Movatterモバイル変換


[0]ホーム

URL:


Hugging Face's logoHugging Face

Transformers
PyTorch
TensorFlow
JAX
Safetensors
t5
text2text-generation
text-generation-inference

Model Card for FLAN-T5 large

drawing

Table of Contents

  1. TL;DR
  2. Model Details
  3. Usage
  4. Uses
  5. Bias, Risks, and Limitations
  6. Training Details
  7. Evaluation
  8. Environmental Impact
  9. Citation
  10. Model Card Authors

TL;DR

If you already know T5, FLAN-T5 is just better at everything. For the same number of parameters, these models have been fine-tuned on more than 1000 additional tasks covering also more languages. As mentioned in the first few lines of the abstract :

Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.

Disclaimer: Content fromthis model card has been written by the Hugging Face team, and parts of it were copy pasted from theT5 model card.

Model Details

Model Description

  • Model type: Language model
  • Language(s) (NLP): English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
  • License: Apache 2.0
  • Related Models:All FLAN-T5 Checkpoints
  • Original Checkpoints:All Original FLAN-T5 Checkpoints
  • Resources for more information:

Usage

Find below some example scripts on how to use the model intransformers:

Using the Pytorch model

Running the model on a CPU

Click to expand
from transformersimport T5Tokenizer, T5ForConditionalGenerationtokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")input_text ="translate English to German: How old are you?"input_ids = tokenizer(input_text, return_tensors="pt").input_idsoutputs = model.generate(input_ids)print(tokenizer.decode(outputs[0]))

Running the model on a GPU

Click to expand
# pip install acceleratefrom transformersimport T5Tokenizer, T5ForConditionalGenerationtokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto")input_text ="translate English to German: How old are you?"input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")outputs = model.generate(input_ids)print(tokenizer.decode(outputs[0]))

Running the model on a GPU using different precisions

FP16

Click to expand
# pip install accelerateimport torchfrom transformersimport T5Tokenizer, T5ForConditionalGenerationtokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", torch_dtype=torch.float16)input_text ="translate English to German: How old are you?"input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")outputs = model.generate(input_ids)print(tokenizer.decode(outputs[0]))

INT8

Click to expand
# pip install bitsandbytes acceleratefrom transformersimport T5Tokenizer, T5ForConditionalGenerationtokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", load_in_8bit=True)input_text ="translate English to German: How old are you?"input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")outputs = model.generate(input_ids)print(tokenizer.decode(outputs[0]))

Uses

Direct Use and Downstream Use

The authors write inthe original paper's model card that:

The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models

See theresearch paper for further details.

Out-of-Scope Use

More information needed.

Bias, Risks, and Limitations

The information below in this section are copied from the model'sofficial model card:

Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.

Ethical considerations and risks

Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.

Known Limitations

Flan-T5 has not been tested in real world applications.

Sensitive Use:

Flan-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech.

Training Details

Training Data

The model was trained on a mixture of tasks, that includes the tasks described in the table below (from the original paper, figure 2):

table.png

Training Procedure

According to the model card from theoriginal paper:

These models are based on pretrained T5 (Raffel et al., 2020) and fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned Flan model per T5 model size.

The model has been trained on TPU v3 or TPU v4 pods, usingt5x codebase together withjax.

Evaluation

Testing Data, Factors & Metrics

The authors evaluated the model on various tasks covering several languages (1836 in total). See the table below for some quantitative evaluation:image.pngFor full details, please check theresearch paper.

Results

For full results for FLAN-T5-Large, see theresearch paper, Table 3.

Environmental Impact

Carbon emissions can be estimated using theMachine Learning Impact calculator presented inLacoste et al. (2019).

  • Hardware Type: Google Cloud TPU Pods - TPU v3 or TPU v4 | Number of chips ≥ 4.
  • Hours used: More information needed
  • Cloud Provider: GCP
  • Compute Region: More information needed
  • Carbon Emitted: More information needed

Citation

BibTeX:

@misc{https://doi.org/10.48550/arxiv.2210.11416,  doi = {10.48550/ARXIV.2210.11416},    url = {https://arxiv.org/abs/2210.11416},    author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason},    keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},    title = {Scaling Instruction-Finetuned Language Models},    publisher = {arXiv},    year = {2022},    copyright = {Creative Commons Attribution 4.0 International}}
Downloads last month
637,586
Safetensors
Model size
0.8B params
Tensor type
F32
·
Inference ProvidersNEW
This model isn't deployed by any Inference Provider.🙋28Ask for provider support

Model tree forgoogle/flan-t5-large

Adapters
217 models
Finetunes
191 models
Merges
1 model
Quantizations
14 models

Datasets used to traingoogle/flan-t5-large

Spaces usinggoogle/flan-t5-large100

Collection includinggoogle/flan-t5-large


[8]ページ先頭

©2009-2025 Movatter.jp