A bilingual instruction-tuned LoRA model ofhttps://huggingface.co/baichuan-inc/baichuan-7B
- Instruction-following datasets used: alpaca, alpaca-zh, codealpaca
- Training framework:https://github.com/hiyouga/LLaMA-Factory
Please follow thebaichuan-7B License to use this model.
Usage:
from transformersimport AutoModelForCausalLM, AutoTokenizer, TextStreamertokenizer = AutoTokenizer.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True).cuda()streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)query ="晚上睡不着怎么办"template = ("A chat between a curious user and an artificial intelligence assistant. ""The assistant gives helpful, detailed, and polite answers to the user's questions.\n""Human: {}\nAssistant: ")inputs = tokenizer([template.format(query)], return_tensors="pt")inputs = inputs.to("cuda")generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)You could also alternatively launch a CLI demo by using the script inhttps://github.com/hiyouga/LLaMA-Factory
python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-7b-sftYou could reproduce our results with the following scripts usingLLaMA-Factory:
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --stage sft \ --model_name_or_path baichuan-inc/baichuan-7B \ --do_train \ --dataset alpaca_gpt4_en,alpaca_gpt4_zh,codealpaca \ --template default \ --finetuning_type lora \ --lora_rank 16 \ --lora_target all \ --output_dir baichuan_lora \ --overwrite_cache \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --gradient_accumulation_steps 8 \ --preprocessing_num_workers 16 \ --lr_scheduler_type cosine \ --logging_steps 10 \ --save_steps 100 \ --eval_steps 100 \ --learning_rate 5e-5 \ --max_grad_norm 0.5 \ --num_train_epochs 2.0 \ --val_size 0.01 \ --evaluation_strategy steps \ --load_best_model_at_end \ --plot_loss \ --fp16- Downloads last month
- 11