and corresponds to Gunel and Dickey's(1974)"a"
parameter.- title
The text for the plot title.
- subtitle
The text for the plot subtitle. Will work only if
results.subtitle = FALSE
.- caption
The text for the plot caption. This argument is relevant onlyif
bf.message = FALSE
.- legend.title
Title text for the legend.
- xlab
Label for
x
axis variable. IfNULL
(default),variable name forx
will be used.- ylab
Labels for
y
axis variable. IfNULL
(default),variable name fory
will be used.- ggtheme
A
{ggplot2}
theme. Default value istheme_ggstatsplot()
. Any of the{ggplot2}
themes (e.g.,ggplot2::theme_bw()
), or themes from extension packages are allowed(e.g.,ggthemes::theme_fivethirtyeight()
,hrbrthemes::theme_ipsum_ps()
,etc.). But note that sometimes these themes will remove some of the detailsthat{ggstatsplot}
plots typically contains. For example, if relevant,ggbetweenstats()
shows details about multiple comparison test as alabel on the secondary Y-axis. Some themes (e.g.ggthemes::theme_fivethirtyeight()
) will remove the secondary Y-axis andthus the details as well.- package, palette
Name of the package from which the given palette is tobe extracted. The available palettes and packages can be checked by running
View(paletteer::palettes_d_names)
.- ggplot.component
A
ggplot
component to be added to the plot preparedby{ggstatsplot}
. This argument is primarily helpful forgrouped_
variants of all primary functions. Default isNULL
. The argument shouldbe entered as a{ggplot2}
function or a list of{ggplot2}
functions.- ...
Currently ignored.
Details
For details, see:https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html
Summary of graphics
graphical element | geom used | argument for further modification |
bars | ggplot2::geom_bar() | NA |
descriptive labels | ggplot2::geom_label() | label.args |
sample size labels | ggplot2::geom_text() | sample.size.label.args |
Contingency table analyses
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
two-way table
Hypothesis testing
Type | Design | Test | Function used |
Parametric/Non-parametric | Unpaired | Pearson's chi-squared test | stats::chisq.test() |
Bayesian | Unpaired | Bayesian Pearson's chi-squared test | BayesFactor::contingencyTableBF() |
Parametric/Non-parametric | Paired | McNemar's chi-squared test | stats::mcnemar.test() |
Bayesian | Paired | No | No |
Effect size estimation
Type | Design | Effect size | CI available? | Function used |
Parametric/Non-parametric | Unpaired | Cramer'sV | Yes | effectsize::cramers_v() |
Bayesian | Unpaired | Cramer'sV | Yes | effectsize::cramers_v() |
Parametric/Non-parametric | Paired | Cohen'sg | Yes | effectsize::cohens_g() |
Bayesian | Paired | No | No | No |
one-way table
Hypothesis testing
Type | Test | Function used |
Parametric/Non-parametric | Goodness of fit chi-squared test | stats::chisq.test() |
Bayesian | Bayesian Goodness of fit chi-squared test | (custom) |
Effect size estimation
Type | Effect size | CI available? | Function used |
Parametric/Non-parametric | Pearson'sC | Yes | effectsize::pearsons_c() |
Bayesian | No | No | No |
Examples
# for reproducibilityset.seed(123)# creating a plotp<-ggbarstats(mtcars, x=vs, y=cyl)# looking at the plotp
# extracting details from statistical testsextract_stats(p)#> $subtitle_data#># A tibble: 1 × 13#>statisticdfp.valuemethodeffectsize#><dbl><int><dbl><chr><chr>#>1 21.3 20.0000232 Pearson's Chi-squared test Cramer's V (adj.)#>estimateconf.levelconf.lowconf.highconf.methodconf.distributionn.obs#><dbl><dbl><dbl><dbl><chr><chr><int>#>10.7890.950.371 1 ncp chisq 32#>expression#><list>#>1<language>#>#> $caption_data#># A tibble: 1 × 15#>termconf.leveleffectsizeestimateconf.lowconf.high#><chr><dbl><chr><dbl><dbl><dbl>#>1 Ratio0.95 Cramers_v0.6830.4360.840#>prior.distributionprior.locationprior.scalebf10#><chr><dbl><dbl><dbl>#>1 independent multinomial0 130129.#>methodconf.methodlog_e_bf10n.obsexpression#><chr><chr><dbl><int><list>#>1 Bayesian contingency table analysis ETI 10.3 32<language>#>#> $pairwise_comparisons_data#> NULL#>#> $descriptive_data#># A tibble: 5 × 5#> cyl vs counts perc .label#><fct><fct><int><dbl><chr>#>1 4 1 10 90.9 91%#>2 6 1 4 57.1 57%#>3 4 0 1 9.09 9%#>4 6 0 3 42.9 43%#>5 8 0 14 100 100%#>#> $one_sample_data#># A tibble: 3 × 19#> cyl counts perc N statistic df p.value method effectsize estimate#><fct><int><dbl><chr><dbl><dbl><dbl><chr><chr><dbl>#>1 8 14 43.8 (n = 14) 14 1 1.83e-4 Chi-s… Pearson's… 0.707#>2 6 7 21.9 (n = 7) 0.143 1 7.05e-1 Chi-s… Pearson's… 0.141#>3 4 11 34.4 (n = 11) 7.36 1 6.66e-3 Chi-s… Pearson's… 0.633#># ℹ 9 more variables: conf.level <dbl>, conf.low <dbl>, conf.high <dbl>,#># conf.method <chr>, conf.distribution <chr>, n.obs <int>, expression <list>,#># .label <glue>, .p.label <glue>#>#> $tidy_data#> NULL#>#> $glance_data#> NULL#>#> attr(,"class")#> [1] "ggstatsplot_stats" "list"