pipelines
Pipelines provide a high-level, easy to use, API for running machine learning models.
Example: Instantiate pipeline using thepipeline
function.
import { pipeline }from'@huggingface/transformers';const classifier =awaitpipeline('sentiment-analysis');const output =awaitclassifier('I love transformers!');// [{'label': 'POSITIVE', 'score': 0.999817686}]
- pipelines
- static
- .Pipeline
new Pipeline(options)
.dispose()
:DisposeType
- .TextClassificationPipeline
new TextClassificationPipeline(options)
._call()
:TextClassificationPipelineCallback
- .TokenClassificationPipeline
new TokenClassificationPipeline(options)
._call()
:TokenClassificationPipelineCallback
- .QuestionAnsweringPipeline
new QuestionAnsweringPipeline(options)
._call()
:QuestionAnsweringPipelineCallback
- .FillMaskPipeline
new FillMaskPipeline(options)
._call()
:FillMaskPipelineCallback
- .Text2TextGenerationPipeline
new Text2TextGenerationPipeline(options)
._key
:’generated_text’
._call()
:Text2TextGenerationPipelineCallback
- .SummarizationPipeline
new SummarizationPipeline(options)
._key
:’summary_text’
- .TranslationPipeline
new TranslationPipeline(options)
._key
:’translation_text’
- .TextGenerationPipeline
new TextGenerationPipeline(options)
._call()
:TextGenerationPipelineCallback
- .ZeroShotClassificationPipeline
new ZeroShotClassificationPipeline(options)
.model
:any
._call()
:ZeroShotClassificationPipelineCallback
- .FeatureExtractionPipeline
new FeatureExtractionPipeline(options)
._call()
:FeatureExtractionPipelineCallback
- .ImageFeatureExtractionPipeline
new ImageFeatureExtractionPipeline(options)
._call()
:ImageFeatureExtractionPipelineCallback
- .AudioClassificationPipeline
new AudioClassificationPipeline(options)
._call()
:AudioClassificationPipelineCallback
- .ZeroShotAudioClassificationPipeline
new ZeroShotAudioClassificationPipeline(options)
._call()
:ZeroShotAudioClassificationPipelineCallback
- .AutomaticSpeechRecognitionPipeline
new AutomaticSpeechRecognitionPipeline(options)
._call()
:AutomaticSpeechRecognitionPipelineCallback
- .ImageToTextPipeline
new ImageToTextPipeline(options)
._call()
:ImageToTextPipelineCallback
- .ImageClassificationPipeline
new ImageClassificationPipeline(options)
._call()
:ImageClassificationPipelineCallback
- .ImageSegmentationPipeline
new ImageSegmentationPipeline(options)
._call()
:ImageSegmentationPipelineCallback
- .BackgroundRemovalPipeline
new BackgroundRemovalPipeline(options)
._call()
:BackgroundRemovalPipelineCallback
- .ZeroShotImageClassificationPipeline
new ZeroShotImageClassificationPipeline(options)
._call()
:ZeroShotImageClassificationPipelineCallback
- .ObjectDetectionPipeline
new ObjectDetectionPipeline(options)
._call()
:ObjectDetectionPipelineCallback
- .ZeroShotObjectDetectionPipeline
new ZeroShotObjectDetectionPipeline(options)
._call()
:ZeroShotObjectDetectionPipelineCallback
- .DocumentQuestionAnsweringPipeline
new DocumentQuestionAnsweringPipeline(options)
._call()
:DocumentQuestionAnsweringPipelineCallback
- .TextToAudioPipeline
new TextToAudioPipeline(options)
._call()
:TextToAudioPipelineCallback
- .ImageToImagePipeline
new ImageToImagePipeline(options)
._call()
:ImageToImagePipelineCallback
- .DepthEstimationPipeline
new DepthEstimationPipeline(options)
._call()
:DepthEstimationPipelineCallback
.pipeline(task, [model], [options])
⇒*
- .Pipeline
- inner
~ImagePipelineInputs
:string
|RawImage
|URL
|Blob
|HTMLCanvasElement
|OffscreenCanvas
~AudioPipelineInputs
:string
|URL
|Float32Array
|Float64Array
~BoundingBox
:Object
~Disposable
⇒Promise.<void>
~TextPipelineConstructorArgs
:Object
~ImagePipelineConstructorArgs
:Object
~TextImagePipelineConstructorArgs
:Object
~TextClassificationPipelineType
⇒Promise.<(TextClassificationOutput|Array<TextClassificationOutput>)>
~TokenClassificationPipelineType
⇒Promise.<(TokenClassificationOutput|Array<TokenClassificationOutput>)>
~QuestionAnsweringPipelineType
⇒Promise.<(QuestionAnsweringOutput|Array<QuestionAnsweringOutput>)>
~FillMaskPipelineType
⇒Promise.<(FillMaskOutput|Array<FillMaskOutput>)>
~Text2TextGenerationPipelineType
⇒Promise.<(Text2TextGenerationOutput|Array<Text2TextGenerationOutput>)>
~SummarizationPipelineType
⇒Promise.<(SummarizationOutput|Array<SummarizationOutput>)>
~TranslationPipelineType
⇒Promise.<(TranslationOutput|Array<TranslationOutput>)>
~TextGenerationPipelineType
⇒Promise.<(TextGenerationOutput|Array<TextGenerationOutput>)>
~ZeroShotClassificationPipelineType
⇒Promise.<(ZeroShotClassificationOutput|Array<ZeroShotClassificationOutput>)>
~FeatureExtractionPipelineType
⇒Promise.<Tensor>
~ImageFeatureExtractionPipelineType
⇒Promise.<Tensor>
~AudioClassificationPipelineType
⇒Promise.<(AudioClassificationOutput|Array<AudioClassificationOutput>)>
~ZeroShotAudioClassificationPipelineType
⇒Promise.<(Array<ZeroShotAudioClassificationOutput>|Array<Array<ZeroShotAudioClassificationOutput>>)>
~Chunk
:Object
~AutomaticSpeechRecognitionPipelineType
⇒Promise.<(AutomaticSpeechRecognitionOutput|Array<AutomaticSpeechRecognitionOutput>)>
~ImageToTextPipelineType
⇒Promise.<(ImageToTextOutput|Array<ImageToTextOutput>)>
~ImageClassificationPipelineType
⇒Promise.<(ImageClassificationOutput|Array<ImageClassificationOutput>)>
~ImageSegmentationPipelineType
⇒Promise.<Array<ImageSegmentationPipelineOutput>>
~BackgroundRemovalPipelineType
⇒Promise.<Array<RawImage>>
~ZeroShotImageClassificationPipelineType
⇒Promise.<(Array<ZeroShotImageClassificationOutput>|Array<Array<ZeroShotImageClassificationOutput>>)>
~ObjectDetectionPipelineType
⇒Promise.<(ObjectDetectionPipelineOutput|Array<ObjectDetectionPipelineOutput>)>
~ZeroShotObjectDetectionPipelineType
⇒Promise.<(Array<ZeroShotObjectDetectionOutput>|Array<Array<ZeroShotObjectDetectionOutput>>)>
~DocumentQuestionAnsweringPipelineType
⇒Promise.<(DocumentQuestionAnsweringOutput|Array<DocumentQuestionAnsweringOutput>)>
~TextToAudioPipelineConstructorArgs
:Object
~TextToAudioPipelineType
⇒Promise.<TextToAudioOutput>
~ImageToImagePipelineType
⇒Promise.<(RawImage|Array<RawImage>)>
~DepthEstimationPipelineType
⇒Promise.<(DepthEstimationPipelineOutput|Array<DepthEstimationPipelineOutput>)>
~AllTasks
:*
- static
pipelines.Pipeline
The Pipeline class is the class from which all pipelines inherit.Refer to this class for methods shared across different pipelines.
Kind: static class ofpipelines
- .Pipeline
new Pipeline(options)
.dispose()
:DisposeType
new Pipeline(options)
Create a new Pipeline.
Param | Type | Default | Description |
---|---|---|---|
options | Object | An object containing the following properties: | |
[options.task] | string | The task of the pipeline. Useful for specifying subtasks. | |
[options.model] | PreTrainedModel | The model used by the pipeline. | |
[options.tokenizer] | PreTrainedTokenizer |
| The tokenizer used by the pipeline (if any). |
[options.processor] | Processor |
| The processor used by the pipeline (if any). |
pipeline.dispose() : <code> DisposeType </code>
Kind: instance method ofPipeline
pipelines.TextClassificationPipeline
Text classification pipeline using anyModelForSequenceClassification
.
Example: Sentiment-analysis w/Xenova/distilbert-base-uncased-finetuned-sst-2-english
.
const classifier =awaitpipeline('sentiment-analysis','Xenova/distilbert-base-uncased-finetuned-sst-2-english');const output =awaitclassifier('I love transformers!');// [{ label: 'POSITIVE', score: 0.999788761138916 }]
Example: Multilingual sentiment-analysis w/Xenova/bert-base-multilingual-uncased-sentiment
(and return top 5 classes).
const classifier =awaitpipeline('sentiment-analysis','Xenova/bert-base-multilingual-uncased-sentiment');const output =awaitclassifier('Le meilleur film de tous les temps.', {top_k:5 });// [// { label: '5 stars', score: 0.9610759615898132 },// { label: '4 stars', score: 0.03323351591825485 },// { label: '3 stars', score: 0.0036155181005597115 },// { label: '1 star', score: 0.0011325967498123646 },// { label: '2 stars', score: 0.0009423971059732139 }// ]
Example: Toxic comment classification w/Xenova/toxic-bert
(and return all classes).
const classifier =awaitpipeline('text-classification','Xenova/toxic-bert');const output =awaitclassifier('I hate you!', {top_k:null });// [// { label: 'toxic', score: 0.9593140482902527 },// { label: 'insult', score: 0.16187334060668945 },// { label: 'obscene', score: 0.03452680632472038 },// { label: 'identity_hate', score: 0.0223250575363636 },// { label: 'threat', score: 0.019197041168808937 },// { label: 'severe_toxic', score: 0.005651099607348442 }// ]
Kind: static class ofpipelines
- .TextClassificationPipeline
new TextClassificationPipeline(options)
._call()
:TextClassificationPipelineCallback
new TextClassificationPipeline(options)
Create a new TextClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
textClassificationPipeline._call() : <code> TextClassificationPipelineCallback </code>
Kind: instance method ofTextClassificationPipeline
pipelines.TokenClassificationPipeline
Named Entity Recognition pipeline using anyModelForTokenClassification
.
Example: Perform named entity recognition withXenova/bert-base-NER
.
const classifier =awaitpipeline('token-classification','Xenova/bert-base-NER');const output =awaitclassifier('My name is Sarah and I live in London');// [// { entity: 'B-PER', score: 0.9980202913284302, index: 4, word: 'Sarah' },// { entity: 'B-LOC', score: 0.9994474053382874, index: 9, word: 'London' }// ]
Example: Perform named entity recognition withXenova/bert-base-NER
(and return all labels).
const classifier =awaitpipeline('token-classification','Xenova/bert-base-NER');const output =awaitclassifier('Sarah lives in the United States of America', {ignore_labels: [] });// [// { entity: 'B-PER', score: 0.9966587424278259, index: 1, word: 'Sarah' },// { entity: 'O', score: 0.9987385869026184, index: 2, word: 'lives' },// { entity: 'O', score: 0.9990072846412659, index: 3, word: 'in' },// { entity: 'O', score: 0.9988298416137695, index: 4, word: 'the' },// { entity: 'B-LOC', score: 0.9995510578155518, index: 5, word: 'United' },// { entity: 'I-LOC', score: 0.9990395307540894, index: 6, word: 'States' },// { entity: 'I-LOC', score: 0.9986724853515625, index: 7, word: 'of' },// { entity: 'I-LOC', score: 0.9975294470787048, index: 8, word: 'America' }// ]
Kind: static class ofpipelines
- .TokenClassificationPipeline
new TokenClassificationPipeline(options)
._call()
:TokenClassificationPipelineCallback
new TokenClassificationPipeline(options)
Create a new TokenClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
tokenClassificationPipeline._call() : <code> TokenClassificationPipelineCallback </code>
Kind: instance method ofTokenClassificationPipeline
pipelines.QuestionAnsweringPipeline
Question Answering pipeline using anyModelForQuestionAnswering
.
Example: Run question answering withXenova/distilbert-base-uncased-distilled-squad
.
const answerer =awaitpipeline('question-answering','Xenova/distilbert-base-uncased-distilled-squad');const question ='Who was Jim Henson?';const context ='Jim Henson was a nice puppet.';const output =awaitanswerer(question, context);// {// answer: "a nice puppet",// score: 0.5768911502526741// }
Kind: static class ofpipelines
- .QuestionAnsweringPipeline
new QuestionAnsweringPipeline(options)
._call()
:QuestionAnsweringPipelineCallback
new QuestionAnsweringPipeline(options)
Create a new QuestionAnsweringPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
questionAnsweringPipeline._call() : <code> QuestionAnsweringPipelineCallback </code>
Kind: instance method ofQuestionAnsweringPipeline
pipelines.FillMaskPipeline
Masked language modeling prediction pipeline using anyModelWithLMHead
.
Example: Perform masked language modelling (a.k.a. “fill-mask”) withXenova/bert-base-uncased
.
const unmasker =awaitpipeline('fill-mask','Xenova/bert-base-cased');const output =awaitunmasker('The goal of life is [MASK].');// [// { token_str: 'survival', score: 0.06137419492006302, token: 8115, sequence: 'The goal of life is survival.' },// { token_str: 'love', score: 0.03902450203895569, token: 1567, sequence: 'The goal of life is love.' },// { token_str: 'happiness', score: 0.03253183513879776, token: 9266, sequence: 'The goal of life is happiness.' },// { token_str: 'freedom', score: 0.018736306577920914, token: 4438, sequence: 'The goal of life is freedom.' },// { token_str: 'life', score: 0.01859794743359089, token: 1297, sequence: 'The goal of life is life.' }// ]
Example: Perform masked language modelling (a.k.a. “fill-mask”) withXenova/bert-base-cased
(and return top result).
const unmasker =awaitpipeline('fill-mask','Xenova/bert-base-cased');const output =awaitunmasker('The Milky Way is a [MASK] galaxy.', {top_k:1 });// [{ token_str: 'spiral', score: 0.6299987435340881, token: 14061, sequence: 'The Milky Way is a spiral galaxy.' }]
Kind: static class ofpipelines
- .FillMaskPipeline
new FillMaskPipeline(options)
._call()
:FillMaskPipelineCallback
new FillMaskPipeline(options)
Create a new FillMaskPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
fillMaskPipeline._call() : <code> FillMaskPipelineCallback </code>
Kind: instance method ofFillMaskPipeline
pipelines.Text2TextGenerationPipeline
Text2TextGenerationPipeline class for generating text using a model that performs text-to-text generation tasks.
Example: Text-to-text generation w/Xenova/LaMini-Flan-T5-783M
.
const generator =awaitpipeline('text2text-generation','Xenova/LaMini-Flan-T5-783M');const output =awaitgenerator('how can I become more healthy?', {max_new_tokens:100,});// [{ generated_text: "To become more healthy, you can: 1. Eat a balanced diet with plenty of fruits, vegetables, whole grains, lean proteins, and healthy fats. 2. Stay hydrated by drinking plenty of water. 3. Get enough sleep and manage stress levels. 4. Avoid smoking and excessive alcohol consumption. 5. Regularly exercise and maintain a healthy weight. 6. Practice good hygiene and sanitation. 7. Seek medical attention if you experience any health issues." }]
Kind: static class ofpipelines
- .Text2TextGenerationPipeline
new Text2TextGenerationPipeline(options)
._key
:’generated_text’
._call()
:Text2TextGenerationPipelineCallback
new Text2TextGenerationPipeline(options)
Create a new Text2TextGenerationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
text2TextGenerationPipeline._key : <code> ’ generated_text ’ </code>
Kind: instance property ofText2TextGenerationPipeline
text2TextGenerationPipeline._call() : <code> Text2TextGenerationPipelineCallback </code>
Kind: instance method ofText2TextGenerationPipeline
pipelines.SummarizationPipeline
A pipeline for summarization tasks, inheriting from Text2TextGenerationPipeline.
Example: Summarization w/Xenova/distilbart-cnn-6-6
.
const generator =awaitpipeline('summarization','Xenova/distilbart-cnn-6-6');const text ='The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, ' +'and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. ' +'During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest ' +'man-made structure in the world, a title it held for 41 years until the Chrysler Building in New ' +'York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to ' +'the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the ' +'Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second ' +'tallest free-standing structure in France after the Millau Viaduct.';const output =awaitgenerator(text, {max_new_tokens:100,});// [{ summary_text: ' The Eiffel Tower is about the same height as an 81-storey building and the tallest structure in Paris. It is the second tallest free-standing structure in France after the Millau Viaduct.' }]
Kind: static class ofpipelines
- .SummarizationPipeline
new SummarizationPipeline(options)
._key
:’summary_text’
new SummarizationPipeline(options)
Create a new SummarizationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
summarizationPipeline._key : <code> ’ summary_text ’ </code>
Kind: instance property ofSummarizationPipeline
pipelines.TranslationPipeline
Translates text from one language to another.
Example: Multilingual translation w/Xenova/nllb-200-distilled-600M
.
Seeherefor the full list of languages and their corresponding codes.
const translator =awaitpipeline('translation','Xenova/nllb-200-distilled-600M');const output =awaittranslator('जीवन एक चॉकलेट बॉक्स की तरह है।', {src_lang:'hin_Deva',// Hinditgt_lang:'fra_Latn',// French});// [{ translation_text: 'La vie est comme une boîte à chocolat.' }]
Example: Multilingual translation w/Xenova/m2m100_418M
.
Seeherefor the full list of languages and their corresponding codes.
const translator =awaitpipeline('translation','Xenova/m2m100_418M');const output =awaittranslator('生活就像一盒巧克力。', {src_lang:'zh',// Chinesetgt_lang:'en',// English});// [{ translation_text: 'Life is like a box of chocolate.' }]
Example: Multilingual translation w/Xenova/mbart-large-50-many-to-many-mmt
.
Seeherefor the full list of languages and their corresponding codes.
const translator =awaitpipeline('translation','Xenova/mbart-large-50-many-to-many-mmt');const output =awaittranslator('संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है', {src_lang:'hi_IN',// Hinditgt_lang:'fr_XX',// French});// [{ translation_text: 'Le chef des Nations affirme qu 'il n 'y a military solution in Syria.' }]
Kind: static class ofpipelines
- .TranslationPipeline
new TranslationPipeline(options)
._key
:’translation_text’
new TranslationPipeline(options)
Create a new TranslationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
translationPipeline._key : <code> ’ translation_text ’ </code>
Kind: instance property ofTranslationPipeline
pipelines.TextGenerationPipeline
Language generation pipeline using anyModelWithLMHead
orModelForCausalLM
.This pipeline predicts the words that will follow a specified text prompt.NOTE: For the full list of generation parameters, seeGenerationConfig
.
Example: Text generation withXenova/distilgpt2
(default settings).
const generator =awaitpipeline('text-generation','Xenova/distilgpt2');const text ='I enjoy walking with my cute dog,';const output =awaitgenerator(text);// [{ generated_text: "I enjoy walking with my cute dog, and I love to play with the other dogs." }]
Example: Text generation withXenova/distilgpt2
(custom settings).
const generator =awaitpipeline('text-generation','Xenova/distilgpt2');const text ='Once upon a time, there was';const output =awaitgenerator(text, {temperature:2,max_new_tokens:10,repetition_penalty:1.5,no_repeat_ngram_size:2,num_beams:2,num_return_sequences:2,});// [{// "generated_text": "Once upon a time, there was an abundance of information about the history and activities that"// }, {// "generated_text": "Once upon a time, there was an abundance of information about the most important and influential"// }]
Example: Run code generation withXenova/codegen-350M-mono
.
const generator =awaitpipeline('text-generation','Xenova/codegen-350M-mono');const text ='def fib(n):';const output =awaitgenerator(text, {max_new_tokens:44,});// [{// generated_text: 'def fib(n):\n' +// ' if n == 0:\n' +// ' return 0\n' +// ' elif n == 1:\n' +// ' return 1\n' +// ' else:\n' +// ' return fib(n-1) + fib(n-2)\n'// }]
Kind: static class ofpipelines
- .TextGenerationPipeline
new TextGenerationPipeline(options)
._call()
:TextGenerationPipelineCallback
new TextGenerationPipeline(options)
Create a new TextGenerationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
textGenerationPipeline._call() : <code> TextGenerationPipelineCallback </code>
Kind: instance method ofTextGenerationPipeline
pipelines.ZeroShotClassificationPipeline
NLI-based zero-shot classification pipeline using aModelForSequenceClassification
trained on NLI (natural language inference) tasks. Equivalent oftext-classification
pipelines, but these models don’t require a hardcoded number of potential classes, theycan be chosen at runtime. It usually means it’s slower but it ismuch more flexible.
Example: Zero shot classification withXenova/mobilebert-uncased-mnli
.
const classifier =awaitpipeline('zero-shot-classification','Xenova/mobilebert-uncased-mnli');const text ='Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.';const labels = ['mobile','billing','website','account access' ];const output =awaitclassifier(text, labels);// {// sequence: 'Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.',// labels: [ 'mobile', 'website', 'billing', 'account access' ],// scores: [ 0.5562091040482018, 0.1843621307860853, 0.13942646639336376, 0.12000229877234923 ]// }
Example: Zero shot classification withXenova/nli-deberta-v3-xsmall
(multi-label).
const classifier =awaitpipeline('zero-shot-classification','Xenova/nli-deberta-v3-xsmall');const text ='I have a problem with my iphone that needs to be resolved asap!';const labels = ['urgent','not urgent','phone','tablet','computer' ];const output =awaitclassifier(text, labels, {multi_label:true });// {// sequence: 'I have a problem with my iphone that needs to be resolved asap!',// labels: [ 'urgent', 'phone', 'computer', 'tablet', 'not urgent' ],// scores: [ 0.9958870956360275, 0.9923963400697035, 0.002333537946160235, 0.0015134138567598765, 0.0010699384208377163 ]// }
Kind: static class ofpipelines
- .ZeroShotClassificationPipeline
new ZeroShotClassificationPipeline(options)
.model
:any
._call()
:ZeroShotClassificationPipelineCallback
new ZeroShotClassificationPipeline(options)
Create a new ZeroShotClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotClassificationPipeline.model : <code> any </code>
Kind: instance property ofZeroShotClassificationPipeline
zeroShotClassificationPipeline._call() : <code> ZeroShotClassificationPipelineCallback </code>
Kind: instance method ofZeroShotClassificationPipeline
pipelines.FeatureExtractionPipeline
Feature extraction pipeline using no model head. This pipeline extracts the hiddenstates from the base transformer, which can be used as features in downstream tasks.
Example: Run feature extraction withbert-base-uncased
(without pooling/normalization).
const extractor =awaitpipeline('feature-extraction','Xenova/bert-base-uncased', {revision:'default' });const output =awaitextractor('This is a simple test.');// Tensor {// type: 'float32',// data: Float32Array [0.05939924716949463, 0.021655935794115067, ...],// dims: [1, 8, 768]// }
Example: Run feature extraction withbert-base-uncased
(with pooling/normalization).
const extractor =awaitpipeline('feature-extraction','Xenova/bert-base-uncased', {revision:'default' });const output =awaitextractor('This is a simple test.', {pooling:'mean',normalize:true });// Tensor {// type: 'float32',// data: Float32Array [0.03373778983950615, -0.010106077417731285, ...],// dims: [1, 768]// }
Example: Calculating embeddings withsentence-transformers
models.
const extractor =awaitpipeline('feature-extraction','Xenova/all-MiniLM-L6-v2');const output =awaitextractor('This is a simple test.', {pooling:'mean',normalize:true });// Tensor {// type: 'float32',// data: Float32Array [0.09094982594251633, -0.014774246141314507, ...],// dims: [1, 384]// }
Example: Calculating binary embeddings withsentence-transformers
models.
const extractor =awaitpipeline('feature-extraction','Xenova/all-MiniLM-L6-v2');const output =awaitextractor('This is a simple test.', {pooling:'mean',quantize:true,precision:'binary' });// Tensor {// type: 'int8',// data: Int8Array [49, 108, 24, ...],// dims: [1, 48]// }
Kind: static class ofpipelines
- .FeatureExtractionPipeline
new FeatureExtractionPipeline(options)
._call()
:FeatureExtractionPipelineCallback
new FeatureExtractionPipeline(options)
Create a new FeatureExtractionPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
featureExtractionPipeline._call() : <code> FeatureExtractionPipelineCallback </code>
Kind: instance method ofFeatureExtractionPipeline
pipelines.ImageFeatureExtractionPipeline
Image feature extraction pipeline using no model head. This pipeline extracts the hiddenstates from the base transformer, which can be used as features in downstream tasks.
Example: Perform image feature extraction withXenova/vit-base-patch16-224-in21k
.
const image_feature_extractor =awaitpipeline('image-feature-extraction','Xenova/vit-base-patch16-224-in21k');const url ='https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png';const features =awaitimage_feature_extractor(url);// Tensor {// dims: [ 1, 197, 768 ],// type: 'float32',// data: Float32Array(151296) [ ... ],// size: 151296// }
Example: Compute image embeddings withXenova/clip-vit-base-patch32
.
const image_feature_extractor =awaitpipeline('image-feature-extraction','Xenova/clip-vit-base-patch32');const url ='https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png';const features =awaitimage_feature_extractor(url);// Tensor {// dims: [ 1, 512 ],// type: 'float32',// data: Float32Array(512) [ ... ],// size: 512// }
Kind: static class ofpipelines
- .ImageFeatureExtractionPipeline
new ImageFeatureExtractionPipeline(options)
._call()
:ImageFeatureExtractionPipelineCallback
new ImageFeatureExtractionPipeline(options)
Create a new ImageFeatureExtractionPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageFeatureExtractionPipeline._call() : <code> ImageFeatureExtractionPipelineCallback </code>
Kind: instance method ofImageFeatureExtractionPipeline
pipelines.AudioClassificationPipeline
Audio classification pipeline using anyAutoModelForAudioClassification
.This pipeline predicts the class of a raw waveform or an audio file.
Example: Perform audio classification withXenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech
.
const classifier =awaitpipeline('audio-classification','Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';const output =awaitclassifier(url);// [// { label: 'male', score: 0.9981542229652405 },// { label: 'female', score: 0.001845747814513743 }// ]
Example: Perform audio classification withXenova/ast-finetuned-audioset-10-10-0.4593
and return top 4 results.
const classifier =awaitpipeline('audio-classification','Xenova/ast-finetuned-audioset-10-10-0.4593');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cat_meow.wav';const output =awaitclassifier(url, {top_k:4 });// [// { label: 'Meow', score: 0.5617874264717102 },// { label: 'Cat', score: 0.22365376353263855 },// { label: 'Domestic animals, pets', score: 0.1141069084405899 },// { label: 'Animal', score: 0.08985692262649536 },// ]
Kind: static class ofpipelines
- .AudioClassificationPipeline
new AudioClassificationPipeline(options)
._call()
:AudioClassificationPipelineCallback
new AudioClassificationPipeline(options)
Create a new AudioClassificationPipeline.
Param | Type | Description |
---|---|---|
options | AudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
audioClassificationPipeline._call() : <code> AudioClassificationPipelineCallback </code>
Kind: instance method ofAudioClassificationPipeline
pipelines.ZeroShotAudioClassificationPipeline
Zero shot audio classification pipeline usingClapModel
. This pipeline predicts the class of an audio when youprovide an audio and a set ofcandidate_labels
.
Example: Perform zero-shot audio classification withXenova/clap-htsat-unfused
.
const classifier =awaitpipeline('zero-shot-audio-classification','Xenova/clap-htsat-unfused');const audio ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/dog_barking.wav';const candidate_labels = ['dog','vaccum cleaner'];const scores =awaitclassifier(audio, candidate_labels);// [// { score: 0.9993992447853088, label: 'dog' },// { score: 0.0006007603369653225, label: 'vaccum cleaner' }// ]
Kind: static class ofpipelines
- .ZeroShotAudioClassificationPipeline
new ZeroShotAudioClassificationPipeline(options)
._call()
:ZeroShotAudioClassificationPipelineCallback
new ZeroShotAudioClassificationPipeline(options)
Create a new ZeroShotAudioClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotAudioClassificationPipeline._call() : <code> ZeroShotAudioClassificationPipelineCallback </code>
Kind: instance method ofZeroShotAudioClassificationPipeline
pipelines.AutomaticSpeechRecognitionPipeline
Pipeline that aims at extracting spoken text contained within some audio.
Example: Transcribe English.
const transcriber =awaitpipeline('automatic-speech-recognition','Xenova/whisper-tiny.en');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';const output =awaittranscriber(url);// { text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country." }
Example: Transcribe English w/ timestamps.
const transcriber =awaitpipeline('automatic-speech-recognition','Xenova/whisper-tiny.en');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';const output =awaittranscriber(url, {return_timestamps:true });// {// text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country."// chunks: [// { timestamp: [0, 8], text: " And so my fellow Americans ask not what your country can do for you" }// { timestamp: [8, 11], text: " ask what you can do for your country." }// ]// }
Example: Transcribe English w/ word-level timestamps.
const transcriber =awaitpipeline('automatic-speech-recognition','Xenova/whisper-tiny.en');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';const output =awaittranscriber(url, {return_timestamps:'word' });// {// "text": " And so my fellow Americans ask not what your country can do for you ask what you can do for your country.",// "chunks": [// { "text": " And", "timestamp": [0, 0.78] },// { "text": " so", "timestamp": [0.78, 1.06] },// { "text": " my", "timestamp": [1.06, 1.46] },// ...// { "text": " for", "timestamp": [9.72, 9.92] },// { "text": " your", "timestamp": [9.92, 10.22] },// { "text": " country.", "timestamp": [10.22, 13.5] }// ]// }
Example: Transcribe French.
const transcriber =awaitpipeline('automatic-speech-recognition','Xenova/whisper-small');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/french-audio.mp3';const output =awaittranscriber(url, {language:'french',task:'transcribe' });// { text: " J'adore, j'aime, je n'aime pas, je déteste." }
Example: Translate French to English.
const transcriber =awaitpipeline('automatic-speech-recognition','Xenova/whisper-small');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/french-audio.mp3';const output =awaittranscriber(url, {language:'french',task:'translate' });// { text: " I love, I like, I don't like, I hate." }
Example: Transcribe/translate audio longer than 30 seconds.
const transcriber =awaitpipeline('automatic-speech-recognition','Xenova/whisper-tiny.en');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/ted_60.wav';const output =awaittranscriber(url, {chunk_length_s:30,stride_length_s:5 });// { text: " So in college, I was a government major, which means [...] So I'd start off light and I'd bump it up" }
Kind: static class ofpipelines
- .AutomaticSpeechRecognitionPipeline
new AutomaticSpeechRecognitionPipeline(options)
._call()
:AutomaticSpeechRecognitionPipelineCallback
new AutomaticSpeechRecognitionPipeline(options)
Create a new AutomaticSpeechRecognitionPipeline.
Param | Type | Description |
---|---|---|
options | TextAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
automaticSpeechRecognitionPipeline._call() : <code> AutomaticSpeechRecognitionPipelineCallback </code>
Kind: instance method ofAutomaticSpeechRecognitionPipeline
pipelines.ImageToTextPipeline
Image To Text pipeline using aAutoModelForVision2Seq
. This pipeline predicts a caption for a given image.
Example: Generate a caption for an image w/Xenova/vit-gpt2-image-captioning
.
const captioner =awaitpipeline('image-to-text','Xenova/vit-gpt2-image-captioning');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';const output =awaitcaptioner(url);// [{ generated_text: 'a cat laying on a couch with another cat' }]
Example: Optical Character Recognition (OCR) w/Xenova/trocr-small-handwritten
.
const captioner =awaitpipeline('image-to-text','Xenova/trocr-small-handwritten');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/handwriting.jpg';const output =awaitcaptioner(url);// [{ generated_text: 'Mr. Brown commented icily.' }]
Kind: static class ofpipelines
- .ImageToTextPipeline
new ImageToTextPipeline(options)
._call()
:ImageToTextPipelineCallback
new ImageToTextPipeline(options)
Create a new ImageToTextPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageToTextPipeline._call() : <code> ImageToTextPipelineCallback </code>
Kind: instance method ofImageToTextPipeline
pipelines.ImageClassificationPipeline
Image classification pipeline using anyAutoModelForImageClassification
.This pipeline predicts the class of an image.
Example: Classify an image.
const classifier =awaitpipeline('image-classification','Xenova/vit-base-patch16-224');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';const output =awaitclassifier(url);// [// { label: 'tiger, Panthera tigris', score: 0.632695734500885 },// ]
Example: Classify an image and return topn
classes.
const classifier =awaitpipeline('image-classification','Xenova/vit-base-patch16-224');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';const output =awaitclassifier(url, {top_k:3 });// [// { label: 'tiger, Panthera tigris', score: 0.632695734500885 },// { label: 'tiger cat', score: 0.3634825646877289 },// { label: 'lion, king of beasts, Panthera leo', score: 0.00045060308184474707 },// ]
Example: Classify an image and return all classes.
const classifier =awaitpipeline('image-classification','Xenova/vit-base-patch16-224');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';const output =awaitclassifier(url, {top_k:0 });// [// { label: 'tiger, Panthera tigris', score: 0.632695734500885 },// { label: 'tiger cat', score: 0.3634825646877289 },// { label: 'lion, king of beasts, Panthera leo', score: 0.00045060308184474707 },// { label: 'jaguar, panther, Panthera onca, Felis onca', score: 0.00035465499968267977 },// ...// ]
Kind: static class ofpipelines
- .ImageClassificationPipeline
new ImageClassificationPipeline(options)
._call()
:ImageClassificationPipelineCallback
new ImageClassificationPipeline(options)
Create a new ImageClassificationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageClassificationPipeline._call() : <code> ImageClassificationPipelineCallback </code>
Kind: instance method ofImageClassificationPipeline
pipelines.ImageSegmentationPipeline
Image segmentation pipeline using anyAutoModelForXXXSegmentation
.This pipeline predicts masks of objects and their classes.
Example: Perform image segmentation withXenova/detr-resnet-50-panoptic
.
const segmenter =awaitpipeline('image-segmentation','Xenova/detr-resnet-50-panoptic');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';const output =awaitsegmenter(url);// [// { label: 'remote', score: 0.9984649419784546, mask: RawImage { ... } },// { label: 'cat', score: 0.9994316101074219, mask: RawImage { ... } }// ]
Kind: static class ofpipelines
- .ImageSegmentationPipeline
new ImageSegmentationPipeline(options)
._call()
:ImageSegmentationPipelineCallback
new ImageSegmentationPipeline(options)
Create a new ImageSegmentationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageSegmentationPipeline._call() : <code> ImageSegmentationPipelineCallback </code>
Kind: instance method ofImageSegmentationPipeline
pipelines.BackgroundRemovalPipeline
Background removal pipeline using certainAutoModelForXXXSegmentation
.This pipeline removes the backgrounds of images.
Example: Perform background removal withXenova/modnet
.
const segmenter =awaitpipeline('background-removal','Xenova/modnet');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/portrait-of-woman_small.jpg';const output =awaitsegmenter(url);// [// RawImage { data: Uint8ClampedArray(648000) [ ... ], width: 360, height: 450, channels: 4 }// ]
Kind: static class ofpipelines
- .BackgroundRemovalPipeline
new BackgroundRemovalPipeline(options)
._call()
:BackgroundRemovalPipelineCallback
new BackgroundRemovalPipeline(options)
Create a new BackgroundRemovalPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
backgroundRemovalPipeline._call() : <code> BackgroundRemovalPipelineCallback </code>
Kind: instance method ofBackgroundRemovalPipeline
pipelines.ZeroShotImageClassificationPipeline
Zero shot image classification pipeline. This pipeline predicts the class ofan image when you provide an image and a set ofcandidate_labels
.
Example: Zero shot image classification w/Xenova/clip-vit-base-patch32
.
const classifier =awaitpipeline('zero-shot-image-classification','Xenova/clip-vit-base-patch32');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';const output =awaitclassifier(url, ['tiger','horse','dog']);// [// { score: 0.9993917942047119, label: 'tiger' },// { score: 0.0003519294841680676, label: 'horse' },// { score: 0.0002562698791734874, label: 'dog' }// ]
Kind: static class ofpipelines
- .ZeroShotImageClassificationPipeline
new ZeroShotImageClassificationPipeline(options)
._call()
:ZeroShotImageClassificationPipelineCallback
new ZeroShotImageClassificationPipeline(options)
Create a new ZeroShotImageClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotImageClassificationPipeline._call() : <code> ZeroShotImageClassificationPipelineCallback </code>
Kind: instance method ofZeroShotImageClassificationPipeline
pipelines.ObjectDetectionPipeline
Object detection pipeline using anyAutoModelForObjectDetection
.This pipeline predicts bounding boxes of objects and their classes.
Example: Run object-detection withXenova/detr-resnet-50
.
const detector =awaitpipeline('object-detection','Xenova/detr-resnet-50');const img ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';const output =awaitdetector(img, {threshold:0.9 });// [{// score: 0.9976370930671692,// label: "remote",// box: { xmin: 31, ymin: 68, xmax: 190, ymax: 118 }// },// ...// {// score: 0.9984092116355896,// label: "cat",// box: { xmin: 331, ymin: 19, xmax: 649, ymax: 371 }// }]
Kind: static class ofpipelines
- .ObjectDetectionPipeline
new ObjectDetectionPipeline(options)
._call()
:ObjectDetectionPipelineCallback
new ObjectDetectionPipeline(options)
Create a new ObjectDetectionPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
objectDetectionPipeline._call() : <code> ObjectDetectionPipelineCallback </code>
Kind: instance method ofObjectDetectionPipeline
pipelines.ZeroShotObjectDetectionPipeline
Zero-shot object detection pipeline. This pipeline predicts bounding boxes ofobjects when you provide an image and a set ofcandidate_labels
.
Example: Zero-shot object detection w/Xenova/owlvit-base-patch32
.
const detector =awaitpipeline('zero-shot-object-detection','Xenova/owlvit-base-patch32');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/astronaut.png';const candidate_labels = ['human face','rocket','helmet','american flag'];const output =awaitdetector(url, candidate_labels);// [// {// score: 0.24392342567443848,// label: 'human face',// box: { xmin: 180, ymin: 67, xmax: 274, ymax: 175 }// },// {// score: 0.15129457414150238,// label: 'american flag',// box: { xmin: 0, ymin: 4, xmax: 106, ymax: 513 }// },// {// score: 0.13649864494800568,// label: 'helmet',// box: { xmin: 277, ymin: 337, xmax: 511, ymax: 511 }// },// {// score: 0.10262022167444229,// label: 'rocket',// box: { xmin: 352, ymin: -1, xmax: 463, ymax: 287 }// }// ]
Example: Zero-shot object detection w/Xenova/owlvit-base-patch32
(returning top 4 matches and setting a threshold).
const detector =awaitpipeline('zero-shot-object-detection','Xenova/owlvit-base-patch32');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/beach.png';const candidate_labels = ['hat','book','sunglasses','camera'];const output =awaitdetector(url, candidate_labels, {top_k:4,threshold:0.05 });// [// {// score: 0.1606510728597641,// label: 'sunglasses',// box: { xmin: 347, ymin: 229, xmax: 429, ymax: 264 }// },// {// score: 0.08935828506946564,// label: 'hat',// box: { xmin: 38, ymin: 174, xmax: 258, ymax: 364 }// },// {// score: 0.08530698716640472,// label: 'camera',// box: { xmin: 187, ymin: 350, xmax: 260, ymax: 411 }// },// {// score: 0.08349756896495819,// label: 'book',// box: { xmin: 261, ymin: 280, xmax: 494, ymax: 425 }// }// ]
Kind: static class ofpipelines
- .ZeroShotObjectDetectionPipeline
new ZeroShotObjectDetectionPipeline(options)
._call()
:ZeroShotObjectDetectionPipelineCallback
new ZeroShotObjectDetectionPipeline(options)
Create a new ZeroShotObjectDetectionPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotObjectDetectionPipeline._call() : <code> ZeroShotObjectDetectionPipelineCallback </code>
Kind: instance method ofZeroShotObjectDetectionPipeline
pipelines.DocumentQuestionAnsweringPipeline
Document Question Answering pipeline using anyAutoModelForDocumentQuestionAnswering
.The inputs/outputs are similar to the (extractive) question answering pipeline; however,the pipeline takes an image (and optional OCR’d words/boxes) as input instead of text context.
Example: Answer questions about a document withXenova/donut-base-finetuned-docvqa
.
const qa_pipeline =awaitpipeline('document-question-answering','Xenova/donut-base-finetuned-docvqa');const image ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/invoice.png';const question ='What is the invoice number?';const output =awaitqa_pipeline(image, question);// [{ answer: 'us-001' }]
Kind: static class ofpipelines
- .DocumentQuestionAnsweringPipeline
new DocumentQuestionAnsweringPipeline(options)
._call()
:DocumentQuestionAnsweringPipelineCallback
new DocumentQuestionAnsweringPipeline(options)
Create a new DocumentQuestionAnsweringPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
documentQuestionAnsweringPipeline._call() : <code> DocumentQuestionAnsweringPipelineCallback </code>
Kind: instance method ofDocumentQuestionAnsweringPipeline
pipelines.TextToAudioPipeline
Text-to-audio generation pipeline using anyAutoModelForTextToWaveform
orAutoModelForTextToSpectrogram
.This pipeline generates an audio file from an input text and optional other conditional inputs.
Example: Generate audio from text withXenova/speecht5_tts
.
const synthesizer =awaitpipeline('text-to-speech','Xenova/speecht5_tts', {quantized:false });const speaker_embeddings ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin';const out =awaitsynthesizer('Hello, my dog is cute', { speaker_embeddings });// RawAudio {// audio: Float32Array(26112) [-0.00005657337896991521, 0.00020583874720614403, ...],// sampling_rate: 16000// }
You can then save the audio to a .wav file with thewavefile
package:
import wavefilefrom'wavefile';import fsfrom'fs';const wav =new wavefile.WaveFile();wav.fromScratch(1, out.sampling_rate,'32f', out.audio);fs.writeFileSync('out.wav', wav.toBuffer());
Example: Multilingual speech generation withXenova/mms-tts-fra
. Seehere for the full list of available languages (1107).
const synthesizer =awaitpipeline('text-to-speech','Xenova/mms-tts-fra');const out =awaitsynthesizer('Bonjour');// RawAudio {// audio: Float32Array(23808) [-0.00037693005288019776, 0.0003325853613205254, ...],// sampling_rate: 16000// }
Kind: static class ofpipelines
- .TextToAudioPipeline
new TextToAudioPipeline(options)
._call()
:TextToAudioPipelineCallback
new TextToAudioPipeline(options)
Create a new TextToAudioPipeline.
Param | Type | Description |
---|---|---|
options | TextToAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
textToAudioPipeline._call() : <code> TextToAudioPipelineCallback </code>
Kind: instance method ofTextToAudioPipeline
pipelines.ImageToImagePipeline
Image to Image pipeline using anyAutoModelForImageToImage
. This pipeline generates an image based on a previous image input.
Example: Super-resolution w/Xenova/swin2SR-classical-sr-x2-64
const upscaler =awaitpipeline('image-to-image','Xenova/swin2SR-classical-sr-x2-64');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/butterfly.jpg';const output =awaitupscaler(url);// RawImage {// data: Uint8Array(786432) [ 41, 31, 24, 43, ... ],// width: 512,// height: 512,// channels: 3// }
Kind: static class ofpipelines
- .ImageToImagePipeline
new ImageToImagePipeline(options)
._call()
:ImageToImagePipelineCallback
new ImageToImagePipeline(options)
Create a new ImageToImagePipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageToImagePipeline._call() : <code> ImageToImagePipelineCallback </code>
Kind: instance method ofImageToImagePipeline
pipelines.DepthEstimationPipeline
Depth estimation pipeline using anyAutoModelForDepthEstimation
. This pipeline predicts the depth of an image.
Example: Depth estimation w/Xenova/dpt-hybrid-midas
const depth_estimator =awaitpipeline('depth-estimation','Xenova/dpt-hybrid-midas');const url ='https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';const out =awaitdepth_estimator(url);// {// predicted_depth: Tensor {// dims: [ 384, 384 ],// type: 'float32',// data: Float32Array(147456) [ 542.859130859375, 545.2833862304688, 546.1649169921875, ... ],// size: 147456// },// depth: RawImage {// data: Uint8Array(307200) [ 86, 86, 86, ... ],// width: 640,// height: 480,// channels: 1// }// }
Kind: static class ofpipelines
- .DepthEstimationPipeline
new DepthEstimationPipeline(options)
._call()
:DepthEstimationPipelineCallback
new DepthEstimationPipeline(options)
Create a new DepthEstimationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
depthEstimationPipeline._call() : <code> DepthEstimationPipelineCallback </code>
Kind: instance method ofDepthEstimationPipeline
pipelines.pipeline(task, [model], [options]) ⇒ <code> * </code>
Utility factory method to build aPipeline
object.
Kind: static method ofpipelines
Returns:*
- A Pipeline object for the specified task.
Throws:
Error
If an unsupported pipeline is requested.
Param | Type | Default | Description |
---|---|---|---|
task | T | The task defining which pipeline will be returned. Currently accepted tasks are:
| |
[model] | string | null | The name of the pre-trained model to use. If not specified, the default model for the task will be used. |
[options] | * | Optional parameters for the pipeline. |
pipelines~ImagePipelineInputs : <code> string </code> | <code> RawImage </code> | <code> URL </code> | <code> Blob </code> | <code> HTMLCanvasElement </code> | <code> OffscreenCanvas </code>
Kind: inner typedef ofpipelines
pipelines~AudioPipelineInputs : <code> string </code> | <code> URL </code> | <code> Float32Array </code> | <code> Float64Array </code>
Kind: inner typedef ofpipelines
pipelines~BoundingBox : <code> Object </code>
Kind: inner typedef ofpipelines
Properties
Name | Type | Description |
---|---|---|
xmin | number | The minimum x coordinate of the bounding box. |
ymin | number | The minimum y coordinate of the bounding box. |
xmax | number | The maximum x coordinate of the bounding box. |
ymax | number | The maximum y coordinate of the bounding box. |
pipelines~Disposable ⇒ <code> Promise. < void > </code>
Kind: inner typedef ofpipelines
Returns:Promise.<void>
- A promise that resolves when the item has been disposed.
Properties
Name | Type | Description |
---|---|---|
dispose | DisposeType | A promise that resolves when the pipeline has been disposed. |
pipelines~TextPipelineConstructorArgs : <code> Object </code>
An object used to instantiate a text-based pipeline.
Kind: inner typedef ofpipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
tokenizer | PreTrainedTokenizer | The tokenizer used by the pipeline. |
pipelines~ImagePipelineConstructorArgs : <code> Object </code>
An object used to instantiate an audio-based pipeline.
Kind: inner typedef ofpipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
processor | Processor | The processor used by the pipeline. |
pipelines~TextImagePipelineConstructorArgs : <code> Object </code>
An object used to instantiate a text- and audio-based pipeline.
Kind: inner typedef ofpipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
tokenizer | PreTrainedTokenizer | The tokenizer used by the pipeline. |
processor | Processor | The processor used by the pipeline. |
pipelines~TextClassificationPipelineType ⇒ <code> Promise. < (TextClassificationOutput|Array < TextClassificationOutput > ) > </code>
Parameters specific to text classification pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(TextClassificationOutput|Array<TextClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
texts | string |Array<string> | The input text(s) to be classified. |
[options] | TextClassificationPipelineOptions | The options to use for text classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label predicted. | |
score | number | The corresponding probability. | |
[top_k] | number | 1 | The number of top predictions to be returned. |
pipelines~TokenClassificationPipelineType ⇒ <code> Promise. < (TokenClassificationOutput|Array < TokenClassificationOutput > ) > </code>
Parameters specific to token classification pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(TokenClassificationOutput|Array<TokenClassificationOutput>)>
- The result.
Param | Type | Description |
---|---|---|
texts | string |Array<string> | One or several texts (or one list of texts) for token classification. |
[options] | TokenClassificationPipelineOptions | The options to use for token classification. |
Properties
Name | Type | Description |
---|---|---|
word | string | The token/word classified. This is obtained by decoding the selected tokens. |
score | number | The corresponding probability for |
entity | string | The entity predicted for that token/word. |
index | number | The index of the corresponding token in the sentence. |
[start] | number | The index of the start of the corresponding entity in the sentence. |
[end] | number | The index of the end of the corresponding entity in the sentence. |
[ignore_labels] | Array.<string> | A list of labels to ignore. |
pipelines~QuestionAnsweringPipelineType ⇒ <code> Promise. < (QuestionAnsweringOutput|Array < QuestionAnsweringOutput > ) > </code>
Parameters specific to question answering pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(QuestionAnsweringOutput|Array<QuestionAnsweringOutput>)>
- An array or object containing the predicted answers and scores.
Param | Type | Description |
---|---|---|
question | string |Array<string> | One or several question(s) (must be used in conjunction with the |
context | string |Array<string> | One or several context(s) associated with the question(s) (must be used in conjunction with the |
[options] | QuestionAnsweringPipelineOptions | The options to use for question answering. |
Properties
Name | Type | Default | Description |
---|---|---|---|
score | number | The probability associated to the answer. | |
[start] | number | The character start index of the answer (in the tokenized version of the input). | |
[end] | number | The character end index of the answer (in the tokenized version of the input). | |
answer | string | The answer to the question. | |
[top_k] | number | 1 | The number of top answer predictions to be returned. |
pipelines~FillMaskPipelineType ⇒ <code> Promise. < (FillMaskOutput|Array < FillMaskOutput > ) > </code>
Parameters specific to fill mask pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(FillMaskOutput|Array<FillMaskOutput>)>
- An array of objects containing the score, predicted token, predicted token string,and the sequence with the predicted token filled in, or an array of such arrays (one for each input text).If only one input text is given, the output will be an array of objects.
Throws:
Error
When the mask token is not found in the input text.
Param | Type | Description |
---|---|---|
texts | string |Array<string> | One or several texts (or one list of prompts) with masked tokens. |
[options] | FillMaskPipelineOptions | The options to use for masked language modelling. |
Properties
Name | Type | Default | Description |
---|---|---|---|
sequence | string | The corresponding input with the mask token prediction. | |
score | number | The corresponding probability. | |
token | number | The predicted token id (to replace the masked one). | |
token_str | string | The predicted token (to replace the masked one). | |
[top_k] | number | 5 | When passed, overrides the number of predictions to return. |
pipelines~Text2TextGenerationPipelineType ⇒ <code> Promise. < (Text2TextGenerationOutput|Array < Text2TextGenerationOutput > ) > </code>
Kind: inner typedef ofpipelines
Param | Type | Description |
---|---|---|
texts | string |Array<string> | Input text for the encoder. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
generated_text | string | The generated text. |
pipelines~SummarizationPipelineType ⇒ <code> Promise. < (SummarizationOutput|Array < SummarizationOutput > ) > </code>
Kind: inner typedef ofpipelines
Param | Type | Description |
---|---|---|
texts | string |Array<string> | One or several articles (or one list of articles) to summarize. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
summary_text | string | The summary text. |
pipelines~TranslationPipelineType ⇒ <code> Promise. < (TranslationOutput|Array < TranslationOutput > ) > </code>
Kind: inner typedef ofpipelines
Param | Type | Description |
---|---|---|
texts | string |Array<string> | Texts to be translated. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
translation_text | string | The translated text. |
pipelines~TextGenerationPipelineType ⇒ <code> Promise. < (TextGenerationOutput|Array < TextGenerationOutput > ) > </code>
Parameters specific to text-generation pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(TextGenerationOutput|Array<TextGenerationOutput>)>
- An array or object containing the generated texts.
Param | Type | Description |
---|---|---|
texts | string |Array<string> |Chat |Array<Chat> | One or several prompts (or one list of prompts) to complete. |
[options] | Partial.<TextGenerationConfig> | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Default | Description |
---|---|---|---|
generated_text | string |Chat | The generated text. | |
[add_special_tokens] | boolean | Whether or not to add special tokens when tokenizing the sequences. | |
[return_full_text] | boolean | true | If set to |
pipelines~ZeroShotClassificationPipelineType ⇒ <code> Promise. < (ZeroShotClassificationOutput|Array < ZeroShotClassificationOutput > ) > </code>
Parameters specific to zero-shot classification pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(ZeroShotClassificationOutput|Array<ZeroShotClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
texts | string |Array<string> | The sequence(s) to classify, will be truncated if the model input is too large. |
candidate_labels | string |Array<string> | The set of possible class labels to classify each sequence into.Can be a single label, a string of comma-separated labels, or a list of labels. |
[options] | ZeroShotClassificationPipelineOptions | The options to use for zero-shot classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
sequence | string | The sequence for which this is the output. | |
labels | Array.<string> | The labels sorted by order of likelihood. | |
scores | Array.<number> | The probabilities for each of the labels. | |
[hypothesis_template] | string | ""This example is {}."" | The template used to turn eachcandidate label into an NLI-style hypothesis. The candidate label will replace the {} placeholder. |
[multi_label] | boolean | false | Whether or not multiple candidate labels can be true.If |
pipelines~FeatureExtractionPipelineType ⇒ <code> Promise. < Tensor > </code>
Parameters specific to feature extraction pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<Tensor>
- The features computed by the model.
Param | Type | Description |
---|---|---|
texts | string |Array<string> | One or several texts (or one list of texts) to get the features of. |
[options] | FeatureExtractionPipelineOptions | The options to use for feature extraction. |
Properties
Name | Type | Default | Description |
---|---|---|---|
[pooling] | 'none' |'mean' |'cls' |'first_token' |'eos' |'last_token' | "none" | The pooling method to use. |
[normalize] | boolean | false | Whether or not to normalize the embeddings in the last dimension. |
[quantize] | boolean | false | Whether or not to quantize the embeddings. |
[precision] | 'binary' |'ubinary' | 'binary' | The precision to use for quantization. |
pipelines~ImageFeatureExtractionPipelineType ⇒ <code> Promise. < Tensor > </code>
Parameters specific to image feature extraction pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<Tensor>
- The image features computed by the model.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | One or several images (or one list of images) to get the features of. |
[options] | ImageFeatureExtractionPipelineOptions | The options to use for image feature extraction. |
Properties
Name | Type | Default | Description |
---|---|---|---|
[pool] | boolean |
| Whether or not to return the pooled output. If set to |
pipelines~AudioClassificationPipelineType ⇒ <code> Promise. < (AudioClassificationOutput|Array < AudioClassificationOutput > ) > </code>
Parameters specific to audio classification pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(AudioClassificationOutput|Array<AudioClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be classified. The input is either:
|
[options] | AudioClassificationPipelineOptions | The options to use for audio classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label predicted. | |
score | number | The corresponding probability. | |
[top_k] | number | 5 | The number of top labels that will be returned by the pipeline.If the provided number is |
pipelines~ZeroShotAudioClassificationPipelineType ⇒ <code> Promise. < (Array < ZeroShotAudioClassificationOutput > |Array < Array < ZeroShotAudioClassificationOutput > > ) > </code>
Parameters specific to zero-shot audio classification pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(Array<ZeroShotAudioClassificationOutput>|Array<Array<ZeroShotAudioClassificationOutput>>)>
- An array of objects containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be classified. The input is either:
|
candidate_labels | Array.<string> | The candidate labels for this audio. |
[options] | ZeroShotAudioClassificationPipelineOptions | The options to use for zero-shot audio classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. It is one of the suggested | |
score | number | The score attributed by the model for that label (between 0 and 1). | |
[hypothesis_template] | string | ""This is a sound of {}."" | The sentence used in conjunction with |
pipelines~Chunk : <code> Object </code>
Kind: inner typedef ofpipelines
Properties
Name | Type | Description |
---|---|---|
timestamp | * | The start and end timestamp of the chunk in seconds. |
text | string | The recognized text. |
pipelines~AutomaticSpeechRecognitionPipelineType ⇒ <code> Promise. < (AutomaticSpeechRecognitionOutput|Array < AutomaticSpeechRecognitionOutput > ) > </code>
Parameters specific to automatic-speech-recognition pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(AutomaticSpeechRecognitionOutput|Array<AutomaticSpeechRecognitionOutput>)>
- An object containing the transcription text and optionally timestamps ifreturn_timestamps
istrue
.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be transcribed. The input is either:
|
[options] | Partial.<AutomaticSpeechRecognitionConfig> | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
text | string | The recognized text. |
[chunks] | Array.<Chunk> | When using |
[return_timestamps] | boolean |'word' | Whether to return timestamps or not. Default is |
[chunk_length_s] | number | The length of audio chunks to process in seconds. Default is 0 (no chunking). |
[stride_length_s] | number | The length of overlap between consecutive audio chunks in seconds. If not provided, defaults to |
[force_full_sequences] | boolean | Whether to force outputting full sequences or not. Default is |
[language] | string | The source language. Default is |
[task] | string | The task to perform. Default is |
[num_frames] | number | The number of frames in the input audio. |
pipelines~ImageToTextPipelineType ⇒ <code> Promise. < (ImageToTextOutput|Array < ImageToTextOutput > ) > </code>
Kind: inner typedef ofpipelines
Returns:Promise.<(ImageToTextOutput|Array<ImageToTextOutput>)>
- An object (or array of objects) containing the generated text(s).
Param | Type | Description |
---|---|---|
texts | ImagePipelineInputs | The images to be captioned. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
generated_text | string | The generated text. |
pipelines~ImageClassificationPipelineType ⇒ <code> Promise. < (ImageClassificationOutput|Array < ImageClassificationOutput > ) > </code>
Parameters specific to image classification pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(ImageClassificationOutput|Array<ImageClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images(s) to be classified. |
[options] | ImageClassificationPipelineOptions | The options to use for image classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. | |
score | number | The score attributed by the model for that label. | |
[top_k] | number | 1 | The number of top labels that will be returned by the pipeline. |
pipelines~ImageSegmentationPipelineType ⇒ <code> Promise. < Array < ImageSegmentationPipelineOutput > > </code>
Parameters specific to image segmentation pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<Array<ImageSegmentationPipelineOutput>>
- The annotated segments.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | ImageSegmentationPipelineOptions | The options to use for image segmentation. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string |null | The label of the segment. | |
score | number |null | The score of the segment. | |
mask | RawImage | The mask of the segment. | |
[threshold] | number | 0.5 | Probability threshold to filter out predicted masks. |
[mask_threshold] | number | 0.5 | Threshold to use when turning the predicted masks into binary values. |
[overlap_mask_area_threshold] | number | 0.8 | Mask overlap threshold to eliminate small, disconnected segments. |
[subtask] | null |string |
| Segmentation task to be performed. One of [ |
[label_ids_to_fuse] | Array.<number> |
| List of label ids to fuse. If not set, do not fuse any labels. |
[target_sizes] | Array.<Array<number>> |
| List of target sizes for the input images. If not set, use the original image sizes. |
pipelines~BackgroundRemovalPipelineType ⇒ <code> Promise. < Array < RawImage > > </code>
Parameters specific to image segmentation pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<Array<RawImage>>
- The images with the background removed.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | BackgroundRemovalPipelineOptions | The options to use for image segmentation. |
pipelines~ZeroShotImageClassificationPipelineType ⇒ <code> Promise. < (Array < ZeroShotImageClassificationOutput > |Array < Array < ZeroShotImageClassificationOutput > > ) > </code>
Parameters specific to zero-shot image classification pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(Array<ZeroShotImageClassificationOutput>|Array<Array<ZeroShotImageClassificationOutput>>)>
- An array of objects containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
candidate_labels | Array.<string> | The candidate labels for this image. |
[options] | ZeroShotImageClassificationPipelineOptions | The options to use for zero-shot image classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. It is one of the suggested | |
score | number | The score attributed by the model for that label (between 0 and 1). | |
[hypothesis_template] | string | ""This is a photo of {}"" | The sentence used in conjunction with |
pipelines~ObjectDetectionPipelineType ⇒ <code> Promise. < (ObjectDetectionPipelineOutput|Array < ObjectDetectionPipelineOutput > ) > </code>
Parameters specific to object detection pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(ObjectDetectionPipelineOutput|Array<ObjectDetectionPipelineOutput>)>
- A list of objects or a list of list of objects.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | ObjectDetectionPipelineOptions | The options to use for object detection. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The class label identified by the model. | |
score | number | The score attributed by the model for that label. | |
box | BoundingBox | The bounding box of detected object in image's original size, or as a percentage if | |
[threshold] | number | 0.9 | The threshold used to filter boxes by score. |
[percentage] | boolean | false | Whether to return the boxes coordinates in percentage (true) or in pixels (false). |
pipelines~ZeroShotObjectDetectionPipelineType ⇒ <code> Promise. < (Array < ZeroShotObjectDetectionOutput > |Array < Array < ZeroShotObjectDetectionOutput > > ) > </code>
Parameters specific to zero-shot object detection pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<(Array<ZeroShotObjectDetectionOutput>|Array<Array<ZeroShotObjectDetectionOutput>>)>
- An array of objects containing the predicted labels, scores, and bounding boxes.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
candidate_labels | Array.<string> | What the model should recognize in the image. |
[options] | ZeroShotObjectDetectionPipelineOptions | The options to use for zero-shot object detection. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | Text query corresponding to the found object. | |
score | number | Score corresponding to the object (between 0 and 1). | |
box | BoundingBox | Bounding box of the detected object in image's original size, or as a percentage if | |
[threshold] | number | 0.1 | The probability necessary to make a prediction. |
[top_k] | number |
| The number of top predictions that will be returned by the pipeline.If the provided number is |
[percentage] | boolean | false | Whether to return the boxes coordinates in percentage (true) or in pixels (false). |
pipelines~DocumentQuestionAnsweringPipelineType ⇒ <code> Promise. < (DocumentQuestionAnsweringOutput|Array < DocumentQuestionAnsweringOutput > ) > </code>
Kind: inner typedef ofpipelines
Returns:Promise.<(DocumentQuestionAnsweringOutput|Array<DocumentQuestionAnsweringOutput>)>
- An object (or array of objects) containing the answer(s).
Param | Type | Description |
---|---|---|
image | ImageInput | The image of the document to use. |
question | string | A question to ask of the document. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
answer | string | The generated text. |
pipelines~TextToAudioPipelineConstructorArgs : <code> Object </code>
Kind: inner typedef ofpipelines
Properties
Name | Type | Description |
---|---|---|
[vocoder] | PreTrainedModel | The vocoder used by the pipeline (if the model uses one). If not provided, use the default HifiGan vocoder. |
pipelines~TextToAudioPipelineType ⇒ <code> Promise. < TextToAudioOutput > </code>
Parameters specific to text-to-audio pipelines.
Kind: inner typedef ofpipelines
Returns:Promise.<TextToAudioOutput>
- An object containing the generated audio and sampling rate.
Param | Type | Description |
---|---|---|
texts | string |Array<string> | The text(s) to generate. |
options | TextToAudioPipelineOptions | Parameters passed to the model generation/forward method. |
Properties
Name | Type | Default | Description |
---|---|---|---|
audio | Float32Array | The generated audio waveform. | |
sampling_rate | number | The sampling rate of the generated audio waveform. | |
[speaker_embeddings] | Tensor |Float32Array |string |URL |
| The speaker embeddings (if the model requires it). |
pipelines~ImageToImagePipelineType ⇒ <code> Promise. < (RawImage|Array < RawImage > ) > </code>
Kind: inner typedef ofpipelines
Returns:Promise.<(RawImage|Array<RawImage>)>
- The transformed image or list of images.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The images to transform. |
pipelines~DepthEstimationPipelineType ⇒ <code> Promise. < (DepthEstimationPipelineOutput|Array < DepthEstimationPipelineOutput > ) > </code>
Kind: inner typedef ofpipelines
Returns:Promise.<(DepthEstimationPipelineOutput|Array<DepthEstimationPipelineOutput>)>
- An image or a list of images containing result(s).
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The images to compute depth for. |
Properties
Name | Type | Description |
---|---|---|
predicted_depth | Tensor | The raw depth map predicted by the model. |
depth | RawImage | The processed depth map as an image (with the same size as the input image). |
pipelines~AllTasks : <code> * </code>
All possible pipeline types.
Kind: inner typedef ofpipelines
<>Update on GitHub