Movatterモバイル変換


[0]ホーム

URL:


Hugging Face's logoHugging Face

Hub Python Library documentation

HfApi Client

Hub Python Library

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

Collaborate on models, datasets and Spaces
Faster examples with accelerated inference
Switch between documentation themes

to get started

HfApi Client

Below is the documentation for theHfApi class, which serves as a Python wrapper for the Hugging Face Hub’s API.

All methods from theHfApi are also accessible from the package’s root directly. Both approaches are detailed below.

Using the root method is more straightforward but theHfApi class gives you more flexibility.In particular, you can pass a token that will be reused in all HTTP calls. This is differentfromhf auth login orlogin() as the token is not persisted on the machine.It is also possible to provide a different endpoint or configure a custom user-agent.

from huggingface_hubimport HfApi, list_models# Use root methodmodels = list_models()# Or configure a HfApi clienthf_api = HfApi(    endpoint="https://huggingface.co",# Can be a Private Hub endpoint.    token="hf_xxx",# Token is not persisted on the machine.)models = hf_api.list_models()

HfApi

classhuggingface_hub.HfApi

<source>

(endpoint: Optional[str] = Nonetoken: Union[str, bool, None] = Nonelibrary_name: Optional[str] = Nonelibrary_version: Optional[str] = Noneuser_agent: Union[dict, str, None] = Noneheaders: Optional[dict[str, str]] = None)

Parameters

  • endpoint (str,optional) —Endpoint of the Hub. Defaults tohttps://huggingface.co.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • library_name (str,optional) —The name of the library that is making the HTTP request. Will be added tothe user-agent header. Example:"transformers".
  • library_version (str,optional) —The version of the library that is making the HTTP request. Will be addedto the user-agent header. Example:"4.24.0".
  • user_agent (str,dict,optional) —The user agent info in the form of a dictionary or a single string. It willbe completed with information about the installed packages.
  • headers (dict,optional) —Additional headers to be sent with each request. Example:{"X-My-Header": "value"}.Headers passed here are taking precedence over the default headers.

Client to interact with the Hugging Face Hub via HTTP.

The client is initialized with some high-level settings used in all requestsmade to the Hub (HF endpoint, authentication, user agents…). Using theHfApiclient is preferred but not mandatory as all of its public methods are exposeddirectly at the root ofhuggingface_hub.

accept_access_request

<source>

(repo_id: struser: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —The id of the repo to accept access request for.
  • user (str) —The username of the user which access request should be accepted.
  • repo_type (str,optional) —The type of the repo to accept access request for. Must be one ofmodel,dataset orspace.Defaults tomodel.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 400 if the repo is not gated.
  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.
  • HfHubHTTPError —HTTP 404 if the user does not exist on the Hub.
  • HfHubHTTPError —HTTP 404 if the user access request cannot be found.
  • HfHubHTTPError —HTTP 404 if the user access request is already in the accepted list.

Accept an access request from a user for a given gated repo.

Once the request is accepted, the user will be able to download any file of the repo and access the communitytab. If the approval mode is automatic, you don’t have to accept requests manually. An accepted request can becancelled or rejected at any time usingcancel_access_request() andreject_access_request().

For more info about gated repos, seehttps://huggingface.co/docs/hub/models-gated.

add_collection_item

<source>

(collection_slug: stritem_id: stritem_type: CollectionItemType_Tnote: Optional[str] = Noneexists_ok: bool = Falsetoken: Union[bool, str, None] = None)

Parameters

  • collection_slug (str) —Slug of the collection to update. Example:"TheBloke/recent-models-64f9a55bb3115b4f513ec026".
  • item_id (str) —Id of the item to add to the collection. Use the repo_id for repos/spaces/datasets,the paper id for papers, or the slug of another collection (e.g."moonshotai/kimi-k2").
  • item_type (str) —Type of the item to add. Can be one of"model","dataset","space","paper" or"collection".
  • note (str,optional) —A note to attach to the item in the collection. The maximum size for a note is 500 characters.
  • exists_ok (bool,optional) —IfTrue, do not raise an error if item already exists.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.
  • HfHubHTTPError —HTTP 404 if the item you try to add to the collection does not exist on the Hub.
  • HfHubHTTPError —HTTP 409 if the item you try to add to the collection is already in the collection (and exists_ok=False)

Add an item to a collection on the Hub.

Returns:Collection

Example:

>>>from huggingface_hubimport add_collection_item>>>collection = add_collection_item(...    collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab",...    item_id="pierre-loic/climate-news-articles",...    item_type="dataset"...)>>>collection.items[-1].item_id"pierre-loic/climate-news-articles"# ^item got added to the collection on last position# Add item with a note>>>add_collection_item(...    collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab",...    item_id="datasets/climate_fever",...    item_type="dataset"...    note="This dataset adopts the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet."...)(...)

add_space_secret

<source>

(repo_id: strkey: strvalue: strdescription: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —ID of the repo to update. Example:"bigcode/in-the-stack".
  • key (str) —Secret key. Example:"GITHUB_API_KEY"
  • value (str) —Secret value. Example:"your_github_api_key".
  • description (str,optional) —Secret description. Example:"Github API key to access the Github API".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Adds or updates a secret in a Space.

Secrets allow to set secret keys or tokens to a Space without hardcoding them.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets.

add_space_variable

<source>

(repo_id: strkey: strvalue: strdescription: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —ID of the repo to update. Example:"bigcode/in-the-stack".
  • key (str) —Variable key. Example:"MODEL_REPO_ID"
  • value (str) —Variable value. Example:"the_model_repo_id".
  • description (str) —Description of the variable. Example:"Model Repo ID of the implemented model".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Adds or updates a variable in a Space.

Variables allow to set environment variables to a Space without hardcoding them.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables

auth_check

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —The repository to check for access. Format should be"user/repo_name".Example:"user/my-cool-model".
  • repo_type (str,optional) —The type of the repository. Should be one of"model","dataset", or"space".If not specified, the default is"model".
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

  • RepositoryNotFoundError —Raised if the repository does not exist, is private, or the user does not have access. This canoccur if therepo_id orrepo_type is incorrect or if the repository is private but the useris not authenticated.

  • GatedRepoError —Raised if the repository exists but is gated and the user is not authorized to access it.

Check if the provided user token has access to a specific repository on the Hugging Face Hub.

This method verifies whether the user, authenticated via the provided token, has access to the specifiedrepository. If the repository is not found or if the user lacks the required permissions to access it,the method raises an appropriate exception.

Example:

Check if the user has access to a repository:

>>>from huggingface_hubimport auth_check>>>from huggingface_hub.utilsimport GatedRepoError, RepositoryNotFoundErrortry:    auth_check("user/my-cool-model")except GatedRepoError:# Handle gated repository errorprint("You do not have permission to access this gated repository.")except RepositoryNotFoundError:# Handle repository not found errorprint("The repository was not found or you do not have access.")

In this example:

  • If the user has access, the method completes successfully.
  • If the repository is gated or does not exist, appropriate exceptions are raised, allowing the userto handle them accordingly.

cancel_access_request

<source>

(repo_id: struser: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —The id of the repo to cancel access request for.
  • user (str) —The username of the user which access request should be cancelled.
  • repo_type (str,optional) —The type of the repo to cancel access request for. Must be one ofmodel,dataset orspace.Defaults tomodel.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 400 if the repo is not gated.
  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.
  • HfHubHTTPError —HTTP 404 if the user does not exist on the Hub.
  • HfHubHTTPError —HTTP 404 if the user access request cannot be found.
  • HfHubHTTPError —HTTP 404 if the user access request is already in the pending list.

Cancel an access request from a user for a given gated repo.

A cancelled request will go back to the pending list and the user will lose access to the repo.

For more info about gated repos, seehttps://huggingface.co/docs/hub/models-gated.

cancel_job

<source>

(job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • job_id (str) —ID of the Job.
  • namespace (str,optional) —The namespace where the Job is running. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Cancel a compute Job on Hugging Face infrastructure.

change_discussion_status

<source>

(repo_id: strdiscussion_num: intnew_status: Literal['open', 'closed']token: Union[bool, str, None] = Nonecomment: Optional[str] = Nonerepo_type: Optional[str] = None)DiscussionStatusChange

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • discussion_num (int) —The number of the Discussion or Pull Request . Must be a strictly positive integer.
  • new_status (str) —The new status for the discussion, either"open" or"closed".
  • comment (str,optional) —An optional comment to post with the status change.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

the status change event

Closes or re-opens a Discussion or Pull Request.

Examples:

>>>new_title ="New title, fixing a typo">>>HfApi().rename_discussion(...    repo_id="username/repo_name",...    discussion_num=34...    new_title=new_title...)# DiscussionStatusChange(id='deadbeef0000000', type='status-change', ...)

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

comment_discussion

<source>

(repo_id: strdiscussion_num: intcomment: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = None)DiscussionComment

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • discussion_num (int) —The number of the Discussion or Pull Request . Must be a strictly positive integer.
  • comment (str) —The content of the comment to create. Comments support markdown formatting.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

the newly created comment

Creates a new comment on the given Discussion.

Examples:

>>>comment ="""...Hello @otheruser!......# This is a title......**This is bold**, *this is italic* and ~this is strikethrough~...And [this](http://url) is a link...""">>>HfApi().comment_discussion(...    repo_id="username/repo_name",...    discussion_num=34...    comment=comment...)# DiscussionComment(id='deadbeef0000000', type='comment', ...)

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

create_branch

<source>

(repo_id: strbranch: strrevision: Optional[str] = Nonetoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = Noneexist_ok: bool = False)

Parameters

  • repo_id (str) —The repository in which the branch will be created.Example:"user/my-cool-model".
  • branch (str) —The name of the branch to create.
  • revision (str,optional) —The git revision to create the branch from. It can be a branch name orthe OID/SHA of a commit, as a hexadecimal string. Defaults to the headof the"main" branch.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if creating a branch on a dataset orspace,None or"model" if tagging a model. Default isNone.
  • exist_ok (bool,optional, defaults toFalse) —IfTrue, do not raise an error if branch already exists.

  • RepositoryNotFoundError —If repository is not found (error 404): wrong repo_id/repo_type, privatebut not authenticated or repo does not exist.
  • BadRequestError —If invalid reference for a branch. Ex:refs/pr/5 or ‘refs/foo/bar’.
  • HfHubHTTPError —If the branch already exists on the repo (error 409) andexist_ok isset toFalse.

Create a new branch for a repo on the Hub, starting from the specified revision (defaults tomain).To find a revision suiting your needs, you can uselist_repo_refs() orlist_repo_commits().

create_collection

<source>

(title: strnamespace: Optional[str] = Nonedescription: Optional[str] = Noneprivate: bool = Falseexists_ok: bool = Falsetoken: Union[bool, str, None] = None)

Parameters

  • title (str) —Title of the collection to create. Example:"Recent models".
  • namespace (str,optional) —Namespace of the collection to create (username or org). Will default to the owner name.
  • description (str,optional) —Description of the collection to create.
  • private (bool,optional) —Whether the collection should be private or not. Defaults toFalse (i.e. public collection).
  • exists_ok (bool,optional) —IfTrue, do not raise an error if collection already exists.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Create a new Collection on the Hub.

Returns:Collection

Example:

>>>from huggingface_hubimport create_collection>>>collection = create_collection(...    title="ICCV 2023",...    description="Portfolio of models, papers and demos I presented at ICCV 2023",...)>>>collection.slug"username/iccv-2023-64f9a55bb3115b4f513ec026"

create_commit

<source>

(repo_id: stroperations: Iterable[CommitOperation]commit_message: strcommit_description: Optional[str] = Nonetoken: Union[str, bool, None] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecreate_pr: Optional[bool] = Nonenum_threads: int = 5parent_commit: Optional[str] = Nonerun_as_future: bool = False)CommitInfo orFuture

Parameters

  • repo_id (str) —The repository in which the commit will be created, for example:"username/custom_transformers"
  • operations (Iterable ofCommitOperation()) —An iterable of operations to include in the commit, either:

    Operation objects will be mutated to include information relative to the upload. Do not reuse thesame objects for multiple commits.

  • commit_message (str) —The summary (first line) of the commit that will be created.
  • commit_description (str,optional) —The description of the commit that will be created
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • create_pr (boolean,optional) —Whether or not to create a Pull Request with that commit. Defaults toFalse.Ifrevision is not set, PR is opened against the"main" branch. Ifrevision is set and is a branch, PR is opened against this branch. Ifrevision is set and is not a branch name (example: a commit oid), anRevisionNotFoundError is returned by the server.
  • num_threads (int,optional) —Number of concurrent threads for uploading files. Defaults to 5.Setting it to 2 means at most 2 files will be uploaded concurrently.
  • parent_commit (str,optional) —The OID / SHA of the parent commit, as a hexadecimal string.Shorthands (7 first characters) are also supported. If specified andcreate_pr isFalse,the commit will fail ifrevision does not point toparent_commit. If specified andcreate_prisTrue, the pull request will be created fromparent_commit. Specifyingparent_commitensures the repo has not changed before committing the changes, and can be especially usefulif the repo is updated / committed to concurrently.
  • run_as_future (bool,optional) —Whether or not to run this method in the background. Background jobs are run sequentially withoutblocking the main thread. Passingrun_as_future=True will return aFutureobject. Defaults toFalse.

Returns

CommitInfo orFuture

Instance ofCommitInfo containing information about the newly created commit (commit hash, commiturl, pr url, commit message,…). Ifrun_as_future=True is passed, returns a Future object which willcontain the result when executed.

Raises

ValueError orRepositoryNotFoundError

  • ValueError —If commit message is empty.
  • ValueError —If parent commit is not a valid commit OID.
  • ValueError —If a README.md file with an invalid metadata section is committed. In this case, the commit will failearly, before trying to upload any file.
  • ValueError —Ifcreate_pr isTrue and revision is neitherNone nor"main".
  • RepositoryNotFoundError —If repository is not found (error 404): wrong repo_id/repo_type, privatebut not authenticated or repo does not exist.

Creates a commit in the given repo, deleting & uploading files as needed.

The input list ofCommitOperation will be mutated during the commit process. Do not reuse the same objectsfor multiple commits.

create_commit assumes that the repo already exists on the Hub. If you get aClient error 404, please make sure you are authenticated and thatrepo_id andrepo_type are set correctly. If repo does not exist, create it first usingcreate_repo().

create_commit is limited to 25k LFS files and a 1GB payload for regular files.

create_discussion

<source>

(repo_id: strtitle: strtoken: Union[bool, str, None] = Nonedescription: Optional[str] = Nonerepo_type: Optional[str] = Nonepull_request: bool = False)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • title (str) —The title of the discussion. It can be up to 200 characters long,and must be at least 3 characters long. Leading and trailing whitespaceswill be stripped.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • description (str,optional) —An optional description for the Pull Request.Defaults to"Discussion opened with the huggingface_hub Python library"
  • pull_request (bool,optional) —Whether to create a Pull Request or discussion. IfTrue, creates a Pull Request.IfFalse, creates a discussion. Defaults toFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.

Creates a Discussion or Pull Request.

Pull Requests created programmatically will be in"draft" status.

Creating a Pull Request with changes can also be done at once withHfApi.create_commit().

Returns:DiscussionWithDetails

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

create_inference_endpoint

<source>

(name: strrepository: strframework: straccelerator: strinstance_size: strinstance_type: strregion: strvendor: straccount_id: Optional[str] = Nonemin_replica: int = 1max_replica: int = 1scaling_metric: Optional[InferenceEndpointScalingMetric] = Nonescaling_threshold: Optional[float] = Nonescale_to_zero_timeout: Optional[int] = Nonerevision: Optional[str] = Nonetask: Optional[str] = Nonecustom_image: Optional[dict] = Noneenv: Optional[dict[str, str]] = Nonesecrets: Optional[dict[str, str]] = Nonetype: InferenceEndpointType = <InferenceEndpointType.PROTECTED: 'protected'>domain: Optional[str] = Nonepath: Optional[str] = Nonecache_http_responses: Optional[bool] = Nonetags: Optional[list[str]] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)InferenceEndpoint

Parameters

  • name (str) —The unique name for the new Inference Endpoint.
  • repository (str) —The name of the model repository associated with the Inference Endpoint (e.g."gpt2").
  • framework (str) —The machine learning framework used for the model (e.g."custom").
  • accelerator (str) —The hardware accelerator to be used for inference (e.g."cpu").
  • instance_size (str) —The size or type of the instance to be used for hosting the model (e.g."x4").
  • instance_type (str) —The cloud instance type where the Inference Endpoint will be deployed (e.g."intel-icl").
  • region (str) —The cloud region in which the Inference Endpoint will be created (e.g."us-east-1").
  • vendor (str) —The cloud provider or vendor where the Inference Endpoint will be hosted (e.g."aws").
  • account_id (str,optional) —The account ID used to link a VPC to a private Inference Endpoint (if applicable).
  • min_replica (int,optional) —The minimum number of replicas (instances) to keep running for the Inference Endpoint. To enablescaling to zero, set this value to 0 and adjustscale_to_zero_timeout accordingly. Defaults to 1.
  • max_replica (int,optional) —The maximum number of replicas (instances) to scale to for the Inference Endpoint. Defaults to 1.
  • scaling_metric (str orInferenceEndpointScalingMetric,optional) —The metric reference for scaling. Either “pendingRequests” or “hardwareUsage” when provided. Defaults toNone (meaning: let the HF Endpoints service specify the metric).
  • scaling_threshold (float,optional) —The scaling metric threshold used to trigger a scale up. Ignored when scaling metric is not provided.Defaults to None (meaning: let the HF Endpoints service specify the threshold).
  • scale_to_zero_timeout (int,optional) —The duration in minutes before an inactive endpoint is scaled to zero, or no scaling to zero ifset to None andmin_replica is not 0. Defaults to None.
  • revision (str,optional) —The specific model revision to deploy on the Inference Endpoint (e.g."6c0e6080953db56375760c0471a8c5f2929baf11").
  • task (str,optional) —The task on which to deploy the model (e.g."text-classification").
  • custom_image (dict,optional) —A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy anInference Endpoint running on thetext-generation-inference (TGI) framework (see examples).
  • env (dict[str, str],optional) —Non-secret environment variables to inject in the container environment.
  • secrets (dict[str, str],optional) —Secret values to inject in the container environment.
  • type ([`InferenceEndpointType], *optional*) -- The type of the Inference Endpoint, which can be“protected”(default),“public”or“private”`.
  • domain (str,optional) —The custom domain for the Inference Endpoint deployment, if setup the inference endpoint will be available at this domain (e.g."my-new-domain.cool-website.woof").
  • path (str,optional) —The custom path to the deployed model, should start with a/ (e.g."/models/google-bert/bert-base-uncased").
  • cache_http_responses (bool,optional) —Whether to cache HTTP responses from the Inference Endpoint. Defaults toFalse.
  • tags (list[str],optional) —A list of tags to associate with the Inference Endpoint.
  • namespace (str,optional) —The namespace where the Inference Endpoint will be created. Defaults to the current user’s namespace.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

information about the updated Inference Endpoint.

Create a new Inference Endpoint.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>endpoint = api.create_inference_endpoint(..."my-endpoint-name",...    repository="gpt2",...    framework="pytorch",...    task="text-generation",...    accelerator="cpu",...    vendor="aws",...    region="us-east-1",...type="protected",...    instance_size="x2",...    instance_type="intel-icl",...)>>>endpointInferenceEndpoint(name='my-endpoint-name', status="pending",...)# Run inference on the endpoint>>>endpoint.client.text_generation(...)"..."
# Start an Inference Endpoint running Zephyr-7b-beta on TGI>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>endpoint = api.create_inference_endpoint(..."aws-zephyr-7b-beta-0486",...    repository="HuggingFaceH4/zephyr-7b-beta",...    framework="pytorch",...    task="text-generation",...    accelerator="gpu",...    vendor="aws",...    region="us-east-1",...type="protected",...    instance_size="x1",...    instance_type="nvidia-a10g",...    env={..."MAX_BATCH_PREFILL_TOKENS":"2048",..."MAX_INPUT_LENGTH":"1024",..."MAX_TOTAL_TOKENS":"1512",..."MODEL_ID":"/repository"...        },...    custom_image={..."health_route":"/health",..."url":"ghcr.io/huggingface/text-generation-inference:1.1.0",...    },...   secrets={"MY_SECRET_KEY":"secret_value"},...   tags=["dev","text-generation"],...)
# Start an Inference Endpoint running ProsusAI/finbert while scaling to zero in 15 minutes>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>endpoint = api.create_inference_endpoint(..."finbert-classifier",...    repository="ProsusAI/finbert",...    framework="pytorch",...    task="text-classification",...    min_replica=0,...    scale_to_zero_timeout=15,...    accelerator="cpu",...    vendor="aws",...    region="us-east-1",...type="protected",...    instance_size="x2",...    instance_type="intel-icl",...)>>>endpoint.wait(timeout=300)# Run inference on the endpoint>>>endpoint.client.text_generation(...)TextClassificationOutputElement(label='positive', score=0.8983615040779114)

create_inference_endpoint_from_catalog

<source>

(repo_id: strname: Optional[str] = Nonetoken: Union[bool, str, None] = Nonenamespace: Optional[str] = None)InferenceEndpoint

Parameters

  • repo_id (str) —The ID of the model in the catalog to deploy as an Inference Endpoint.
  • name (str,optional) —The unique name for the new Inference Endpoint. If not provided, a random name will be generated.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).
  • namespace (str,optional) —The namespace where the Inference Endpoint will be created. Defaults to the current user’s namespace.

information about the new Inference Endpoint.

Create a new Inference Endpoint from a model in the Hugging Face Inference Catalog.

The goal of the Inference Catalog is to provide a curated list of models that are optimized for inferenceand for which default configurations have been tested. Seehttps://endpoints.huggingface.co/catalog for a listof available models in the catalog.

create_inference_endpoint_from_catalog is experimental. Its API is subject to change in the future. Please provide feedbackif you have any suggestions or requests.

create_pull_request

<source>

(repo_id: strtitle: strtoken: Union[bool, str, None] = Nonedescription: Optional[str] = Nonerepo_type: Optional[str] = None)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • title (str) —The title of the discussion. It can be up to 200 characters long,and must be at least 3 characters long. Leading and trailing whitespaceswill be stripped.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • description (str,optional) —An optional description for the Pull Request.Defaults to"Discussion opened with the huggingface_hub Python library"
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.

Creates a Pull Request . Pull Requests created programmatically will be in"draft" status.

Creating a Pull Request with changes can also be done at once withHfApi.create_commit();

This is a wrapper aroundHfApi.create_discussion().

Returns:DiscussionWithDetails

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

create_repo

<source>

(repo_id: strtoken: Union[str, bool, None] = Noneprivate: Optional[bool] = Nonerepo_type: Optional[str] = Noneexist_ok: bool = Falseresource_group_id: Optional[str] = Nonespace_sdk: Optional[str] = Nonespace_hardware: Optional[SpaceHardware] = Nonespace_storage: Optional[SpaceStorage] = Nonespace_sleep_time: Optional[int] = Nonespace_secrets: Optional[list[dict[str, str]]] = Nonespace_variables: Optional[list[dict[str, str]]] = None)RepoUrl

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • private (bool,optional) —Whether to make the repo private. IfNone (default), the repo will be public unless the organization’s default is private. This value is ignored if the repo already exists.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • exist_ok (bool,optional, defaults toFalse) —IfTrue, do not raise an error if repo already exists.
  • resource_group_id (str,optional) —Resource group in which to create the repo. Resource groups is only available for Enterprise Hub organizations andallow to define which members of the organization can access the resource. The ID of a resource groupcan be found in the URL of the resource’s page on the Hub (e.g."66670e5163145ca562cb1988").To learn more about resource groups, seehttps://huggingface.co/docs/hub/en/security-resource-groups.
  • space_sdk (str,optional) —Choice of SDK to use if repo_type is “space”. Can be “streamlit”, “gradio”, “docker”, or “static”.
  • space_hardware (SpaceHardware orstr,optional) —Choice of Hardware if repo_type is “space”. SeeSpaceHardware for a complete list.
  • space_storage (SpaceStorage orstr,optional) —Choice of persistent storage tier. Example:"small". SeeSpaceStorage for a complete list.
  • space_sleep_time (int,optional) —Number of seconds of inactivity to wait before a Space is put to sleep. Set to-1 if you don’t wantyour Space to sleep (default behavior for upgraded hardware). For free hardware, you can’t configurethe sleep time (value is fixed to 48 hours of inactivity).Seehttps://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.
  • space_secrets (list[dict[str, str]],optional) —A list of secret keys to set in your Space. Each item is in the form{"key": ..., "value": ..., "description": ...} where description is optional.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets.
  • space_variables (list[dict[str, str]],optional) —A list of public environment variables to set in your Space. Each item is in the form{"key": ..., "value": ..., "description": ...} where description is optional.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables.

Returns

RepoUrl

URL to the newly created repo. Value is a subclass ofstr containingattributes likeendpoint,repo_type andrepo_id.

Create an empty repo on the HuggingFace Hub.

create_scheduled_job

<source>

(image: strcommand: list[str]schedule: strsuspend: Optional[bool] = Noneconcurrency: Optional[bool] = Noneenv: Optional[dict[str, Any]] = Nonesecrets: Optional[dict[str, Any]] = Noneflavor: Optional[SpaceHardware] = Nonetimeout: Optional[Union[int, float, str]] = Nonelabels: Optional[dict[str, str]] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • image (str) —The Docker image to use.Examples:"ubuntu","python:3.12","pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel".Example with an image from a Space:"hf.co/spaces/lhoestq/duckdb".
  • command (list[str]) —The command to run. Example:["echo", "hello"].
  • schedule (str) —One of “@annually”, “@yearly”, “@monthly”, “@weekly”, “@daily”, “@hourly”, or aCRON schedule expression (e.g., ‘0 9 * * 1’ for 9 AM every Monday).
  • suspend (bool,optional) —If True, the scheduled Job is suspended (paused). Defaults to False.
  • concurrency (bool,optional) —If True, multiple instances of this Job can run concurrently. Defaults to False.
  • env (dict[str, Any],optional) —Defines the environment variables for the Job.
  • secrets (dict[str, Any],optional) —Defines the secret environment variables for the Job.
  • flavor (str,optional) —Flavor for the hardware, as in Hugging Face Spaces. SeeSpaceHardware for possible values.Defaults to"cpu-basic".
  • timeout (Union[int, float, str],optional) —Max duration for the Job: int/float with s (seconds, default), m (minutes), h (hours) or d (days).Example:300 or"5m" for 5 minutes.
  • labels (dict[str, str],optional) —Labels to attach to the job (key-value pairs).
  • namespace (str,optional) —The namespace where the Job will be created. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Create scheduled compute Jobs on Hugging Face infrastructure.

Example:

Create your first scheduled Job:

>>>from huggingface_hubimport create_scheduled_job>>>create_scheduled_job(image="python:3.12", command=["python","-c" ,"print('Hello from HF compute!')"], schedule="@hourly")

Use a CRON schedule expression:

>>>from huggingface_hubimport create_scheduled_job>>>create_scheduled_job(image="python:3.12", command=["python","-c" ,"print('this runs every 5min')"], schedule="*/5 * * * *")

Create a scheduled GPU Job:

>>>from huggingface_hubimport create_scheduled_job>>>image ="pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel">>>command = ["python","-c","import torch; print(f"This code ranwith the following GPU: {torch.cuda.get_device_name()}")"]>>>create_scheduled_job(image, command, flavor="a10g-small", schedule="@hourly")

create_scheduled_uv_job

<source>

(script: strscript_args: Optional[list[str]] = Noneschedule: strsuspend: Optional[bool] = Noneconcurrency: Optional[bool] = Nonedependencies: Optional[list[str]] = Nonepython: Optional[str] = Noneimage: Optional[str] = Noneenv: Optional[dict[str, Any]] = Nonesecrets: Optional[dict[str, Any]] = Noneflavor: Optional[SpaceHardware] = Nonetimeout: Optional[Union[int, float, str]] = Nonelabels: Optional[dict[str, str]] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • script (str) —Path or URL of the UV script, or a command.
  • script_args (list[str],optional) —Arguments to pass to the script, or a command.
  • schedule (str) —One of “@annually”, “@yearly”, “@monthly”, “@weekly”, “@daily”, “@hourly”, or aCRON schedule expression (e.g., ‘0 9 * * 1’ for 9 AM every Monday).
  • suspend (bool,optional) —If True, the scheduled Job is suspended (paused). Defaults to False.
  • concurrency (bool,optional) —If True, multiple instances of this Job can run concurrently. Defaults to False.
  • dependencies (list[str],optional) —Dependencies to use to run the UV script.
  • python (str,optional) —Use a specific Python version. Default is 3.12.
  • image (str,optional, defaults to “ghcr.io/astral-sh/uv —python3.12-bookworm”):Use a custom Docker image withuv installed.
  • env (dict[str, Any],optional) —Defines the environment variables for the Job.
  • secrets (dict[str, Any],optional) —Defines the secret environment variables for the Job.
  • flavor (str,optional) —Flavor for the hardware, as in Hugging Face Spaces. SeeSpaceHardware for possible values.Defaults to"cpu-basic".
  • timeout (Union[int, float, str],optional) —Max duration for the Job: int/float with s (seconds, default), m (minutes), h (hours) or d (days).Example:300 or"5m" for 5 minutes.
  • labels (dict[str, str],optional) —Labels to attach to the job (key-value pairs).
  • namespace (str,optional) —The namespace where the Job will be created. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Run a UV script Job on Hugging Face infrastructure.

Example:

Schedule a script from a URL:

>>>from huggingface_hubimport create_scheduled_uv_job>>>script ="https://raw.githubusercontent.com/huggingface/trl/refs/heads/main/trl/scripts/sft.py">>>script_args = ["--model_name_or_path","Qwen/Qwen2-0.5B","--dataset_name","trl-lib/Capybara","--push_to_hub"]>>>create_scheduled_uv_job(script, script_args=script_args, dependencies=["trl"], flavor="a10g-small", schedule="@weekly")

Schedule a local script:

>>>from huggingface_hubimport create_scheduled_uv_job>>>script ="my_sft.py">>>script_args = ["--model_name_or_path","Qwen/Qwen2-0.5B","--dataset_name","trl-lib/Capybara","--push_to_hub"]>>>create_scheduled_uv_job(script, script_args=script_args, dependencies=["trl"], flavor="a10g-small", schedule="@weekly")

Schedule a command:

>>>from huggingface_hubimport create_scheduled_uv_job>>>script ="lighteval">>>script_args= ["endpoint","inference-providers","model_name=openai/gpt-oss-20b,provider=auto","lighteval|gsm8k|0|0"]>>>create_scheduled_uv_job(script, script_args=script_args, dependencies=["lighteval"], flavor="a10g-small", schedule="@weekly")

create_tag

<source>

(repo_id: strtag: strtag_message: Optional[str] = Nonerevision: Optional[str] = Nonetoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = Noneexist_ok: bool = False)

Parameters

  • repo_id (str) —The repository in which a commit will be tagged.Example:"user/my-cool-model".
  • tag (str) —The name of the tag to create.
  • tag_message (str,optional) —The description of the tag to create.
  • revision (str,optional) —The git revision to tag. It can be a branch name or the OID/SHA of acommit, as a hexadecimal string. Shorthands (7 first characters) arealso supported. Defaults to the head of the"main" branch.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if tagging a dataset orspace,None or"model" if tagging a model. Default isNone.
  • exist_ok (bool,optional, defaults toFalse) —IfTrue, do not raise an error if tag already exists.

  • RepositoryNotFoundError —If repository is not found (error 404): wrong repo_id/repo_type, privatebut not authenticated or repo does not exist.
  • RevisionNotFoundError —If revision is not found (error 404) on the repo.
  • HfHubHTTPError —If the branch already exists on the repo (error 409) andexist_ok isset toFalse.

Tag a given commit of a repo on the Hub.

create_webhook

<source>

(url: Optional[str] = Nonejob_id: Optional[str] = Nonewatched: list[Union[dict, WebhookWatchedItem]]domains: Optional[list[constants.WEBHOOK_DOMAIN_T]] = Nonesecret: Optional[str] = Nonetoken: Union[bool, str, None] = None)WebhookInfo

Parameters

  • url (str) —URL to send the payload to.
  • job_id (str) —ID of the source Job to trigger with the webhook payload in the environment variable WEBHOOK_PAYLOAD.Additional environment variables are available for convenience: WEBHOOK_REPO_ID, WEBHOOK_REPO_TYPE and WEBHOOK_SECRET.
  • watched (list[WebhookWatchedItem]) —List ofWebhookWatchedItem to be watched by the webhook. It can be users, orgs, models, datasets or spaces.Watched items can also be provided as plain dictionaries.
  • domains (list[Literal["repo", "discussion"]], optional) —List of domains to watch. It can be “repo”, “discussion” or both.
  • secret (str, optional) —A secret to sign the payload with.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally saved token, which is the recommendedmethod for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Info about the newly created webhook.

Create a new webhook.

The webhook can either send a payload to a URL, or trigger a Job to run on Hugging Face infrastructure.This function should be called with one ofurl orjob_id, but not both.

Example:

Create a webhook that sends a payload to a URL

>>>from huggingface_hubimport create_webhook>>>payload = create_webhook(...    watched=[{"type":"user","name":"julien-c"}, {"type":"org","name":"HuggingFaceH4"}],...    url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",...    domains=["repo","discussion"],...    secret="my-secret",...)>>>print(payload)WebhookInfo(id="654bbbc16f2ec14d77f109cc",    url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",    job=None,    watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")],    domains=["repo","discussion"],    secret="my-secret",    disabled=False,)

Run a Job and then create a webhook that triggers this Job

>>>from huggingface_hubimport create_webhook, run_job>>>job = run_job(...    image="ubuntu",...    command=["bash","-c",r"echo An event occured in $WEBHOOK_REPO_ID: $WEBHOOK_PAYLOAD"],...)>>>payload = create_webhook(...    watched=[{"type":"user","name":"julien-c"}, {"type":"org","name":"HuggingFaceH4"}],...    job_id=job.id,...    domains=["repo","discussion"],...    secret="my-secret",...)>>>print(payload)WebhookInfo(id="654bbbc16f2ec14d77f109cc",    url=None,    job=JobSpec(        docker_image='ubuntu',        space_id=None,        command=['bash','-c','echo An event occured in $WEBHOOK_REPO_ID: $WEBHOOK_PAYLOAD'],        arguments=[],        environment={},        secrets=[],        flavor='cpu-basic',        timeout=None,        tags=None,        arch=None    ),    watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")],    domains=["repo","discussion"],    secret="my-secret",    disabled=False,)

dataset_info

<source>

(repo_id: strrevision: Optional[str] = Nonetimeout: Optional[float] = Nonefiles_metadata: bool = Falseexpand: Optional[list[ExpandDatasetProperty_T]] = Nonetoken: Union[bool, str, None] = None)hf_api.DatasetInfo

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • revision (str,optional) —The revision of the dataset repository from which to get theinformation.
  • timeout (float,optional) —Whether to set a timeout for the request to the Hub.
  • files_metadata (bool,optional) —Whether or not to retrieve metadata for files in the repository(size, LFS metadata, etc). Defaults toFalse.
  • expand (list[ExpandDatasetProperty_T],optional) —List properties to return in the response. When used, only the properties in the list will be returned.This parameter cannot be used iffiles_metadata is passed.Possible values are"author","cardData","citation","createdAt","disabled","description","downloads","downloadsAllTime","gated","lastModified","likes","paperswithcode_id","private","siblings","sha","tags","trendingScore","usedStorage", and"resourceGroup".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

The dataset repository information.

Get info on one specific dataset on huggingface.co.

Dataset can be private if you pass an acceptable token.

Raises the following errors:

  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • RevisionNotFoundErrorIf the revision to download from cannot be found.

delete_branch

<source>

(repo_id: strbranch: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = None)

Parameters

  • repo_id (str) —The repository in which a branch will be deleted.Example:"user/my-cool-model".
  • branch (str) —The name of the branch to delete.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if creating a branch on a dataset orspace,None or"model" if tagging a model. Default isNone.

  • RepositoryNotFoundError —If repository is not found (error 404): wrong repo_id/repo_type, privatebut not authenticated or repo does not exist.
  • HfHubHTTPError —If trying to delete a protected branch. Ex:main cannot be deleted.
  • HfHubHTTPError —If trying to delete a branch that does not exist.

Delete a branch from a repo on the Hub.

delete_collection

<source>

(collection_slug: strmissing_ok: bool = Falsetoken: Union[bool, str, None] = None)

Parameters

  • collection_slug (str) —Slug of the collection to delete. Example:"TheBloke/recent-models-64f9a55bb3115b4f513ec026".
  • missing_ok (bool,optional) —IfTrue, do not raise an error if collection doesn’t exists.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Delete a collection on the Hub.

Example:

>>>from huggingface_hubimport delete_collection>>>collection = delete_collection("username/useless-collection-64f9a55bb3115b4f513ec026", missing_ok=True)

This is a non-revertible action. A deleted collection cannot be restored.

delete_collection_item

<source>

(collection_slug: stritem_object_id: strmissing_ok: bool = Falsetoken: Union[bool, str, None] = None)

Parameters

  • collection_slug (str) —Slug of the collection to update. Example:"TheBloke/recent-models-64f9a55bb3115b4f513ec026".
  • item_object_id (str) —ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id).It must be retrieved from aCollectionItem object. Example:collection.items[0].item_object_id.
  • missing_ok (bool,optional) —IfTrue, do not raise an error if item doesn’t exists.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Delete an item from a collection.

Example:

>>>from huggingface_hubimport get_collection, delete_collection_item# Get collection first>>>collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026")# Delete item based on its ID>>>delete_collection_item(...    collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026",...    item_object_id=collection.items[-1].item_object_id,...)

delete_file

<source>

(path_in_repo: strrepo_id: strtoken: Union[str, bool, None] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecommit_message: Optional[str] = Nonecommit_description: Optional[str] = Nonecreate_pr: Optional[bool] = Noneparent_commit: Optional[str] = None)

Parameters

  • path_in_repo (str) —Relative filepath in the repo, for example:"checkpoints/1fec34a/weights.bin"
  • repo_id (str) —The repository from which the file will be deleted, for example:"username/custom_transformers"
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if the file is in a dataset orspace,None or"model" if in a model. Default isNone.
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • commit_message (str,optional) —The summary / title / first line of the generated commit. Defaults tof"Delete {path_in_repo} with huggingface_hub".
  • commit_description (stroptional) —The description of the generated commit
  • create_pr (boolean,optional) —Whether or not to create a Pull Request with that commit. Defaults toFalse.Ifrevision is not set, PR is opened against the"main" branch. Ifrevision is set and is a branch, PR is opened against this branch. Ifrevision is set and is not a branch name (example: a commit oid), anRevisionNotFoundError is returned by the server.
  • parent_commit (str,optional) —The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.If specified andcreate_pr isFalse, the commit will fail ifrevision does not point toparent_commit.If specified andcreate_pr isTrue, the pull request will be created fromparent_commit.Specifyingparent_commit ensures the repo has not changed before committing the changes, and can beespecially useful if the repo is updated / committed to concurrently.

Deletes a file in the given repo.

Raises the following errors:

delete_files

<source>

(repo_id: strdelete_patterns: list[str]token: Union[bool, str, None] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecommit_message: Optional[str] = Nonecommit_description: Optional[str] = Nonecreate_pr: Optional[bool] = Noneparent_commit: Optional[str] = None)

Parameters

  • repo_id (str) —The repository from which the folder will be deleted, for example:"username/custom_transformers"
  • delete_patterns (list[str]) —List of files or folders to delete. Each string can either bea file path, a folder path, or a wildcard pattern. Patterns are StandardWildcards (globbing patterns) as documentedhere.The pattern matching is based onfnmatch.Note thatfnmatch matches* across path boundaries, unlike traditional Unix shell globbing.E.g.["file.txt", "folder/", "data/*.parquet"]
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.to the stored token.
  • repo_type (str,optional) —Type of the repo to delete files from. Can be"model","dataset" or"space". Defaults to"model".
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • commit_message (str,optional) —The summary (first line) of the generated commit. Defaults tof"Delete files using huggingface_hub".
  • commit_description (stroptional) —The description of the generated commit.
  • create_pr (boolean,optional) —Whether or not to create a Pull Request with that commit. Defaults toFalse.Ifrevision is not set, PR is opened against the"main" branch. Ifrevision is set and is a branch, PR is opened against this branch. Ifrevision is set and is not a branch name (example: a commit oid), anRevisionNotFoundError is returned by the server.
  • parent_commit (str,optional) —The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.If specified andcreate_pr isFalse, the commit will fail ifrevision does not point toparent_commit.If specified andcreate_pr isTrue, the pull request will be created fromparent_commit.Specifyingparent_commit ensures the repo has not changed before committing the changes, and can beespecially useful if the repo is updated / committed to concurrently.

Delete files from a repository on the Hub.

If a folder path is provided, the entire folder is deleted as well asall files it contained.

delete_folder

<source>

(path_in_repo: strrepo_id: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecommit_message: Optional[str] = Nonecommit_description: Optional[str] = Nonecreate_pr: Optional[bool] = Noneparent_commit: Optional[str] = None)

Parameters

  • path_in_repo (str) —Relative folder path in the repo, for example:"checkpoints/1fec34a".
  • repo_id (str) —The repository from which the folder will be deleted, for example:"username/custom_transformers"
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.to the stored token.
  • repo_type (str,optional) —Set to"dataset" or"space" if the folder is in a dataset orspace,None or"model" if in a model. Default isNone.
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • commit_message (str,optional) —The summary / title / first line of the generated commit. Defaults tof"Delete folder {path_in_repo} with huggingface_hub".
  • commit_description (stroptional) —The description of the generated commit.
  • create_pr (boolean,optional) —Whether or not to create a Pull Request with that commit. Defaults toFalse.Ifrevision is not set, PR is opened against the"main" branch. Ifrevision is set and is a branch, PR is opened against this branch. Ifrevision is set and is not a branch name (example: a commit oid), anRevisionNotFoundError is returned by the server.
  • parent_commit (str,optional) —The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.If specified andcreate_pr isFalse, the commit will fail ifrevision does not point toparent_commit.If specified andcreate_pr isTrue, the pull request will be created fromparent_commit.Specifyingparent_commit ensures the repo has not changed before committing the changes, and can beespecially useful if the repo is updated / committed to concurrently.

Deletes a folder in the given repo.

Simple wrapper aroundcreate_commit() method.

delete_inference_endpoint

<source>

(name: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • name (str) —The name of the Inference Endpoint to delete.
  • namespace (str,optional) —The namespace in which the Inference Endpoint is located. Defaults to the current user.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Delete an Inference Endpoint.

This operation is not reversible. If you don’t want to be charged for an Inference Endpoint, it is preferableto pause it withpause_inference_endpoint() or scale it to zero withscale_to_zero_inference_endpoint().

For convenience, you can also delete an Inference Endpoint usingInferenceEndpoint.delete().

delete_repo

<source>

(repo_id: strtoken: Union[str, bool, None] = Nonerepo_type: Optional[str] = Nonemissing_ok: bool = False)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model.
  • missing_ok (bool,optional, defaults toFalse) —IfTrue, do not raise an error if repo does not exist.

  • RepositoryNotFoundError —If the repository to delete from cannot be found andmissing_ok is set to False (default).

Delete a repo from the HuggingFace Hub. CAUTION: this is irreversible.

delete_scheduled_job

<source>

(scheduled_job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • scheduled_job_id (str) —ID of the scheduled Job.
  • namespace (str,optional) —The namespace where the scheduled Job is. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Delete a scheduled compute Job on Hugging Face infrastructure.

delete_space_secret

<source>

(repo_id: strkey: strtoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —ID of the repo to update. Example:"bigcode/in-the-stack".
  • key (str) —Secret key. Example:"GITHUB_API_KEY".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Deletes a secret from a Space.

Secrets allow to set secret keys or tokens to a Space without hardcoding them.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets.

delete_space_storage

<source>

(repo_id: strtoken: Union[bool, str, None] = None)SpaceRuntime

Parameters

  • repo_id (str) —ID of the Space to update. Example:"open-llm-leaderboard/open_llm_leaderboard".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Runtime information about a Space including Space stage and hardware.

Raises

BadRequestError

  • BadRequestError —If space has no persistent storage.

Delete persistent storage for a Space.

delete_space_variable

<source>

(repo_id: strkey: strtoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —ID of the repo to update. Example:"bigcode/in-the-stack".
  • key (str) —Variable key. Example:"MODEL_REPO_ID"
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Deletes a variable from a Space.

Variables allow to set environment variables to a Space without hardcoding them.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables

delete_tag

<source>

(repo_id: strtag: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = None)

Parameters

  • repo_id (str) —The repository in which a tag will be deleted.Example:"user/my-cool-model".
  • tag (str) —The name of the tag to delete.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if tagging a dataset or space,None or"model" if tagging a model. Default isNone.

Delete a tag from a repo on the Hub.

delete_webhook

<source>

(webhook_id: strtoken: Union[bool, str, None] = None)None

Parameters

Returns

None

Delete a webhook.

Example:

>>>from huggingface_hubimport delete_webhook>>>delete_webhook("654bbbc16f2ec14d77f109cc")

disable_webhook

<source>

(webhook_id: strtoken: Union[bool, str, None] = None)WebhookInfo

Parameters

Info about the disabled webhook.

Disable a webhook (makes it “disabled”).

Example:

>>>from huggingface_hubimport disable_webhook>>>disabled_webhook = disable_webhook("654bbbc16f2ec14d77f109cc")>>>disabled_webhookWebhookInfo(id="654bbbc16f2ec14d77f109cc",    url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",    jon=None,    watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")],    domains=["repo","discussion"],    secret="my-secret",    disabled=True,)

duplicate_space

<source>

(from_id: strto_id: Optional[str] = Noneprivate: Optional[bool] = Nonetoken: Union[bool, str, None] = Noneexist_ok: bool = Falsehardware: Optional[SpaceHardware] = Nonestorage: Optional[SpaceStorage] = Nonesleep_time: Optional[int] = Nonesecrets: Optional[list[dict[str, str]]] = Nonevariables: Optional[list[dict[str, str]]] = None)RepoUrl

Parameters

  • from_id (str) —ID of the Space to duplicate. Example:"pharma/CLIP-Interrogator".
  • to_id (str,optional) —ID of the new Space. Example:"dog/CLIP-Interrogator". If not provided, the new Space will have the samename as the original Space, but in your account.
  • private (bool,optional) —Whether the new Space should be private or not. Defaults to the same privacy as the original Space.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • exist_ok (bool,optional, defaults toFalse) —IfTrue, do not raise an error if repo already exists.
  • hardware (SpaceHardware orstr,optional) —Choice of Hardware. Example:"t4-medium". SeeSpaceHardware for a complete list.
  • storage (SpaceStorage orstr,optional) —Choice of persistent storage tier. Example:"small". SeeSpaceStorage for a complete list.
  • sleep_time (int,optional) —Number of seconds of inactivity to wait before a Space is put to sleep. Set to-1 if you don’t wantyour Space to sleep (default behavior for upgraded hardware). For free hardware, you can’t configurethe sleep time (value is fixed to 48 hours of inactivity).Seehttps://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.
  • secrets (list[dict[str, str]],optional) —A list of secret keys to set in your Space. Each item is in the form{"key": ..., "value": ..., "description": ...} where description is optional.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets.
  • variables (list[dict[str, str]],optional) —A list of public environment variables to set in your Space. Each item is in the form{"key": ..., "value": ..., "description": ...} where description is optional.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables.

Returns

RepoUrl

URL to the newly created repo. Value is a subclass ofstr containingattributes likeendpoint,repo_type andrepo_id.

Raises

RepositoryNotFoundError orHfHubHTTPError

  • RepositoryNotFoundError —If one offrom_id orto_id cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • HfHubHTTPError —If the HuggingFace API returned an error

Duplicate a Space.

Programmatically duplicate a Space. The new Space will be created in your account and will be in the same stateas the original Space (running or paused). You can duplicate a Space no matter the current state of a Space.

Example:

>>>from huggingface_hubimport duplicate_space# Duplicate a Space to your account>>>duplicate_space("multimodalart/dreambooth-training")RepoUrl('https://huggingface.co/spaces/nateraw/dreambooth-training',...)# Can set custom destination id and visibility flag.>>>duplicate_space("multimodalart/dreambooth-training", to_id="my-dreambooth", private=True)RepoUrl('https://huggingface.co/spaces/nateraw/my-dreambooth',...)

edit_discussion_comment

<source>

(repo_id: strdiscussion_num: intcomment_id: strnew_content: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = None)DiscussionComment

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • discussion_num (int) —The number of the Discussion or Pull Request . Must be a strictly positive integer.
  • comment_id (str) —The ID of the comment to edit.
  • new_content (str) —The new content of the comment. Comments support markdown formatting.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

the edited comment

Edits a comment on a Discussion / Pull Request.

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

enable_webhook

<source>

(webhook_id: strtoken: Union[bool, str, None] = None)WebhookInfo

Parameters

Info about the enabled webhook.

Enable a webhook (makes it “active”).

Example:

>>>from huggingface_hubimport enable_webhook>>>enabled_webhook = enable_webhook("654bbbc16f2ec14d77f109cc")>>>enabled_webhookWebhookInfo(id="654bbbc16f2ec14d77f109cc",    job=None,    url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",    watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")],    domains=["repo","discussion"],    secret="my-secret",    disabled=False,)

fetch_job_logs

<source>

(job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • job_id (str) —ID of the Job.
  • namespace (str,optional) —The namespace where the Job is running. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Fetch all the logs from a compute Job on Hugging Face infrastructure.

Example:

>>>from huggingface_hubimport fetch_job_logs, run_job>>>job = run_job(image="python:3.12", command=["python","-c" ,"print('Hello from HF compute!')"])>>>for login fetch_job_logs(job_id=job.id):...print(log)Hellofrom HF compute!

fetch_job_metrics

<source>

(job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • job_id (str) —ID of the Job.
  • namespace (str,optional) —The namespace where the Job is running. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Fetch all the live metrics from a compute Job on Hugging Face infrastructure.

Example:

>>>from huggingface_hubimport fetch_job_metrics, run_job>>>job = run_job(image="python:3.12", command=["python","-c" ,"print('Hello from HF compute!')"], flavor="a10g-small")>>>for metricsin fetch_job_metrics(job_id=job.id):...print(metrics){"cpu_usage_pct":0,"cpu_millicores":3500,"memory_used_bytes":1306624,"memory_total_bytes":15032385536,"rx_bps":0,"tx_bps":0,"gpus": {"882fa930": {"utilization":0,"memory_used_bytes":0,"memory_total_bytes":22836000000        }    },"replica":"57vr7"}

file_exists

<source>

(repo_id: strfilename: strrepo_type: Optional[str] = Nonerevision: Optional[str] = Nonetoken: Union[str, bool, None] = None)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • filename (str) —The name of the file to check, for example:"config.json"
  • repo_type (str,optional) —Set to"dataset" or"space" if getting repository info from a dataset or a space,None or"model" if getting repository info from a model. Default isNone.
  • revision (str,optional) —The revision of the repository from which to get the information. Defaults to"main" branch.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Checks if a file exists in a repository on the Hugging Face Hub.

Examples:

>>>from huggingface_hubimport file_exists>>>file_exists("bigcode/starcoder","config.json")True>>>file_exists("bigcode/starcoder","not-a-file")False>>>file_exists("bigcode/not-a-repo","config.json")False

get_collection

<source>

(collection_slug: strtoken: Union[bool, str, None] = None)

Parameters

  • collection_slug (str) —Slug of the collection of the Hub. Example:"TheBloke/recent-models-64f9a55bb3115b4f513ec026".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Gets information about a Collection on the Hub.

Returns:Collection

Example:

>>>from huggingface_hubimport get_collection>>>collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026")>>>collection.title'Recent models'>>>len(collection.items)37>>>collection.items[0]CollectionItem(    item_object_id='651446103cd773a050bf64c2',    item_id='TheBloke/U-Amethyst-20B-AWQ',    item_type='model',    position=88,    note=None)

get_dataset_tags

<source>

()

List all valid dataset tags as a nested namespace object.

get_discussion_details

<source>

(repo_id: strdiscussion_num: intrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • discussion_num (int) —The number of the Discussion or Pull Request . Must be a strictly positive integer.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Fetches a Discussion’s / Pull Request ‘s details from the Hub.

Returns:DiscussionWithDetails

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

get_full_repo_name

<source>

(model_id: strorganization: Optional[str] = Nonetoken: Union[bool, str, None] = None)str

Parameters

  • model_id (str) —The name of the model.
  • organization (str,optional) —If passed, the repository name will be in the organizationnamespace instead of the user namespace.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

str

The repository name in the user’s namespace({username}/{model_id}) if no organization is passed, and under theorganization namespace ({organization}/{model_id}) otherwise.

Returns the repository name for a given model ID and optionalorganization.

get_hf_file_metadata

<source>

(url: strtoken: Union[bool, str, None] = Nonetimeout: Optional[float] = 10)

Parameters

  • url (str) —File url, for example returned byhf_hub_url().
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • timeout (float,optional, defaults to 10) —How many seconds to wait for the server to send metadata before giving up.

Fetch metadata of a file versioned on the Hub for a given url.

get_inference_endpoint

<source>

(name: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)InferenceEndpoint

Parameters

  • name (str) —The name of the Inference Endpoint to retrieve information about.
  • namespace (str,optional) —The namespace in which the Inference Endpoint is located. Defaults to the current user.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

information about the requested Inference Endpoint.

Get information about an Inference Endpoint.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>endpoint = api.get_inference_endpoint("my-text-to-image")>>>endpointInferenceEndpoint(name='my-text-to-image', ...)# Get status>>>endpoint.status'running'>>>endpoint.url'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud'# Run inference>>>endpoint.client.text_to_image(...)

get_model_tags

<source>

()

List all valid model tags as a nested namespace object

get_organization_overview

<source>

(organization: strtoken: Union[bool, str, None] = None)Organization

Parameters

Returns

Organization

AnOrganization object with the organization’s overview.

Raises

HTTPError

  • HTTPError —HTTP 404 If the organization does not exist on the Hub.

Get an overview of an organization on the Hub.

get_paths_info

<source>

(repo_id: strpaths: Union[list[str], str]expand: bool = Falserevision: Optional[str] = Nonerepo_type: Optional[str] = Nonetoken: Union[str, bool, None] = None)list[Union[RepoFile, RepoFolder]]

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separated by a/.
  • paths (Union[list[str], str],optional) —The paths to get information about. If a path do not exist, it is ignored without raisingan exception.
  • expand (bool,optional, defaults toFalse) —Whether to fetch more information about the paths (e.g. last commit and files’ security scan results). Thisoperation is more expensive for the server so only 50 results are returned per page (instead of 1000).As pagination is implemented inhuggingface_hub, this is transparent for you except for the time ittakes to get the results.
  • revision (str,optional) —The revision of the repository from which to get the information. Defaults to"main" branch.
  • repo_type (str,optional) —The type of the repository from which to get the information ("model","dataset" or"space".Defaults to"model".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

list[Union[RepoFile, RepoFolder]]

The information about the paths, as a list ofRepoFile andRepoFolder objects.

Get information about a repo’s paths.

Example:

>>>from huggingface_hubimport get_paths_info>>>paths_info = get_paths_info("allenai/c4", ["README.md","en"], repo_type="dataset")>>>paths_info[    RepoFile(path='README.md', size=2379, blob_id='f84cb4c97182890fc1dbdeaf1a6a468fd27b4fff', lfs=None, last_commit=None, security=None),    RepoFolder(path='en', tree_id='dc943c4c40f53d02b31ced1defa7e5f438d5862e', last_commit=None)]

get_repo_discussions

<source>

(repo_id: strauthor: Optional[str] = Nonediscussion_type: Optional[constants.DiscussionTypeFilter] = Nonediscussion_status: Optional[constants.DiscussionStatusFilter] = Nonerepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)Iterator[Discussion]

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • author (str,optional) —Pass a value to filter by discussion author.None means no filter.Default isNone.
  • discussion_type (str,optional) —Set to"pull_request" to fetch only pull requests,"discussion"to fetch only discussions. Set to"all" orNone to fetch both.Default isNone.
  • discussion_status (str,optional) —Set to"open" (respectively"closed") to fetch only open(respectively closed) discussions. Set to"all" orNoneto fetch both.Default isNone.
  • repo_type (str,optional) —Set to"dataset" or"space" if fetching from a dataset orspace,None or"model" if fetching from a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterator[Discussion]

An iterator ofDiscussion objects.

Fetches Discussions and Pull Requests for the given repo.

Example:

Collecting all discussions of a repo in a list:

>>>from huggingface_hubimport get_repo_discussions>>>discussions_list =list(get_repo_discussions(repo_id="bert-base-uncased"))

Iterating over discussions of a repo:

>>>from huggingface_hubimport get_repo_discussions>>>for discussionin get_repo_discussions(repo_id="bert-base-uncased"):...print(discussion.num, discussion.title)

get_safetensors_metadata

<source>

(repo_id: strrepo_type: Optional[str] = Nonerevision: Optional[str] = Nonetoken: Union[bool, str, None] = None)SafetensorsRepoMetadata

Parameters

  • repo_id (str) —A user or an organization name and a repo name separated by a/.
  • repo_type (str,optional) —Set to"dataset" or"space" if the file is in a dataset or space,None or"model" if in amodel. Default isNone.
  • revision (str,optional) —The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to thehead of the"main" branch.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

SafetensorsRepoMetadata

information related to safetensors repo.

Raises

NotASafetensorsRepoError orSafetensorsParsingError

  • NotASafetensorsRepoError —If the repo is not a safetensors repo i.e. doesn’t have either amodel.safetensors or amodel.safetensors.index.json file.
  • SafetensorsParsingError —If a safetensors file header couldn’t be parsed correctly.

Parse metadata for a safetensors repo on the Hub.

We first check if the repo has a single safetensors file or a sharded safetensors repo. If it’s a singlesafetensors file, we parse the metadata from this file. If it’s a sharded safetensors repo, we parse themetadata from the index file and then parse the metadata from each shard.

To parse metadata from a single safetensors file, useparse_safetensors_file_metadata().

For more details regarding the safetensors format, check outhttps://huggingface.co/docs/safetensors/index#format.

Example:

# Parse repo with single weights file>>>metadata = get_safetensors_metadata("bigscience/bloomz-560m")>>>metadataSafetensorsRepoMetadata(    metadata=None,    sharded=False,    weight_map={'h.0.input_layernorm.bias':'model.safetensors', ...},    files_metadata={'model.safetensors': SafetensorsFileMetadata(...)})>>>metadata.files_metadata["model.safetensors"].metadata{'format':'pt'}# Parse repo with sharded model>>>metadata = get_safetensors_metadata("bigscience/bloom")Parse safetensors files:100%|██████████████████████████████████████████|72/72 [00:12<00:00,5.78it/s]>>>metadataSafetensorsRepoMetadata(metadata={'total_size':352494542848}, sharded=True, weight_map={...}, files_metadata={...})>>>len(metadata.files_metadata)72# All safetensors files have been fetched# Parse repo with sharded model>>>get_safetensors_metadata("runwayml/stable-diffusion-v1-5")NotASafetensorsRepoError:'runwayml/stable-diffusion-v1-5'isnot a safetensors repo. Couldn't find 'model.safetensors.index.json' or 'model.safetensors' files.

get_space_runtime

<source>

(repo_id: strtoken: Union[bool, str, None] = None)SpaceRuntime

Parameters

Runtime information about a Space including Space stage and hardware.

Gets runtime information about a Space.

get_space_variables

<source>

(repo_id: strtoken: Union[bool, str, None] = None)

Parameters

Gets all variables from a Space.

Variables allow to set environment variables to a Space without hardcoding them.For more details, seehttps://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables

get_user_overview

<source>

(username: strtoken: Union[bool, str, None] = None)User

Parameters

Returns

User

AUser object with the user’s overview.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 404 If the user does not exist on the Hub.

Get an overview of a user on the Hub.

get_webhook

<source>

(webhook_id: strtoken: Union[bool, str, None] = None)WebhookInfo

Parameters

Info about the webhook.

Get a webhook by its id.

Example:

>>>from huggingface_hubimport get_webhook>>>webhook = get_webhook("654bbbc16f2ec14d77f109cc")>>>print(webhook)WebhookInfo(id="654bbbc16f2ec14d77f109cc",    job=None,    watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")],    url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",    secret="my-secret",    domains=["repo","discussion"],    disabled=False,)

grant_access

<source>

(repo_id: struser: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —The id of the repo to grant access to.
  • user (str) —The username of the user to grant access.
  • repo_type (str,optional) —The type of the repo to grant access to. Must be one ofmodel,dataset orspace.Defaults tomodel.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 400 if the repo is not gated.
  • HfHubHTTPError —HTTP 400 if the user already has access to the repo.
  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.
  • HfHubHTTPError —HTTP 404 if the user does not exist on the Hub.

Grant access to a user for a given gated repo.

Granting access don’t require for the user to send an access request by themselves. The user is automaticallyadded to the accepted list meaning they can download the files You can revoke the granted access at any timeusingcancel_access_request() orreject_access_request().

For more info about gated repos, seehttps://huggingface.co/docs/hub/models-gated.

hf_hub_download

<source>

(repo_id: strfilename: strsubfolder: Optional[str] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecache_dir: Union[str, Path, None] = Nonelocal_dir: Union[str, Path, None] = Noneforce_download: bool = Falseetag_timeout: float = 10token: Union[bool, str, None] = Nonelocal_files_only: bool = Falsetqdm_class: Optional[type[base_tqdm]] = Nonedry_run: bool = False)str orDryRunFileInfo

Parameters

  • repo_id (str) —A user or an organization name and a repo name separated by a/.
  • filename (str) —The name of the file in the repo.
  • subfolder (str,optional) —An optional value corresponding to a folder inside the repository.
  • repo_type (str,optional) —Set to"dataset" or"space" if downloading from a dataset or space,None or"model" if downloading from a model. Default isNone.
  • revision (str,optional) —An optional Git revision id which can be a branch name, a tag, or acommit hash.
  • cache_dir (str,Path,optional) —Path to the folder where cached files are stored.
  • local_dir (str orPath,optional) —If provided, the downloaded file will be placed under this directory.
  • force_download (bool,optional, defaults toFalse) —Whether the file should be downloaded even if it already exists inthe local cache.
  • etag_timeout (float,optional, defaults to10) —When fetching ETag, how many seconds to wait for the server to senddata before giving up which is passed tohttpx.request.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • local_files_only (bool,optional, defaults toFalse) —IfTrue, avoid downloading the file and return the path to thelocal cached file if it exists.
  • tqdm_class (tqdm,optional) —If provided, overwrites the default behavior for the progress bar. Passedargument must inherit fromtqdm.auto.tqdm or at least mimic its behavior.Defaults to the custom HF progress bar that can be disabled by settingHF_HUB_DISABLE_PROGRESS_BARS environment variable.
  • dry_run (bool,optional, defaults toFalse) —IfTrue, perform a dry run without actually downloading the file. Returns aDryRunFileInfo object containing information about what would be downloaded.

Returns

str orDryRunFileInfo

  • Ifdry_run=False: Local path of file or if networking is off, last version of file cached on disk.
  • Ifdry_run=True: ADryRunFileInfo object containing download information.

Raises

RepositoryNotFoundError orRevisionNotFoundError or~utils.RemoteEntryNotFoundError orLocalEntryNotFoundError orEnvironmentError orOSError orValueError

  • RepositoryNotFoundError —If the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • RevisionNotFoundError —If the revision to download from cannot be found.
  • ~utils.RemoteEntryNotFoundError —If the file to download cannot be found.
  • LocalEntryNotFoundError —If network is disabled or unavailable and file is not found in cache.
  • EnvironmentError —Iftoken=True but the token cannot be found.
  • OSError —If ETag cannot be determined.
  • ValueError —If some parameter value is invalid.

Download a given file if it’s not already present in the local cache.

The new cache file layout looks like this:

  • The cache directory contains one subfolder per repo_id (namespaced by repo type)
  • inside each repo folder:
    • refs is a list of the latest known revision => commit_hash pairs
    • blobs contains the actual file blobs (identified by their git-sha or sha256, depending onwhether they’re LFS files or not)
    • snapshots contains one subfolder per commit, each “commit” contains the subset of the filesthat have been resolved at that particular commit. Each filename is a symlink to the blobat that particular commit.
[  96]  .└──[ 160]  models--julien-c--EsperBERTo-small    ├──[ 160]  blobs    │   ├──[321M]403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd    │   ├──[ 398]7cb18dc9bafbfcf74629a4b760af1b160957a83e    │   └──[1.4K]  d7edf6bd2a681fb0175f7735299831ee1b22b812    ├──[  96]  refs    │   └──[  40]main    └──[ 128]  snapshots        ├──[ 128]2439f60ef33a0d46d85da5001d52aeda5b00ce9f        │   ├──[  52]  README.md -> ../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812        │   └──[  76]  pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd        └──[ 128]  bbc77c8132af1cc5cf678da3f1ddf2de43606d48            ├──[  52]  README.md -> ../../blobs/7cb18dc9bafbfcf74629a4b760af1b160957a83e            └──[  76]  pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd

Iflocal_dir is provided, the file structure from the repo will be replicated in this location. When using thisoption, thecache_dir will not be used and a.cache/huggingface/ folder will be created at the root oflocal_dirto store some metadata related to the downloaded files. While this mechanism is not as robust as the maincache-system, it’s optimized for regularly pulling the latest version of a repository.

hide_discussion_comment

<source>

(repo_id: strdiscussion_num: intcomment_id: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = None)DiscussionComment

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • discussion_num (int) —The number of the Discussion or Pull Request . Must be a strictly positive integer.
  • comment_id (str) —The ID of the comment to edit.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

the hidden comment

Hides a comment on a Discussion / Pull Request.

Hidden comments’ content cannot be retrieved anymore. Hiding a comment is irreversible.

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

inspect_job

<source>

(job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • job_id (str) —ID of the Job.
  • namespace (str,optional) —The namespace where the Job is running. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Inspect a compute Job on Hugging Face infrastructure.

Example:

>>>from huggingface_hubimport inspect_job, run_job>>>job = run_job(image="python:3.12", command=["python","-c" ,"print('Hello from HF compute!')"])>>>inspect_job(job.id)JobInfo(id='68780d00bbe36d38803f645f',    created_at=datetime.datetime(2025,7,16,20,35,12,808000, tzinfo=datetime.timezone.utc),    docker_image='python:3.12',    space_id=None,    command=['python','-c',"print('Hello from HF compute!')"],    arguments=[],    environment={},    secrets={},    flavor='cpu-basic',    status=JobStatus(stage='RUNNING', message=None))

inspect_scheduled_job

<source>

(scheduled_job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • scheduled_job_id (str) —ID of the scheduled Job.
  • namespace (str,optional) —The namespace where the scheduled Job is. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Inspect a scheduled compute Job on Hugging Face infrastructure.

Example:

>>>from huggingface_hubimport inspect_job, create_scheduled_job>>>scheduled_job = create_scheduled_job(image="python:3.12", command=["python","-c" ,"print('Hello from HF compute!')"], schedule="@hourly")>>>inspect_scheduled_job(scheduled_job.id)

list_accepted_access_requests

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)Iterable[AccessRequest]

Parameters

  • repo_id (str) —The id of the repo to get access requests for.
  • repo_type (str,optional) —The type of the repo to get access requests for. Must be one ofmodel,dataset orspace.Defaults tomodel.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[AccessRequest]

An iterable ofAccessRequest objects. Each time contains ausername,email,status andtimestamp attribute. If the gated repo has a custom form, thefields attribute willbe populated with user’s answers.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 400 if the repo is not gated.
  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.

Get accepted access requests for a given gated repo.

An accepted request means the user has requested access to the repo and the request has been accepted. The usercan download any file of the repo. If the approval mode is automatic, this list should contains by default allrequests. Accepted requests can be cancelled or rejected at any time usingcancel_access_request() andreject_access_request(). A cancelled request will go back to the pending list while a rejected request willgo to the rejected list. In both cases, the user will lose access to the repo.

For more info about gated repos, seehttps://huggingface.co/docs/hub/models-gated.

Example:

>>>from huggingface_hubimport list_accepted_access_requests>>>requests =list(list_accepted_access_requests("meta-llama/Llama-2-7b"))>>>len(requests)411>>>requests[0][    AccessRequest(        username='clem',        fullname='Clem 🤗',        email='***',        timestamp=datetime.datetime(2023,11,23,18,4,53,828000, tzinfo=datetime.timezone.utc),        status='accepted',        fields=None,    ),    ...]

list_collections

<source>

(owner: Union[list[str], str, None] = Noneitem: Union[list[str], str, None] = Nonesort: Optional[CollectionSort_T] = Nonelimit: Optional[int] = Nonetoken: Union[bool, str, None] = None)Iterable[Collection]

Parameters

  • owner (list[str] orstr,optional) —Filter by owner’s username.
  • item (list[str] orstr,optional) —Filter collections containing a particular items. Example:"models/teknium/OpenHermes-2.5-Mistral-7B","datasets/squad" or"papers/2311.12983".
  • sort (Literal["lastModified", "trending", "upvotes"],optional) —Sort collections by last modified, trending or upvotes.
  • limit (int,optional) —Maximum number of collections to be returned.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[Collection]

an iterable ofCollection objects.

List collections on the Huggingface Hub, given some filters.

When listing collections, the item list per collection is truncated to 4 items maximum. To retrieve all itemsfrom a collection, you must useget_collection().

list_daily_papers

<source>

(date: Optional[str] = Nonetoken: Union[bool, str, None] = Noneweek: Optional[str] = Nonemonth: Optional[str] = Nonesubmitter: Optional[str] = Nonesort: Optional[DailyPapersSort_T] = Nonep: Optional[int] = Nonelimit: Optional[int] = None)Iterable[PaperInfo]

Parameters

  • date (str,optional) —Date in ISO format (YYYY-MM-DD) for which to fetch daily papers.Defaults to most recent ones.
  • token (Union[bool, str, None],optional) —A valid user access token (string). Defaults to the locally savedtoken. To disable authentication, passFalse.
  • week (str,optional) —Week in ISO format (YYYY-Www) for which to fetch daily papers. Example,2025-W09.
  • month (str,optional) —Month in ISO format (YYYY-MM) for which to fetch daily papers. Example,2025-02.
  • submitter (str,optional) —Username of the submitter to filter daily papers.
  • sort (Literal["publishedAt", "trending"],optional) —Sort order for the daily papers. Can be either bypublishedAt or bytrending.Defaults to"publishedAt"
  • p (int,optional) —Page number for pagination. Defaults to 0.
  • limit (int,optional) —Limit of papers to fetch. Defaults to 50.

Returns

Iterable[PaperInfo]

an iterable ofhuggingface_hub.hf_api.PaperInfo objects.

List the daily papers published on a given date on the Hugging Face Hub.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>list(api.list_daily_papers(date="2025-10-29"))

list_datasets

<source>

(filter: Union[str, Iterable[str], None] = Noneauthor: Optional[str] = Nonebenchmark: Optional[Union[Literal[True], Literal['official'], str]] = Nonedataset_name: Optional[str] = Nonegated: Optional[bool] = Nonelanguage_creators: Optional[Union[str, list[str]]] = Nonelanguage: Optional[Union[str, list[str]]] = Nonemultilinguality: Optional[Union[str, list[str]]] = Nonesize_categories: Optional[Union[str, list[str]]] = Nonetask_categories: Optional[Union[str, list[str]]] = Nonetask_ids: Optional[Union[str, list[str]]] = Nonesearch: Optional[str] = Nonesort: Optional[DatasetSort_T] = Nonedirection: Optional[Literal[-1]] = Nonelimit: Optional[int] = Noneexpand: Optional[list[ExpandDatasetProperty_T]] = Nonefull: Optional[bool] = Nonetoken: Union[bool, str, None] = None)Iterable[DatasetInfo]

Parameters

  • filter (str orIterable[str],optional) —A string or list of string to filter datasets on the hub.
  • author (str,optional) —A string which identify the author of the returned datasets.
  • benchmark (True,"official",str,optional) —Filter datasets by benchmark. Can beTrue or"official" to return official benchmark datasets.For future-compatibility, can also be a string representing the benchmark name (currently only “official” is supported).
  • dataset_name (str,optional) —A string or list of strings that can be used to identify datasets onthe Hub by its name, such asSQAC orwikineural
  • gated (bool,optional) —A boolean to filter datasets on the Hub that are gated or not. By default, all datasets are returned.Ifgated=True is passed, only gated datasets are returned.Ifgated=False is passed, only non-gated datasets are returned.
  • language_creators (str orList,optional) —A string or list of strings that can be used to identify datasets onthe Hub with how the data was curated, such ascrowdsourced ormachine_generated.
  • language (str orList,optional) —A string or list of strings representing a two-character language tofilter datasets by on the Hub.
  • multilinguality (str orList,optional) —A string or list of strings representing a filter for datasets thatcontain multiple languages.
  • size_categories (str orList,optional) —A string or list of strings that can be used to identify datasets onthe Hub by the size of the dataset such as100K<n<1M or1M<n<10M.
  • tags (str orList,optional) —Deprecated. Pass tags infilter to filter datasets by tags.
  • task_categories (str orList,optional) —A string or list of strings that can be used to identify datasets onthe Hub by the designed task, such asaudio_classification ornamed_entity_recognition.
  • task_ids (str orList,optional) —A string or list of strings that can be used to identify datasets onthe Hub by the specific task such asspeech_emotion_recognition orparaphrase.
  • search (str,optional) —A string that will be contained in the returned datasets.
  • sort (DatasetSort_T,optional) —The key with which to sort the resulting datasets. Possible values are “created_at”, “downloads”,“last_modified”, “likes” and “trending_score”.
  • direction (Literal[-1] orint,optional) —Deprecated. This parameter is not used and will be removed in version 1.5.
  • limit (int,optional) —The limit on the number of datasets fetched. Leaving this optiontoNone fetches all datasets.
  • expand (list[ExpandDatasetProperty_T],optional) —List properties to return in the response. When used, only the properties in the list will be returned.This parameter cannot be used iffull is passed.Possible values are"author","cardData","citation","createdAt","disabled","description","downloads","downloadsAllTime","gated","lastModified","likes","paperswithcode_id","private","siblings","sha","tags","trendingScore","usedStorage", and"resourceGroup".
  • full (bool,optional) —Whether to fetch all dataset data, including thelast_modified,thecard_data and the files. Can contain useful information such as thePapersWithCode ID.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[DatasetInfo]

an iterable ofhuggingface_hub.hf_api.DatasetInfo objects.

List datasets hosted on the Huggingface Hub, given some filters.

Example usage with thefilter argument:

>>>from huggingface_hubimport HfApi>>>api = HfApi()# List all datasets>>>api.list_datasets()# List only the text classification datasets>>>api.list_datasets(filter="task_categories:text-classification")# List only the datasets in russian for language modeling>>>api.list_datasets(...filter=("language:ru","task_ids:language-modeling")...)# List FiftyOne datasets (identified by the tag "fiftyone" in dataset card)>>>api.list_datasets(tags="fiftyone")

Example usage with thesearch argument:

>>>from huggingface_hubimport HfApi>>>api = HfApi()# List all datasets with "text" in their name>>>api.list_datasets(search="text")# List all datasets with "text" in their name made by google>>>api.list_datasets(search="text", author="google")

list_inference_catalog

<source>

(token: Union[bool, str, None] = None)Liststr

Parameters

Returns

Liststr

A list of model IDs available in the catalog.

List models available in the Hugging Face Inference Catalog.

The goal of the Inference Catalog is to provide a curated list of models that are optimized for inferenceand for which default configurations have been tested. Seehttps://endpoints.huggingface.co/catalog for a listof available models in the catalog.

Usecreate_inference_endpoint_from_catalog() to deploy a model from the catalog.

list_inference_catalog is experimental. Its API is subject to change in the future. Please provide feedbackif you have any suggestions or requests.

list_inference_endpoints

<source>

(namespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)listInferenceEndpoint

Parameters

  • namespace (str,optional) —The namespace to list endpoints for. Defaults to the current user. Set to"*" to list all endpointsfrom all namespaces (i.e. personal namespace and all orgs the user belongs to).
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

A list of all inference endpoints for the given namespace.

Lists all inference endpoints for the given namespace.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>api.list_inference_endpoints()[InferenceEndpoint(name='my-endpoint', ...), ...]

list_jobs

<source>

(timeout: Optional[int] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • timeout (float,optional) —Whether to set a timeout for the request to the Hub.
  • namespace (str,optional) —The namespace from where it lists the jobs. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

List compute Jobs on Hugging Face infrastructure.

list_jobs_hardware

<source>

(token: Union[bool, str, None] = None)list[JobHardware]

Returns

list[JobHardware]

A list of available hardware configurations.

List available hardware options for Jobs on Hugging Face infrastructure.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>hardware_list = api.list_jobs_hardware()>>>hardware_list[0]JobHardware(name='cpu-basic', pretty_name='CPU Basic', cpu='2 vCPU', ram='16 GB', accelerator=None, unit_cost_micro_usd=167, unit_cost_usd=0.000167, unit_label='minute')>>>hardware_list[0].name'cpu-basic'# Filter GPU options>>>gpu_hardware = [hwfor hwin hardware_listif hw.acceleratorisnotNone]>>>gpu_hardware[0].accelerator.model'T4'

list_lfs_files

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)Iterable[LFSFileInfo]

Parameters

  • repo_id (str) —The repository for which you are listing LFS files.
  • repo_type (str,optional) —Type of repository. Set to"dataset" or"space" if listing from a dataset or space,None or"model" if listing from a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[LFSFileInfo]

An iterator ofLFSFileInfo objects.

List all LFS files in a repo on the Hub.

This is primarily useful to count how much storage a repo is using and to eventually clean up large fileswithpermanently_delete_lfs_files(). Note that this would be a permanent action that will affect all commitsreferencing this deleted files and that cannot be undone.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>lfs_files = api.list_lfs_files("username/my-cool-repo")# Filter files files to delete based on a combination of `filename`, `pushed_at`, `ref` or `size`.# e.g. select only LFS files in the "checkpoints" folder>>>lfs_files_to_delete = (lfs_filefor lfs_filein lfs_filesif lfs_file.filename.startswith("checkpoints/"))# Permanently delete LFS files>>>api.permanently_delete_lfs_files("username/my-cool-repo", lfs_files_to_delete)

list_liked_repos

<source>

(user: Optional[str] = Nonetoken: Union[bool, str, None] = None)UserLikes

Parameters

Returns

UserLikes

object containing the user name and 3 lists of repo ids (1 formodels, 1 for datasets and 1 for Spaces).

Raises

ValueError

  • ValueError —Ifuser is not passed and no token found (either from argument or from machine).

List all public repos liked by a user on huggingface.co.

This list is public so token is optional. Ifuser is not passed, it defaults tothe logged in user.

See alsounlike().

Example:

>>>from huggingface_hubimport list_liked_repos>>>likes = list_liked_repos("julien-c")>>>likes.user"julien-c">>>likes.models["osanseviero/streamlit_1.15","Xhaheen/ChatGPT_HF", ...]

list_models

<source>

(filter: Union[str, Iterable[str], None] = Noneauthor: Optional[str] = Noneapps: Optional[Union[str, list[str]]] = Nonegated: Optional[bool] = Noneinference: Optional[Literal['warm']] = Noneinference_provider: Optional[Union[Literal['all'], 'PROVIDER_T', list['PROVIDER_T']]] = Nonemodel_name: Optional[str] = Nonetrained_dataset: Optional[Union[str, list[str]]] = Nonesearch: Optional[str] = Nonepipeline_tag: Optional[str] = Noneemissions_thresholds: Optional[tuple[float, float]] = Nonesort: Optional[ModelSort_T] = Nonedirection: Optional[Literal[-1]] = Nonelimit: Optional[int] = Noneexpand: Optional[list[ExpandModelProperty_T]] = Nonefull: Optional[bool] = NonecardData: bool = Falsefetch_config: bool = Falsetoken: Union[bool, str, None] = None)Iterable[ModelInfo]

Parameters

  • filter (str orIterable[str],optional) —A string or list of string to filter models on the Hub.Models can be filtered by library, language, task, tags, and more.
  • author (str,optional) —A string which identify the author (user or organization) of thereturned models.
  • apps (str orList,optional) —A string or list of strings to filter models on the Hub thatsupport the specified apps. Example values include"ollama" or["ollama", "vllm"].
  • gated (bool,optional) —A boolean to filter models on the Hub that are gated or not. By default, all models are returned.Ifgated=True is passed, only gated models are returned.Ifgated=False is passed, only non-gated models are returned.
  • inference (Literal["warm"],optional) —If “warm”, filter models on the Hub currently served by at least one provider.
  • inference_provider (Literal["all"] orstr,optional) —A string to filter models on the Hub that are served by a specific provider.Pass"all" to get all models served by at least one provider.
  • model_name (str,optional) —A string that contain complete or partial names for models on theHub, such as “bert” or “bert-base-cased”
  • trained_dataset (str orList,optional) —A string tag or a list of string tags of the trained dataset for amodel on the Hub.
  • search (str,optional) —A string that will be contained in the returned model ids.
  • pipeline_tag (str,optional) —A string pipeline tag to filter models on the Hub by, such assummarization.
  • emissions_thresholds (Tuple,optional) —A tuple of two ints or floats representing a minimum and maximumcarbon footprint to filter the resulting models with in grams.
  • sort (ModelSort_T,optional) —The key with which to sort the resulting models. Possible values are “created_at”, “downloads”,“last_modified”, “likes” and “trending_score”.
  • direction (Literal[-1] orint,optional) —Deprecated. This parameter is not used and will be removed in version 1.5.
  • limit (int,optional) —The limit on the number of models fetched. Leaving this optiontoNone fetches all models.
  • expand (list[ExpandModelProperty_T],optional) —List properties to return in the response. When used, only the properties in the list will be returned.This parameter cannot be used iffull,cardData orfetch_config are passed.Possible values are"author","cardData","config","createdAt","disabled","downloads","downloadsAllTime","evalResults","gated","gguf","inference","inferenceProviderMapping","lastModified","library_name","likes","mask_token","model-index","pipeline_tag","private","safetensors","sha","siblings","spaces","tags","transformersInfo","trendingScore","widgetData", and"resourceGroup".
  • full (bool,optional) —Whether to fetch all model data, including thelast_modified,thesha, the files and thetags. This is set toTrue bydefault when using a filter.
  • cardData (bool,optional) —Whether to grab the metadata for the model as well. Can containuseful information such as carbon emissions, metrics, anddatasets trained on.
  • fetch_config (bool,optional) —Whether to fetch the model configs as well. This is not includedinfull due to its size.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[ModelInfo]

an iterable ofhuggingface_hub.hf_api.ModelInfo objects.

List models hosted on the Huggingface Hub, given some filters.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()# List all models>>>api.list_models()# List text classification models>>>api.list_models(filter="text-classification")# List models from the KerasHub library>>>api.list_models(filter="keras-hub")# List models served by Cohere>>>api.list_models(inference_provider="cohere")# List models with "bert" in their name>>>api.list_models(search="bert")# List models with "bert" in their name and pushed by google>>>api.list_models(search="bert", author="google")

list_organization_followers

<source>

(organization: strtoken: Union[bool, str, None] = None)Iterable[User]

Parameters

Returns

Iterable[User]

A list ofUser objects with the followers of the organization.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 404 If the organization does not exist on the Hub.

List followers of an organization on the Hub.

list_organization_members

<source>

(organization: strtoken: Union[bool, str, None] = None)Iterable[User]

Parameters

Returns

Iterable[User]

A list ofUser objects with the members of the organization.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 404 If the organization does not exist on the Hub.

List of members of an organization on the Hub.

list_papers

<source>

(query: Optional[str] = Nonelimit: Optional[int] = Nonetoken: Union[bool, str, None] = None)Iterable[PaperInfo]

Parameters

  • query (str,optional) —A search query string to find papers.If provided, returns papers that match the query.
  • limit (int,optional) —The maximum number of papers to return.
  • token (Union[bool, str, None],optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[PaperInfo]

an iterable ofhuggingface_hub.hf_api.PaperInfo objects.

List daily papers on the Hugging Face Hub given a search query.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()# List all papers with "attention" in their title>>>api.list_papers(query="attention")

list_pending_access_requests

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)Iterable[AccessRequest]

Parameters

  • repo_id (str) —The id of the repo to get access requests for.
  • repo_type (str,optional) —The type of the repo to get access requests for. Must be one ofmodel,dataset orspace.Defaults tomodel.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[AccessRequest]

An iterable ofAccessRequest objects. Each time contains ausername,email,status andtimestamp attribute. If the gated repo has a custom form, thefields attribute willbe populated with user’s answers.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 400 if the repo is not gated.
  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.

Get pending access requests for a given gated repo.

A pending request means the user has requested access to the repo but the request has not been processed yet.If the approval mode is automatic, this list should be empty. Pending requests can be accepted or rejectedusingaccept_access_request() andreject_access_request().

For more info about gated repos, seehttps://huggingface.co/docs/hub/models-gated.

Example:

>>>from huggingface_hubimport list_pending_access_requests, accept_access_request# List pending requests>>>requests =list(list_pending_access_requests("meta-llama/Llama-2-7b"))>>>len(requests)411>>>requests[0][    AccessRequest(        username='clem',        fullname='Clem 🤗',        email='***',        timestamp=datetime.datetime(2023,11,23,18,4,53,828000, tzinfo=datetime.timezone.utc),        status='pending',        fields=None,    ),    ...]# Accept Clem's request>>>accept_access_request("meta-llama/Llama-2-7b","clem")

list_rejected_access_requests

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)Iterable[AccessRequest]

Parameters

  • repo_id (str) —The id of the repo to get access requests for.
  • repo_type (str,optional) —The type of the repo to get access requests for. Must be one ofmodel,dataset orspace.Defaults tomodel.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[AccessRequest]

An iterable ofAccessRequest objects. Each time contains ausername,email,status andtimestamp attribute. If the gated repo has a custom form, thefields attribute willbe populated with user’s answers.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 400 if the repo is not gated.
  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.

Get rejected access requests for a given gated repo.

A rejected request means the user has requested access to the repo and the request has been explicitly rejectedby a repo owner (either you or another user from your organization). The user cannot download any file of therepo. Rejected requests can be accepted or cancelled at any time usingaccept_access_request() andcancel_access_request(). A cancelled request will go back to the pending list while an accepted request willgo to the accepted list.

For more info about gated repos, seehttps://huggingface.co/docs/hub/models-gated.

Example:

>>>from huggingface_hubimport list_rejected_access_requests>>>requests =list(list_rejected_access_requests("meta-llama/Llama-2-7b"))>>>len(requests)411>>>requests[0][    AccessRequest(        username='clem',        fullname='Clem 🤗',        email='***',        timestamp=datetime.datetime(2023,11,23,18,4,53,828000, tzinfo=datetime.timezone.utc),        status='rejected',        fields=None,    ),    ...]

list_repo_commits

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = Nonerevision: Optional[str] = Noneformatted: bool = False)list[GitCommitInfo]

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separated by a/.
  • repo_type (str,optional) —Set to"dataset" or"space" if listing commits from a dataset or a Space,None or"model" iflisting from a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • formatted (bool) —Whether to return the HTML-formatted title and description of the commits. Defaults to False.

Returns

list[GitCommitInfo]

list of objects containing information about the commits for a repo on the Hub.

Get the list of commits of a given revision for a repo on the Hub.

Commits are sorted by date (last commit first).

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()# Commits are sorted by date (last commit first)>>>initial_commit = api.list_repo_commits("gpt2")[-1]# Initial commit is always a system commit containing the `.gitattributes` file.>>>initial_commitGitCommitInfo(    commit_id='9b865efde13a30c13e0a33e536cf3e4a5a9d71d8',    authors=['system'],    created_at=datetime.datetime(2019,2,18,10,36,15, tzinfo=datetime.timezone.utc),    title='initial commit',    message='',    formatted_title=None,    formatted_message=None)# Create an empty branch by deriving from initial commit>>>api.create_branch("gpt2","new_empty_branch", revision=initial_commit.commit_id)

list_repo_files

<source>

(repo_id: strrevision: Optional[str] = Nonerepo_type: Optional[str] = Nonetoken: Union[str, bool, None] = None)list[str]

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separated by a/.
  • revision (str,optional) —The revision of the repository from which to get the information.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset or space,None or"model" if uploading toa model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

list[str]

the list of files in a given repository.

Get the list of files in a given repo.

list_repo_likers

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)Iterable[User]

Parameters

  • repo_id (str) —The repository to retrieve . Example:"user/my-cool-model".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.

Returns

Iterable[User]

an iterable ofhuggingface_hub.hf_api.User objects.

List all users who liked a given repo on the hugging Face Hub.

See alsolist_liked_repos().

list_repo_refs

<source>

(repo_id: strrepo_type: Optional[str] = Noneinclude_pull_requests: bool = Falsetoken: Union[str, bool, None] = None)GitRefs

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • repo_type (str,optional) —Set to"dataset" or"space" if listing refs from a dataset or a Space,None or"model" if listing from a model. Default isNone.
  • include_pull_requests (bool,optional) —Whether to include refs from pull requests in the list. Defaults toFalse.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

GitRefs

object containing all information about branches and tags for arepo on the Hub.

Get the list of refs of a given repo (both tags and branches).

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>api.list_repo_refs("gpt2")GitRefs(branches=[GitRefInfo(name='main', ref='refs/heads/main', target_commit='e7da7f221d5bf496a48136c0cd264e630fe9fcc8')], converts=[], tags=[])>>>api.list_repo_refs("bigcode/the-stack", repo_type='dataset')GitRefs(    branches=[        GitRefInfo(name='main', ref='refs/heads/main', target_commit='18edc1591d9ce72aa82f56c4431b3c969b210ae3'),        GitRefInfo(name='v1.1.a1', ref='refs/heads/v1.1.a1', target_commit='f9826b862d1567f3822d3d25649b0d6d22ace714')    ],    converts=[],    tags=[        GitRefInfo(name='v1.0', ref='refs/tags/v1.0', target_commit='c37a8cd1e382064d8aced5e05543c5f7753834da')    ])

list_repo_tree

<source>

(repo_id: strpath_in_repo: Optional[str] = Nonerecursive: bool = Falseexpand: bool = Falserevision: Optional[str] = Nonerepo_type: Optional[str] = Nonetoken: Union[str, bool, None] = None)Iterable[Union[RepoFile, RepoFolder]]

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separated by a/.
  • path_in_repo (str,optional) —Relative path of the tree (folder) in the repo, for example:"checkpoints/1fec34a/results". Will default to the root tree (folder) of the repository.
  • recursive (bool,optional, defaults toFalse) —Whether to list tree’s files and folders recursively.
  • expand (bool,optional, defaults toFalse) —Whether to fetch more information about the tree’s files and folders (e.g. last commit and files’ security scan results). Thisoperation is more expensive for the server so only 50 results are returned per page (instead of 1000).As pagination is implemented inhuggingface_hub, this is transparent for you except for the time ittakes to get the results.
  • revision (str,optional) —The revision of the repository from which to get the tree. Defaults to"main" branch.
  • repo_type (str,optional) —The type of the repository from which to get the tree ("model","dataset" or"space".Defaults to"model".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[Union[RepoFile, RepoFolder]]

The information about the tree’s files and folders, as an iterable ofRepoFile andRepoFolder objects. The order of the files and folders isnot guaranteed.

Raises

RepositoryNotFoundError orRevisionNotFoundError or~utils.RemoteEntryNotFoundError

  • RepositoryNotFoundError —If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repodoes not exist.
  • RevisionNotFoundError —If revision is not found (error 404) on the repo.
  • ~utils.RemoteEntryNotFoundError —If the tree (folder) does not exist (error 404) on the repo.

List a repo tree’s files and folders and get information about them.

Examples:

Get information about a repo’s tree.

>>>from huggingface_hubimport list_repo_tree>>>repo_tree = list_repo_tree("lysandre/arxiv-nlp")>>>repo_tree<generatorobject HfApi.list_repo_tree at0x7fa4088e1ac0>>>>list(repo_tree)[    RepoFile(path='.gitattributes', size=391, blob_id='ae8c63daedbd4206d7d40126955d4e6ab1c80f8f', lfs=None, last_commit=None, security=None),    RepoFile(path='README.md', size=391, blob_id='43bd404b159de6fba7c2f4d3264347668d43af25', lfs=None, last_commit=None, security=None),    RepoFile(path='config.json', size=554, blob_id='2f9618c3a19b9a61add74f70bfb121335aeef666', lfs=None, last_commit=None, security=None),    RepoFile(        path='flax_model.msgpack', size=497764107, blob_id='8095a62ccb4d806da7666fcda07467e2d150218e',        lfs={'size':497764107,'sha256':'d88b0d6a6ff9c3f8151f9d3228f57092aaea997f09af009eefd7373a77b5abb9','pointer_size':134}, last_commit=None, security=None    ),    RepoFile(path='merges.txt', size=456318, blob_id='226b0752cac7789c48f0cb3ec53eda48b7be36cc', lfs=None, last_commit=None, security=None),    RepoFile(        path='pytorch_model.bin', size=548123560, blob_id='64eaa9c526867e404b68f2c5d66fd78e27026523',        lfs={'size':548123560,'sha256':'9be78edb5b928eba33aa88f431551348f7466ba9f5ef3daf1d552398722a5436','pointer_size':134}, last_commit=None, security=None    ),    RepoFile(path='vocab.json', size=898669, blob_id='b00361fece0387ca34b4b8b8539ed830d644dbeb', lfs=None, last_commit=None, security=None)]]

Get even more information about a repo’s tree (last commit and files’ security scan results)

>>>from huggingface_hubimport list_repo_tree>>>repo_tree = list_repo_tree("prompthero/openjourney-v4", expand=True)>>>list(repo_tree)[    RepoFolder(        path='feature_extractor',        tree_id='aa536c4ea18073388b5b0bc791057a7296a00398',        last_commit={'oid':'47b62b20b20e06b9de610e840282b7e6c3d51190','title':'Upload diffusers weights (#48)','date': datetime.datetime(2023,3,21,9,5,27, tzinfo=datetime.timezone.utc)        }    ),    RepoFolder(        path='safety_checker',        tree_id='65aef9d787e5557373fdf714d6c34d4fcdd70440',        last_commit={'oid':'47b62b20b20e06b9de610e840282b7e6c3d51190','title':'Upload diffusers weights (#48)','date': datetime.datetime(2023,3,21,9,5,27, tzinfo=datetime.timezone.utc)        }    ),    RepoFile(        path='model_index.json',        size=582,        blob_id='d3d7c1e8c3e78eeb1640b8e2041ee256e24c9ee1',        lfs=None,        last_commit={'oid':'b195ed2d503f3eb29637050a886d77bd81d35f0e','title':'Fix deprecation warning by changing `CLIPFeatureExtractor` to `CLIPImageProcessor`. (#54)','date': datetime.datetime(2023,5,15,21,41,59, tzinfo=datetime.timezone.utc)        },        security={'safe':True,'av_scan': {'virusFound':False,'virusNames':None},'pickle_import_scan':None        }    )    ...]

list_scheduled_jobs

<source>

(timeout: Optional[int] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • timeout (float,optional) —Whether to set a timeout for the request to the Hub.
  • namespace (str,optional) —The namespace from where it lists the jobs. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

List scheduled compute Jobs on Hugging Face infrastructure.

list_spaces

<source>

(filter: Union[str, Iterable[str], None] = Noneauthor: Optional[str] = Nonesearch: Optional[str] = Nonedatasets: Union[str, Iterable[str], None] = Nonemodels: Union[str, Iterable[str], None] = Nonelinked: bool = Falsesort: Optional[SpaceSort_T] = Nonedirection: Optional[Literal[-1]] = Nonelimit: Optional[int] = Noneexpand: Optional[list[ExpandSpaceProperty_T]] = Nonefull: Optional[bool] = Nonetoken: Union[bool, str, None] = None)Iterable[SpaceInfo]

Parameters

  • filter (str orIterable,optional) —A string tag or list of tags that can be used to identify Spaces on the Hub.
  • author (str,optional) —A string which identify the author of the returned Spaces.
  • search (str,optional) —A string that will be contained in the returned Spaces.
  • datasets (str orIterable,optional) —Whether to return Spaces that make use of a dataset.The name of a specific dataset can be passed as a string.
  • models (str orIterable,optional) —Whether to return Spaces that make use of a model.The name of a specific model can be passed as a string.
  • linked (bool,optional) —Whether to return Spaces that make use of either a model or a dataset.
  • sort (SpaceSort_T,optional) —The key with which to sort the resulting spaces. Possible values are “created_at”, “last_modified”,“likes” and “trending_score”.
  • direction (Literal[-1] orint,optional) —Deprecated. This parameter is not used and will be removed in version 1.5.
  • limit (int,optional) —The limit on the number of Spaces fetched. Leaving this optiontoNone fetches all Spaces.
  • expand (list[ExpandSpaceProperty_T],optional) —List properties to return in the response. When used, only the properties in the list will be returned.This parameter cannot be used iffull is passed.Possible values are"author","cardData","datasets","disabled","lastModified","createdAt","likes","models","private","runtime","sdk","siblings","sha","subdomain","tags","trendingScore","usedStorage", and"resourceGroup".
  • full (bool,optional) —Whether to fetch all Spaces data, including thelast_modified,siblingsandcard_data fields.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Iterable[SpaceInfo]

an iterable ofhuggingface_hub.hf_api.SpaceInfo objects.

List spaces hosted on the Huggingface Hub, given some filters.

list_user_followers

<source>

(username: strtoken: Union[bool, str, None] = None)Iterable[User]

Parameters

Returns

Iterable[User]

A list ofUser objects with the followers of the user.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 404 If the user does not exist on the Hub.

Get the list of followers of a user on the Hub.

list_user_following

<source>

(username: strtoken: Union[bool, str, None] = None)Iterable[User]

Parameters

Returns

Iterable[User]

A list ofUser objects with the users followed by the user.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 404 If the user does not exist on the Hub.

Get the list of users followed by a user on the Hub.

list_webhooks

<source>

(token: Union[bool, str, None] = None)list[WebhookInfo]

Parameters

Returns

list[WebhookInfo]

List of webhook info objects.

List all configured webhooks.

Example:

>>>from huggingface_hubimport list_webhooks>>>webhooks = list_webhooks()>>>len(webhooks)2>>>webhooks[0]WebhookInfo(id="654bbbc16f2ec14d77f109cc",    watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")],    url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",    secret="my-secret",    domains=["repo","discussion"],    disabled=False,)

merge_pull_request

<source>

(repo_id: strdiscussion_num: inttoken: Union[bool, str, None] = Nonecomment: Optional[str] = Nonerepo_type: Optional[str] = None)DiscussionStatusChange

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • discussion_num (int) —The number of the Discussion or Pull Request . Must be a strictly positive integer.
  • comment (str,optional) —An optional comment to post with the status change.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

the status change event

Merges a Pull Request.

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

model_info

<source>

(repo_id: strrevision: Optional[str] = Nonetimeout: Optional[float] = NonesecurityStatus: Optional[bool] = Nonefiles_metadata: bool = Falseexpand: Optional[list[ExpandModelProperty_T]] = Nonetoken: Union[bool, str, None] = None)huggingface_hub.hf_api.ModelInfo

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • revision (str,optional) —The revision of the model repository from which to get theinformation.
  • timeout (float,optional) —Whether to set a timeout for the request to the Hub.
  • securityStatus (bool,optional) —Whether to retrieve the security status from the modelrepository as well. The security status will be returned in thesecurity_repo_status field.
  • files_metadata (bool,optional) —Whether or not to retrieve metadata for files in the repository(size, LFS metadata, etc). Defaults toFalse.
  • expand (list[ExpandModelProperty_T],optional) —List properties to return in the response. When used, only the properties in the list will be returned.This parameter cannot be used ifsecurityStatus orfiles_metadata are passed.Possible values are"author","baseModels","cardData","childrenModelCount","config","createdAt","disabled","downloads","downloadsAllTime","evalResults","gated","gguf","inference","inferenceProviderMapping","lastModified","library_name","likes","mask_token","model-index","pipeline_tag","private","safetensors","sha","siblings","spaces","tags","transformersInfo","trendingScore","widgetData","usedStorage", and"resourceGroup".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

The model repository information.

Get info on one specific model on huggingface.co

Model can be private if you pass an acceptable token or are logged in.

Raises the following errors:

  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • RevisionNotFoundErrorIf the revision to download from cannot be found.

move_repo

<source>

(from_id: strto_id: strrepo_type: Optional[str] = Nonetoken: Union[str, bool, None] = None)

Parameters

  • from_id (str) —A namespace (user or an organization) and a repo name separatedby a/. Original repository identifier.
  • to_id (str) —A namespace (user or an organization) and a repo name separatedby a/. Final repository identifier.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Moving a repository from namespace1/repo_name1 to namespace2/repo_name2

Note there are certain limitations. For more information about movingrepositories, please seehttps://hf.co/docs/hub/repositories-settings#renaming-or-transferring-a-repo.

Raises the following errors:

  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

paper_info

<source>

(id: str)PaperInfo

Parameters

  • id (str,optional) —ArXiv id of the paper.

Returns

PaperInfo

APaperInfo object.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 404 If the paper does not exist on the Hub.

Get information for a paper on the Hub.

parse_safetensors_file_metadata

<source>

(repo_id: strfilename: strrepo_type: Optional[str] = Nonerevision: Optional[str] = Nonetoken: Union[bool, str, None] = None)SafetensorsFileMetadata

Parameters

  • repo_id (str) —A user or an organization name and a repo name separated by a/.
  • filename (str) —The name of the file in the repo.
  • repo_type (str,optional) —Set to"dataset" or"space" if the file is in a dataset or space,None or"model" if in amodel. Default isNone.
  • revision (str,optional) —The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to thehead of the"main" branch.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

SafetensorsFileMetadata

information related to a safetensors file.

Raises

NotASafetensorsRepoError orSafetensorsParsingError

  • NotASafetensorsRepoError —If the repo is not a safetensors repo i.e. doesn’t have either amodel.safetensors or amodel.safetensors.index.json file.
  • SafetensorsParsingError —If a safetensors file header couldn’t be parsed correctly.

Parse metadata from a safetensors file on the Hub.

To parse metadata from all safetensors files in a repo at once, useget_safetensors_metadata().

For more details regarding the safetensors format, check outhttps://huggingface.co/docs/safetensors/index#format.

pause_inference_endpoint

<source>

(name: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)InferenceEndpoint

Parameters

  • name (str) —The name of the Inference Endpoint to pause.
  • namespace (str,optional) —The namespace in which the Inference Endpoint is located. Defaults to the current user.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

information about the paused Inference Endpoint.

Pause an Inference Endpoint.

A paused Inference Endpoint will not be charged. It can be resumed at any time usingresume_inference_endpoint().This is different than scaling the Inference Endpoint to zero withscale_to_zero_inference_endpoint(), whichwould be automatically restarted when a request is made to it.

For convenience, you can also pause an Inference Endpoint usingpause_inference_endpoint().

pause_space

<source>

(repo_id: strtoken: Union[bool, str, None] = None)SpaceRuntime

Parameters

Runtime information about your Space includingstage=PAUSED and requested hardware.

  • RepositoryNotFoundError —If your Space is not found (error 404). Most probably wrong repo_id or your space is private but youare not authenticated.
  • HfHubHTTPError —403 Forbidden: only the owner of a Space can pause it. If you want to manage a Space that you don’town, either ask the owner by opening a Discussion or duplicate the Space.
  • BadRequestError —If your Space is a static Space. Static Spaces are always running and never billed. If you want to hidea static Space, you can set it to private.

Pause your Space.

A paused Space stops executing until manually restarted by its owner. This is different from the sleepingstate in which free Spaces go after 48h of inactivity. Paused time is not billed to your account, no matter thehardware you’ve selected. To restart your Space, userestart_space() and go to your Space settings page.

For more details, please visitthe docs.

permanently_delete_lfs_files

<source>

(repo_id: strlfs_files: Iterable[LFSFileInfo]rewrite_history: bool = Truerepo_type: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —The repository for which you are listing LFS files.
  • lfs_files (Iterable[LFSFileInfo]) —An iterable ofLFSFileInfo items to permanently delete from the repo. Uselist_lfs_files() to listall LFS files from a repo.
  • rewrite_history (bool,optional, default toTrue) —Whether to rewrite repository history to remove file pointers referencing the deleted LFS files (recommended).
  • repo_type (str,optional) —Type of repository. Set to"dataset" or"space" if listing from a dataset or space,None or"model" if listing from a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Permanently delete LFS files from a repo on the Hub.

This is a permanent action that will affect all commits referencing the deleted files and might corrupt yourrepository. This is a non-revertible operation. Use it only if you know what you are doing.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>lfs_files = api.list_lfs_files("username/my-cool-repo")# Filter files files to delete based on a combination of `filename`, `pushed_at`, `ref` or `size`.# e.g. select only LFS files in the "checkpoints" folder>>>lfs_files_to_delete = (lfs_filefor lfs_filein lfs_filesif lfs_file.filename.startswith("checkpoints/"))# Permanently delete LFS files>>>api.permanently_delete_lfs_files("username/my-cool-repo", lfs_files_to_delete)

preupload_lfs_files

<source>

(repo_id: stradditions: Iterable[CommitOperationAdd]token: Union[str, bool, None] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecreate_pr: Optional[bool] = Nonenum_threads: int = 5free_memory: bool = Truegitignore_content: Optional[str] = None)

Parameters

  • repo_id (str) —The repository in which you will commit the files, for example:"username/custom_transformers".
  • operations (Iterable ofCommitOperationAdd) —The list of files to upload. Warning: the objects in this list will be mutated to include informationrelative to the upload. Do not reuse the same objects for multiple commits.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —The type of repository to upload to (e.g."model" -default-,"dataset" or"space").
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • create_pr (boolean,optional) —Whether or not you plan to create a Pull Request with that commit. Defaults toFalse.
  • num_threads (int,optional) —Number of concurrent threads for uploading files. Defaults to 5.Setting it to 2 means at most 2 files will be uploaded concurrently.
  • gitignore_content (str,optional) —The content of the.gitignore file to know which files should be ignored. The order of priorityis to first check ifgitignore_content is passed, then check if the.gitignore file is presentin the list of files to commit and finally default to the.gitignore file already hosted on the Hub(if any).

Pre-upload LFS files to S3 in preparation on a future commit.

This method is useful if you are generating the files to upload on-the-fly and you don’t want to store themin memory before uploading them all at once.

This is a power-user method. You shouldn’t need to call it directly to make a normal commit.Usecreate_commit() directly instead.

Commit operations will be mutated during the process. In particular, the attachedpath_or_fileobj will beremoved after the upload to save memory (and replaced by an emptybytes object). Do not reuse the sameobjects except to pass them tocreate_commit(). If you don’t want to remove the attached content from thecommit operation object, passfree_memory=False.

Example:

>>>from huggingface_hubimport CommitOperationAdd, preupload_lfs_files, create_commit, create_repo>>>repo_id = create_repo("test_preupload").repo_id# Generate and preupload LFS files one by one>>>operations = []# List of all `CommitOperationAdd` objects that will be generated>>>for iinrange(5):...    content = ...# generate binary content...    addition = CommitOperationAdd(path_in_repo=f"shard_{i}_of_5.bin", path_or_fileobj=content)...    preupload_lfs_files(repo_id, additions=[addition])# upload + free memory...    operations.append(addition)# Create commit>>>create_commit(repo_id, operations=operations, commit_message="Commit all shards")

reject_access_request

<source>

(repo_id: struser: strrepo_type: Optional[str] = Nonerejection_reason: Optional[str]token: Union[bool, str, None] = None)

Parameters

  • repo_id (str) —The id of the repo to reject access request for.
  • user (str) —The username of the user which access request should be rejected.
  • repo_type (str,optional) —The type of the repo to reject access request for. Must be one ofmodel,dataset orspace.Defaults tomodel.
  • rejection_reason (str,optional) —Optional rejection reason that will be visible to the user (max 200 characters).
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Raises

HfHubHTTPError

  • HfHubHTTPError —HTTP 400 if the repo is not gated.
  • HfHubHTTPError —HTTP 403 if you only have read-only access to the repo. This can be the case if you don’t havewriteoradmin role in the organization the repo belongs to or if you passed aread token.
  • HfHubHTTPError —HTTP 404 if the user does not exist on the Hub.
  • HfHubHTTPError —HTTP 404 if the user access request cannot be found.
  • HfHubHTTPError —HTTP 404 if the user access request is already in the rejected list.

Reject an access request from a user for a given gated repo.

A rejected request will go to the rejected list. The user cannot download any file of the repo. Rejectedrequests can be accepted or cancelled at any time usingaccept_access_request() andcancel_access_request().A cancelled request will go back to the pending list while an accepted request will go to the accepted list.

For more info about gated repos, seehttps://huggingface.co/docs/hub/models-gated.

rename_discussion

<source>

(repo_id: strdiscussion_num: intnew_title: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = None)DiscussionTitleChange

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • discussion_num (int) —The number of the Discussion or Pull Request . Must be a strictly positive integer.
  • new_title (str) —The new title for the discussion
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

the title change event

Renames a Discussion.

Examples:

>>>new_title ="New title, fixing a typo">>>HfApi().rename_discussion(...    repo_id="username/repo_name",...    discussion_num=34...    new_title=new_title...)# DiscussionTitleChange(id='deadbeef0000000', type='title-change', ...)

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

repo_exists

<source>

(repo_id: strrepo_type: Optional[str] = Nonetoken: Union[str, bool, None] = None)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • repo_type (str,optional) —Set to"dataset" or"space" if getting repository info from a dataset or a space,None or"model" if getting repository info from a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Checks if a repository exists on the Hugging Face Hub.

Examples:

>>>from huggingface_hubimport repo_exists>>>repo_exists("google/gemma-7b")True>>>repo_exists("google/not-a-repo")False

repo_info

<source>

(repo_id: strrevision: Optional[str] = Nonerepo_type: Optional[str] = Nonetimeout: Optional[float] = Nonefiles_metadata: bool = Falseexpand: Optional[Union[ExpandModelProperty_T, ExpandDatasetProperty_T, ExpandSpaceProperty_T]] = Nonetoken: Union[bool, str, None] = None)Union[SpaceInfo, DatasetInfo, ModelInfo]

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • revision (str,optional) —The revision of the repository from which to get theinformation.
  • repo_type (str,optional) —Set to"dataset" or"space" if getting repository info from a dataset or a space,None or"model" if getting repository info from a model. Default isNone.
  • timeout (float,optional) —Whether to set a timeout for the request to the Hub.
  • expand (ExpandModelProperty_T orExpandDatasetProperty_T orExpandSpaceProperty_T,optional) —List properties to return in the response. When used, only the properties in the list will be returned.This parameter cannot be used iffiles_metadata is passed.For an exhaustive list of available properties, check outmodel_info(),dataset_info() orspace_info().
  • files_metadata (bool,optional) —Whether or not to retrieve metadata for files in the repository(size, LFS metadata, etc). Defaults toFalse.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

Union[SpaceInfo, DatasetInfo, ModelInfo]

The repository information, as ahuggingface_hub.hf_api.DatasetInfo,huggingface_hub.hf_api.ModelInfoorhuggingface_hub.hf_api.SpaceInfo object.

Get the info object for a given repo of a given type.

Raises the following errors:

  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • RevisionNotFoundErrorIf the revision to download from cannot be found.

request_space_hardware

<source>

(repo_id: strhardware: SpaceHardwaretoken: Union[bool, str, None] = Nonesleep_time: Optional[int] = None)SpaceRuntime

Parameters

  • repo_id (str) —ID of the repo to update. Example:"bigcode/in-the-stack".
  • hardware (str orSpaceHardware) —Hardware on which to run the Space. Example:"t4-medium".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • sleep_time (int,optional) —Number of seconds of inactivity to wait before a Space is put to sleep. Set to-1 if you don’t wantyour Space to sleep (default behavior for upgraded hardware). For free hardware, you can’t configurethe sleep time (value is fixed to 48 hours of inactivity).Seehttps://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.

Runtime information about a Space including Space stage and hardware.

Request new hardware for a Space.

It is also possible to request hardware directly when creating the Space repo! Seecreate_repo() for details.

request_space_storage

<source>

(repo_id: strstorage: SpaceStoragetoken: Union[bool, str, None] = None)SpaceRuntime

Parameters

  • repo_id (str) —ID of the Space to update. Example:"open-llm-leaderboard/open_llm_leaderboard".
  • storage (str orSpaceStorage) —Storage tier. Either ‘small’, ‘medium’, or ‘large’.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Runtime information about a Space including Space stage and hardware.

Request persistent storage for a Space.

It is not possible to decrease persistent storage after its granted. To do so, you must delete itviadelete_space_storage().

restart_space

<source>

(repo_id: strtoken: Union[bool, str, None] = Nonefactory_reboot: bool = False)SpaceRuntime

Parameters

  • repo_id (str) —ID of the Space to restart. Example:"Salesforce/BLIP2".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • factory_reboot (bool,optional) —IfTrue, the Space will be rebuilt from scratch without caching any requirements.

Runtime information about your Space.

  • RepositoryNotFoundError —If your Space is not found (error 404). Most probably wrong repo_id or your space is private but youare not authenticated.
  • HfHubHTTPError —403 Forbidden: only the owner of a Space can restart it. If you want to restart a Space that you don’town, either ask the owner by opening a Discussion or duplicate the Space.
  • BadRequestError —If your Space is a static Space. Static Spaces are always running and never billed. If you want to hidea static Space, you can set it to private.

Restart your Space.

This is the only way to programmatically restart a Space if you’ve put it on Pause (seepause_space()). Youmust be the owner of the Space to restart it. If you are using an upgraded hardware, your account will bebilled as soon as the Space is restarted. You can trigger a restart no matter the current state of a Space.

For more details, please visitthe docs.

resume_inference_endpoint

<source>

(name: strnamespace: Optional[str] = Nonerunning_ok: bool = Truetoken: Union[bool, str, None] = None)InferenceEndpoint

Parameters

  • name (str) —The name of the Inference Endpoint to resume.
  • namespace (str,optional) —The namespace in which the Inference Endpoint is located. Defaults to the current user.
  • running_ok (bool,optional) —IfTrue, the method will not raise an error if the Inference Endpoint is already running. Defaults toTrue.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

information about the resumed Inference Endpoint.

Resume an Inference Endpoint.

For convenience, you can also resume an Inference Endpoint usingInferenceEndpoint.resume().

resume_scheduled_job

<source>

(scheduled_job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • scheduled_job_id (str) —ID of the scheduled Job.
  • namespace (str,optional) —The namespace where the scheduled Job is. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Resume (unpause) a scheduled compute Job on Hugging Face infrastructure.

revision_exists

<source>

(repo_id: strrevision: strrepo_type: Optional[str] = Nonetoken: Union[str, bool, None] = None)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • revision (str) —The revision of the repository to check.
  • repo_type (str,optional) —Set to"dataset" or"space" if getting repository info from a dataset or a space,None or"model" if getting repository info from a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Checks if a specific revision exists on a repo on the Hugging Face Hub.

Examples:

>>>from huggingface_hubimport revision_exists>>>revision_exists("google/gemma-7b","float16")True>>>revision_exists("google/gemma-7b","not-a-revision")False

run_as_future

<source>

(fn: Callable[..., R]*args**kwargs)Future

Parameters

  • fn (Callable) —The method to run in the background.
  • *args, **kwargs —Arguments with which the method will be called.

Returns

Future

aFuture instance toget the result of the task.

Run a method in the background and return a Future instance.

The main goal is to run methods without blocking the main thread (e.g. to push data during a training).Background jobs are queued to preserve order but are not ran in parallel. If you need to speed-up your scriptsby parallelizing lots of call to the API, you must setup and use your ownThreadPoolExecutor.

Note: Most-used methods likeupload_file(),upload_folder() andcreate_commit() have arun_as_future: boolargument to directly call them in the background. This is equivalent to callingapi.run_as_future(...) on thembut less verbose.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>future = api.run_as_future(api.whoami)# instant>>>future.done()False>>>future.result()# wait until complete and return result(...)>>>future.done()True

run_job

<source>

(image: strcommand: list[str]env: Optional[dict[str, Any]] = Nonesecrets: Optional[dict[str, Any]] = Noneflavor: Optional[SpaceHardware] = Nonetimeout: Optional[Union[int, float, str]] = Nonelabels: Optional[dict[str, str]] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • image (str) —The Docker image to use.Examples:"ubuntu","python:3.12","pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel".Example with an image from a Space:"hf.co/spaces/lhoestq/duckdb".
  • command (list[str]) —The command to run. Example:["echo", "hello"].
  • env (dict[str, Any],optional) —Defines the environment variables for the Job.
  • secrets (dict[str, Any],optional) —Defines the secret environment variables for the Job.
  • flavor (str,optional) —Flavor for the hardware, as in Hugging Face Spaces. SeeSpaceHardware for possible values.Defaults to"cpu-basic".
  • timeout (Union[int, float, str],optional) —Max duration for the Job: int/float with s (seconds, default), m (minutes), h (hours) or d (days).Example:300 or"5m" for 5 minutes.
  • labels (dict[str, str],optional) —Labels to attach to the job (key-value pairs).
  • namespace (str,optional) —The namespace where the Job will be created. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Run compute Jobs on Hugging Face infrastructure.

Example:

Run your first Job:

>>>from huggingface_hubimport run_job>>>run_job(image="python:3.12", command=["python","-c" ,"print('Hello from HF compute!')"])

Run a GPU Job:

>>>from huggingface_hubimport run_job>>>image ="pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel">>>command = ["python","-c","import torch; print(f"This code ranwith the following GPU: {torch.cuda.get_device_name()}")"]>>>run_job(image=image, command=command, flavor="a10g-small")

run_uv_job

<source>

(script: strscript_args: Optional[list[str]] = Nonedependencies: Optional[list[str]] = Nonepython: Optional[str] = Noneimage: Optional[str] = Noneenv: Optional[dict[str, Any]] = Nonesecrets: Optional[dict[str, Any]] = Noneflavor: Optional[SpaceHardware] = Nonetimeout: Optional[Union[int, float, str]] = Nonelabels: Optional[dict[str, str]] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • script (str) —Path or URL of the UV script, or a command.
  • script_args (list[str],optional) —Arguments to pass to the script or command.
  • dependencies (list[str],optional) —Dependencies to use to run the UV script.
  • python (str,optional) —Use a specific Python version. Default is 3.12.
  • image (str,optional, defaults to “ghcr.io/astral-sh/uv —python3.12-bookworm”):Use a custom Docker image withuv installed.
  • env (dict[str, Any],optional) —Defines the environment variables for the Job.
  • secrets (dict[str, Any],optional) —Defines the secret environment variables for the Job.
  • flavor (str,optional) —Flavor for the hardware, as in Hugging Face Spaces. SeeSpaceHardware for possible values.Defaults to"cpu-basic".
  • timeout (Union[int, float, str],optional) —Max duration for the Job: int/float with s (seconds, default), m (minutes), h (hours) or d (days).Example:300 or"5m" for 5 minutes.
  • labels (dict[str, str],optional) —Labels to attach to the job (key-value pairs).
  • namespace (str,optional) —The namespace where the Job will be created. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Run a UV script Job on Hugging Face infrastructure.

Example:

Run a script from a URL:

>>>from huggingface_hubimport run_uv_job>>>script ="https://raw.githubusercontent.com/huggingface/trl/refs/heads/main/trl/scripts/sft.py">>>script_args = ["--model_name_or_path","Qwen/Qwen2-0.5B","--dataset_name","trl-lib/Capybara","--push_to_hub"]>>>run_uv_job(script, script_args=script_args, dependencies=["trl"], flavor="a10g-small")

Run a local script:

>>>from huggingface_hubimport run_uv_job>>>script ="my_sft.py">>>script_args = ["--model_name_or_path","Qwen/Qwen2-0.5B","--dataset_name","trl-lib/Capybara","--push_to_hub"]>>>run_uv_job(script, script_args=script_args, dependencies=["trl"], flavor="a10g-small")

Run a command:

>>>from huggingface_hubimport run_uv_job>>>script ="lighteval">>>script_args= ["endpoint","inference-providers","model_name=openai/gpt-oss-20b,provider=auto","lighteval|gsm8k|0|0"]>>>run_uv_job(script, script_args=script_args, dependencies=["lighteval"], flavor="a10g-small")

scale_to_zero_inference_endpoint

<source>

(name: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)InferenceEndpoint

Parameters

  • name (str) —The name of the Inference Endpoint to scale to zero.
  • namespace (str,optional) —The namespace in which the Inference Endpoint is located. Defaults to the current user.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

information about the scaled-to-zero Inference Endpoint.

Scale Inference Endpoint to zero.

An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with acold start delay. This is different than pausing the Inference Endpoint withpause_inference_endpoint(), whichwould require a manual resume withresume_inference_endpoint().

For convenience, you can also scale an Inference Endpoint to zero usingInferenceEndpoint.scale_to_zero().

set_space_sleep_time

<source>

(repo_id: strsleep_time: inttoken: Union[bool, str, None] = None)SpaceRuntime

Parameters

  • repo_id (str) —ID of the repo to update. Example:"bigcode/in-the-stack".
  • sleep_time (int,optional) —Number of seconds of inactivity to wait before a Space is put to sleep. Set to-1 if you don’t wantyour Space to pause (default behavior for upgraded hardware). For free hardware, you can’t configurethe sleep time (value is fixed to 48 hours of inactivity).Seehttps://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Runtime information about a Space including Space stage and hardware.

Set a custom sleep time for a Space running on upgraded hardware..

Your Space will go to sleep after X seconds of inactivity. You are not billed when your Space is in “sleep”mode. If a new visitor lands on your Space, it will “wake it up”. Only upgraded hardware can have aconfigurable sleep time. To know more about the sleep stage, please refer tohttps://huggingface.co/docs/hub/spaces-gpus#sleep-time.

It is also possible to set a custom sleep time when requesting hardware withrequest_space_hardware().

snapshot_download

<source>

(repo_id: strrepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecache_dir: Union[str, Path, None] = Nonelocal_dir: Union[str, Path, None] = Noneetag_timeout: float = 10force_download: bool = Falsetoken: Union[bool, str, None] = Nonelocal_files_only: bool = Falseallow_patterns: Optional[Union[list[str], str]] = Noneignore_patterns: Optional[Union[list[str], str]] = Nonemax_workers: int = 8tqdm_class: Optional[type[base_tqdm]] = Nonedry_run: bool = False)str or list ofDryRunFileInfo

Parameters

  • repo_id (str) —A user or an organization name and a repo name separated by a/.
  • repo_type (str,optional) —Set to"dataset" or"space" if downloading from a dataset or space,None or"model" if downloading from a model. Default isNone.
  • revision (str,optional) —An optional Git revision id which can be a branch name, a tag, or acommit hash.
  • cache_dir (str,Path,optional) —Path to the folder where cached files are stored.
  • local_dir (str orPath,optional) —If provided, the downloaded files will be placed under this directory.
  • etag_timeout (float,optional, defaults to10) —When fetching ETag, how many seconds to wait for the server to senddata before giving up which is passed tohttpx.request.
  • force_download (bool,optional, defaults toFalse) —Whether the file should be downloaded even if it already exists in the local cache.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • local_files_only (bool,optional, defaults toFalse) —IfTrue, avoid downloading the file and return the path to thelocal cached file if it exists.
  • allow_patterns (list[str] orstr,optional) —If provided, only files matching at least one pattern are downloaded.
  • ignore_patterns (list[str] orstr,optional) —If provided, files matching any of the patterns are not downloaded.
  • max_workers (int,optional) —Number of concurrent threads to download files (1 thread = 1 file download).Defaults to 8.
  • tqdm_class (tqdm,optional) —If provided, overwrites the default behavior for the progress bar. Passedargument must inherit fromtqdm.auto.tqdm or at least mimic its behavior.Note that thetqdm_class is not passed to each individual download.Defaults to the custom HF progress bar that can be disabled by settingHF_HUB_DISABLE_PROGRESS_BARS environment variable.
  • dry_run (bool,optional, defaults toFalse) —IfTrue, perform a dry run without actually downloading the files. Returns a list ofDryRunFileInfo objects containing information about what would be downloaded.

Returns

str or list ofDryRunFileInfo

  • Ifdry_run=False: Folder path of the repo snapshot.
  • Ifdry_run=True: A list ofDryRunFileInfo objects containing download information.

Raises

RepositoryNotFoundError orRevisionNotFoundError orEnvironmentError orOSError orValueError

  • RepositoryNotFoundError —If the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • RevisionNotFoundError —If the revision to download from cannot be found.
  • EnvironmentError —Iftoken=True and the token cannot be found.
  • OSError — ifETag cannot be determined.
  • ValueError —if some parameter value is invalid.

Download repo files.

Download a whole snapshot of a repo’s files at the specified revision. This is useful when you want all files froma repo, because you don’t know which ones you will need a priori. All files are nested inside a folder in orderto keep their actual filename relative to that folder. You can also filter which files to download usingallow_patterns andignore_patterns.

Iflocal_dir is provided, the file structure from the repo will be replicated in this location. When using thisoption, thecache_dir will not be used and a.cache/huggingface/ folder will be created at the root oflocal_dirto store some metadata related to the downloaded files.While this mechanism is not as robust as the maincache-system, it’s optimized for regularly pulling the latest version of a repository.

An alternative would be to clone the repo but this requires git and git-lfs to be installed and properlyconfigured. It is also not possible to filter which files to download when cloning a repository using git.

space_info

<source>

(repo_id: strrevision: Optional[str] = Nonetimeout: Optional[float] = Nonefiles_metadata: bool = Falseexpand: Optional[list[ExpandSpaceProperty_T]] = Nonetoken: Union[bool, str, None] = None)SpaceInfo

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separatedby a/.
  • revision (str,optional) —The revision of the space repository from which to get theinformation.
  • timeout (float,optional) —Whether to set a timeout for the request to the Hub.
  • files_metadata (bool,optional) —Whether or not to retrieve metadata for files in the repository(size, LFS metadata, etc). Defaults toFalse.
  • expand (list[ExpandSpaceProperty_T],optional) —List properties to return in the response. When used, only the properties in the list will be returned.This parameter cannot be used iffull is passed.Possible values are"author","cardData","createdAt","datasets","disabled","lastModified","likes","models","private","runtime","sdk","siblings","sha","subdomain","tags","trendingScore","usedStorage", and"resourceGroup".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

SpaceInfo

The space repository information.

Get info on one specific Space on huggingface.co.

Space can be private if you pass an acceptable token.

Raises the following errors:

  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • RevisionNotFoundErrorIf the revision to download from cannot be found.

super_squash_history

<source>

(repo_id: strbranch: Optional[str] = Nonecommit_message: Optional[str] = Nonerepo_type: Optional[str] = Nonetoken: Union[str, bool, None] = None)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separated by a/.
  • branch (str,optional) —The branch to squash. Defaults to the head of the"main" branch.
  • commit_message (str,optional) —The commit message to use for the squashed commit.
  • repo_type (str,optional) —Set to"dataset" or"space" if listing commits from a dataset or a Space,None or"model" iflisting from a model. Default isNone.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

  • RepositoryNotFoundError —If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repodoes not exist.
  • RevisionNotFoundError —If the branch to squash cannot be found.
  • BadRequestError —If invalid reference for a branch. You cannot squash history on tags.

Squash commit history on a branch for a repo on the Hub.

Squashing the repo history is useful when you know you’ll make hundreds of commits and you don’t want toclutter the history. Squashing commits can only be performed from the head of a branch.

Once squashed, the commit history cannot be retrieved. This is a non-revertible operation.

Once the history of a branch has been squashed, it is not possible to merge it back into another branch sincetheir history will have diverged.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()# Create repo>>>repo_id = api.create_repo("test-squash").repo_id# Make a lot of commits.>>>api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"content")>>>api.upload_file(repo_id=repo_id, path_in_repo="lfs.bin", path_or_fileobj=b"content")>>>api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"another_content")# Squash history>>>api.super_squash_history(repo_id=repo_id)

suspend_scheduled_job

<source>

(scheduled_job_id: strnamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • scheduled_job_id (str) —ID of the scheduled Job.
  • namespace (str,optional) —The namespace where the scheduled Job is. Defaults to the current user’s namespace.
  • token(Union[bool, str, None],optional) —A valid user access token. If not provided, the locally saved token will be used, which is therecommended authentication method. Set toFalse to disable authentication.Refer to:https://huggingface.co/docs/huggingface_hub/quick-start#authentication.

Suspend (pause) a scheduled compute Job on Hugging Face infrastructure.

unlike

<source>

(repo_id: strtoken: Union[bool, str, None] = Nonerepo_type: Optional[str] = None)

Parameters

  • repo_id (str) —The repository to unlike. Example:"user/my-cool-model".
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if unliking a dataset or space,None or"model" if unliking a model. Default isNone.

  • RepositoryNotFoundError —If repository is not found (error 404): wrong repo_id/repo_type, privatebut not authenticated or repo does not exist.

Unlike a given repo on the Hub (e.g. remove from favorite list).

To prevent spam usage, it is not possible tolike a repository from a script.

See alsolist_liked_repos().

Example:

>>>from huggingface_hubimport list_liked_repos, unlike>>>"gpt2"in list_liked_repos().models# we assume you have already liked gpt2True>>>unlike("gpt2")>>>"gpt2"in list_liked_repos().modelsFalse

update_collection_item

<source>

(collection_slug: stritem_object_id: strnote: Optional[str] = Noneposition: Optional[int] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • collection_slug (str) —Slug of the collection to update. Example:"TheBloke/recent-models-64f9a55bb3115b4f513ec026".
  • item_object_id (str) —ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id).It must be retrieved from aCollectionItem object. Example:collection.items[0].item_object_id.
  • note (str,optional) —A note to attach to the item in the collection. The maximum size for a note is 500 characters.
  • position (int,optional) —New position of the item in the collection.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Update an item in a collection.

Example:

>>>from huggingface_hubimport get_collection, update_collection_item# Get collection first>>>collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026")# Update item based on its ID (add note + update position)>>>update_collection_item(...    collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026",...    item_object_id=collection.items[-1].item_object_id,...    note="Newly updated model!"...    position=0,...)

update_collection_metadata

<source>

(collection_slug: strtitle: Optional[str] = Nonedescription: Optional[str] = Noneposition: Optional[int] = Noneprivate: Optional[bool] = Nonetheme: Optional[str] = Nonetoken: Union[bool, str, None] = None)

Parameters

  • collection_slug (str) —Slug of the collection to update. Example:"TheBloke/recent-models-64f9a55bb3115b4f513ec026".
  • title (str) —Title of the collection to update.
  • description (str,optional) —Description of the collection to update.
  • position (int,optional) —New position of the collection in the list of collections of the user.
  • private (bool,optional) —Whether the collection should be private or not.
  • theme (str,optional) —Theme of the collection on the Hub.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Update metadata of a collection on the Hub.

All arguments are optional. Only provided metadata will be updated.

Returns:Collection

Example:

>>>from huggingface_hubimport update_collection_metadata>>>collection = update_collection_metadata(...    collection_slug="username/iccv-2023-64f9a55bb3115b4f513ec026",...    title="ICCV Oct. 2023"...    description="Portfolio of models, datasets, papers and demos I presented at ICCV Oct. 2023",...    private=False,...    theme="pink",...)>>>collection.slug"username/iccv-oct-2023-64f9a55bb3115b4f513ec026"# ^collection slug got updated but not the trailing ID

update_inference_endpoint

<source>

(name: straccelerator: Optional[str] = Noneinstance_size: Optional[str] = Noneinstance_type: Optional[str] = Nonemin_replica: Optional[int] = Nonemax_replica: Optional[int] = Nonescale_to_zero_timeout: Optional[int] = Nonescaling_metric: Optional[InferenceEndpointScalingMetric] = Nonescaling_threshold: Optional[float] = Nonerepository: Optional[str] = Noneframework: Optional[str] = Nonerevision: Optional[str] = Nonetask: Optional[str] = Nonecustom_image: Optional[dict] = Noneenv: Optional[dict[str, str]] = Nonesecrets: Optional[dict[str, str]] = Nonedomain: Optional[str] = Nonepath: Optional[str] = Nonecache_http_responses: Optional[bool] = Nonetags: Optional[list[str]] = Nonenamespace: Optional[str] = Nonetoken: Union[bool, str, None] = None)InferenceEndpoint

Parameters

  • name (str) —The name of the Inference Endpoint to update.
  • accelerator (str,optional) —The hardware accelerator to be used for inference (e.g."cpu").
  • instance_size (str,optional) —The size or type of the instance to be used for hosting the model (e.g."x4").
  • instance_type (str,optional) —The cloud instance type where the Inference Endpoint will be deployed (e.g."intel-icl").
  • min_replica (int,optional) —The minimum number of replicas (instances) to keep running for the Inference Endpoint.
  • max_replica (int,optional) —The maximum number of replicas (instances) to scale to for the Inference Endpoint.
  • scale_to_zero_timeout (int,optional) —The duration in minutes before an inactive endpoint is scaled to zero.
  • scaling_metric (str orInferenceEndpointScalingMetric,optional) —The metric reference for scaling. Either “pendingRequests” or “hardwareUsage” when provided.Defaults to None.
  • scaling_threshold (float,optional) —The scaling metric threshold used to trigger a scale up. Ignored when scaling metric is not provided.Defaults to None.
  • repository (str,optional) —The name of the model repository associated with the Inference Endpoint (e.g."gpt2").
  • framework (str,optional) —The machine learning framework used for the model (e.g."custom").
  • revision (str,optional) —The specific model revision to deploy on the Inference Endpoint (e.g."6c0e6080953db56375760c0471a8c5f2929baf11").
  • task (str,optional) —The task on which to deploy the model (e.g."text-classification").
  • custom_image (dict,optional) —A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy anInference Endpoint running on thetext-generation-inference (TGI) framework (see examples).
  • env (dict[str, str],optional) —Non-secret environment variables to inject in the container environment
  • secrets (dict[str, str],optional) —Secret values to inject in the container environment.
  • domain (str,optional) —The custom domain for the Inference Endpoint deployment, if setup the inference endpoint will be available at this domain (e.g."my-new-domain.cool-website.woof").
  • path (str,optional) —The custom path to the deployed model, should start with a/ (e.g."/models/google-bert/bert-base-uncased").
  • cache_http_responses (bool,optional) —Whether to cache HTTP responses from the Inference Endpoint.
  • tags (list[str],optional) —A list of tags to associate with the Inference Endpoint.
  • namespace (str,optional) —The namespace where the Inference Endpoint will be updated. Defaults to the current user’s namespace.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

information about the updated Inference Endpoint.

Update an Inference Endpoint.

This method allows the update of either the compute configuration, the deployed model, the route, or any combination.All arguments are optional but at least one must be provided.

For convenience, you can also update an Inference Endpoint usingInferenceEndpoint.update().

update_repo_settings

<source>

(repo_id: strgated: Optional[Literal['auto', 'manual', False]] = Noneprivate: Optional[bool] = Nonetoken: Union[str, bool, None] = Nonerepo_type: Optional[str] = None)

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separated by a /.
  • gated (Literal["auto", "manual", False],optional) —The gated status for the repository. If set toNone (default), thegated setting of the repository won’t be updated.
    • “auto”: The repository is gated, and access requests are automatically approved or denied based on predefined criteria.
    • “manual”: The repository is gated, and access requests require manual approval.
    • False : The repository is not gated, and anyone can access it.
  • private (bool,optional) —Whether the repository should be private.
  • token (Union[str, bool, None],optional) —A valid user access token (string). Defaults to the locally saved token,which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, pass False.
  • repo_type (str,optional) —The type of the repository to update settings from ("model","dataset" or"space").Defaults to"model".

  • ValueError —If gated is not one of “auto”, “manual”, or False.
  • ValueError —If repo_type is not one of the values in constants.REPO_TYPES.
  • HfHubHTTPError —If the request to the Hugging Face Hub API fails.
  • RepositoryNotFoundError —If the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.

Update the settings of a repository, including gated access and visibility.

To give more control over how repos are used, the Hub allows repo authors to enableaccess requests for their repos, and also to set the visibility of the repo to private.

update_webhook

<source>

(webhook_id: strurl: Optional[str] = Nonewatched: Optional[list[Union[dict, WebhookWatchedItem]]] = Nonedomains: Optional[list[constants.WEBHOOK_DOMAIN_T]] = Nonesecret: Optional[str] = Nonetoken: Union[bool, str, None] = None)WebhookInfo

Parameters

  • webhook_id (str) —The unique identifier of the webhook to be updated.
  • url (str, optional) —The URL to which the payload will be sent.
  • watched (list[WebhookWatchedItem], optional) —List of items to watch. It can be users, orgs, models, datasets, or spaces.Refer toWebhookWatchedItem for more details. Watched items can also be provided as plain dictionaries.
  • domains (list[Literal["repo", "discussion"]], optional) —The domains to watch. This can include “repo”, “discussion”, or both.
  • secret (str, optional) —A secret to sign the payload with, providing an additional layer of security.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally saved token, which is the recommendedmethod for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Info about the updated webhook.

Update an existing webhook.

Example:

>>>from huggingface_hubimport update_webhook>>>updated_payload = update_webhook(...    webhook_id="654bbbc16f2ec14d77f109cc",...    url="https://new.webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",...    watched=[{"type":"user","name":"julien-c"}, {"type":"org","name":"HuggingFaceH4"}],...    domains=["repo"],...    secret="my-secret",...)>>>print(updated_payload)WebhookInfo(id="654bbbc16f2ec14d77f109cc",    job=None,    url="https://new.webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548",    watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")],    domains=["repo"],    secret="my-secret",    disabled=False,

upload_file

<source>

(path_or_fileobj: Union[str, Path, bytes, BinaryIO]path_in_repo: strrepo_id: strtoken: Union[str, bool, None] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecommit_message: Optional[str] = Nonecommit_description: Optional[str] = Nonecreate_pr: Optional[bool] = Noneparent_commit: Optional[str] = Nonerun_as_future: bool = False)CommitInfo orFuture

Parameters

  • path_or_fileobj (str,Path,bytes, orIO) —Path to a file on the local machine or binary data stream /fileobj / buffer.
  • path_in_repo (str) —Relative filepath in the repo, for example:"checkpoints/1fec34a/weights.bin"
  • repo_id (str) —The repository to which the file will be uploaded, for example:"username/custom_transformers"
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • commit_message (str,optional) —The summary / title / first line of the generated commit
  • commit_description (stroptional) —The description of the generated commit
  • create_pr (boolean,optional) —Whether or not to create a Pull Request with that commit. Defaults toFalse.Ifrevision is not set, PR is opened against the"main" branch. Ifrevision is set and is a branch, PR is opened against this branch. Ifrevision is set and is not a branch name (example: a commit oid), anRevisionNotFoundError is returned by the server.
  • parent_commit (str,optional) —The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.If specified andcreate_pr isFalse, the commit will fail ifrevision does not point toparent_commit.If specified andcreate_pr isTrue, the pull request will be created fromparent_commit.Specifyingparent_commit ensures the repo has not changed before committing the changes, and can beespecially useful if the repo is updated / committed to concurrently.
  • run_as_future (bool,optional) —Whether or not to run this method in the background. Background jobs are run sequentially withoutblocking the main thread. Passingrun_as_future=True will return aFutureobject. Defaults toFalse.

Returns

CommitInfo orFuture

Instance ofCommitInfo containing information about the newly created commit (commit hash, commiturl, pr url, commit message,…). Ifrun_as_future=True is passed, returns a Future object which willcontain the result when executed.

Upload a local file (up to 50 GB) to the given repo. The upload is donethrough a HTTP post request, and doesn’t require git or git-lfs to beinstalled.

Raises the following errors:

  • HTTPErrorif the HuggingFace API returned an error
  • ValueErrorif some parameter value is invalid
  • RepositoryNotFoundErrorIf the repository to download from cannot be found. This may be because it doesn’t exist,or because it is set toprivate and you do not have access.
  • RevisionNotFoundErrorIf the revision to download from cannot be found.

upload_file assumes that the repo already exists on the Hub. If you get aClient error 404, please make sure you are authenticated and thatrepo_id andrepo_type are set correctly. If repo does not exist, create it first usingcreate_repo().

Example:

>>>from huggingface_hubimport upload_file>>>withopen("./local/filepath","rb")as fobj:...    upload_file(...        path_or_fileobj=fileobj,...        path_in_repo="remote/file/path.h5",...        repo_id="username/my-dataset",...        repo_type="dataset",...        token="my_token",...    )>>>upload_file(...    path_or_fileobj=".\\local\\file\\path",...    path_in_repo="remote/file/path.h5",...    repo_id="username/my-model",...    token="my_token",...)>>>upload_file(...    path_or_fileobj=".\\local\\file\\path",...    path_in_repo="remote/file/path.h5",...    repo_id="username/my-model",...    token="my_token",...    create_pr=True,...)

upload_folder

<source>

(repo_id: strfolder_path: Union[str, Path]path_in_repo: Optional[str] = Nonecommit_message: Optional[str] = Nonecommit_description: Optional[str] = Nonetoken: Union[str, bool, None] = Nonerepo_type: Optional[str] = Nonerevision: Optional[str] = Nonecreate_pr: Optional[bool] = Noneparent_commit: Optional[str] = Noneallow_patterns: Optional[Union[list[str], str]] = Noneignore_patterns: Optional[Union[list[str], str]] = Nonedelete_patterns: Optional[Union[list[str], str]] = Nonerun_as_future: bool = False)CommitInfo orFuture

Parameters

  • repo_id (str) —The repository to which the file will be uploaded, for example:"username/custom_transformers"
  • folder_path (str orPath) —Path to the folder to upload on the local file system
  • path_in_repo (str,optional) —Relative path of the directory in the repo, for example:"checkpoints/1fec34a/results". Will default to the root folder of the repository.
  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • repo_type (str,optional) —Set to"dataset" or"space" if uploading to a dataset orspace,None or"model" if uploading to a model. Default isNone.
  • revision (str,optional) —The git revision to commit from. Defaults to the head of the"main" branch.
  • commit_message (str,optional) —The summary / title / first line of the generated commit. Defaults to:f"Upload {path_in_repo} with huggingface_hub"
  • commit_description (stroptional) —The description of the generated commit
  • create_pr (boolean,optional) —Whether or not to create a Pull Request with that commit. Defaults toFalse. Ifrevision is notset, PR is opened against the"main" branch. Ifrevision is set and is a branch, PR is openedagainst this branch. Ifrevision is set and is not a branch name (example: a commit oid), anRevisionNotFoundError is returned by the server.
  • parent_commit (str,optional) —The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.If specified andcreate_pr isFalse, the commit will fail ifrevision does not point toparent_commit.If specified andcreate_pr isTrue, the pull request will be created fromparent_commit.Specifyingparent_commit ensures the repo has not changed before committing the changes, and can beespecially useful if the repo is updated / committed to concurrently.
  • allow_patterns (list[str] orstr,optional) —If provided, only files matching at least one pattern are uploaded.
  • ignore_patterns (list[str] orstr,optional) —If provided, files matching any of the patterns are not uploaded.
  • delete_patterns (list[str] orstr,optional) —If provided, remote files matching any of the patterns will be deleted from the repo while committingnew files. This is useful if you don’t know which files have already been uploaded.Note: to avoid discrepancies the.gitattributes file is not deleted even if it matches the pattern.
  • run_as_future (bool,optional) —Whether or not to run this method in the background. Background jobs are run sequentially withoutblocking the main thread. Passingrun_as_future=True will return aFutureobject. Defaults toFalse.

Returns

CommitInfo orFuture

Instance ofCommitInfo containing information about the newly created commit (commit hash, commiturl, pr url, commit message,…). Ifrun_as_future=True is passed, returns a Future object which willcontain the result when executed.

Upload a local folder to the given repo. The upload is done through a HTTP requests, and doesn’t require git orgit-lfs to be installed.

The structure of the folder will be preserved. Files with the same name already present in the repository willbe overwritten. Others will be left untouched.

Use theallow_patterns andignore_patterns arguments to specify which files to upload. These parametersaccept either a single pattern or a list of patterns. Patterns are Standard Wildcards (globbing patterns) asdocumentedhere. If bothallow_patterns andignore_patterns are provided, both constraints apply. By default, all files from the folder are uploaded.

Use thedelete_patterns argument to specify remote files you want to delete. Input type is the same as forallow_patterns (see above). Ifpath_in_repo is also provided, the patterns are matched against pathsrelative to this folder. For example,upload_folder(..., path_in_repo="experiment", delete_patterns="logs/*")will delete any remote file under./experiment/logs/. Note that the.gitattributes file will not be deletedeven if it matches the patterns.

Any.git/ folder present in any subdirectory will be ignored. However, please be aware that the.gitignorefile is not taken into account.

UsesHfApi.create_commit under the hood.

Raises the following errors:

upload_folder assumes that the repo already exists on the Hub. If you get a Client error 404, please makesure you are authenticated and thatrepo_id andrepo_type are set correctly. If repo does not exist, createit first usingcreate_repo().

When dealing with a large folder (thousands of files or hundreds of GB), we recommend usingupload_large_folder() instead.

Example:

# Upload checkpoints folder except the log files>>>upload_folder(...    folder_path="local/checkpoints",...    path_in_repo="remote/experiment/checkpoints",...    repo_id="username/my-dataset",...    repo_type="datasets",...    token="my_token",...    ignore_patterns="**/logs/*.txt",...)# Upload checkpoints folder including logs while deleting existing logs from the repo# Useful if you don't know exactly which log files have already being pushed>>>upload_folder(...    folder_path="local/checkpoints",...    path_in_repo="remote/experiment/checkpoints",...    repo_id="username/my-dataset",...    repo_type="datasets",...    token="my_token",...    delete_patterns="**/logs/*.txt",...)# Upload checkpoints folder while creating a PR>>>upload_folder(...    folder_path="local/checkpoints",...    path_in_repo="remote/experiment/checkpoints",...    repo_id="username/my-dataset",...    repo_type="datasets",...    token="my_token",...    create_pr=True,...)

upload_large_folder

<source>

(repo_id: strfolder_path: Union[str, Path]repo_type: strrevision: Optional[str] = Noneprivate: Optional[bool] = Noneallow_patterns: Optional[Union[list[str], str]] = Noneignore_patterns: Optional[Union[list[str], str]] = Nonenum_workers: Optional[int] = Noneprint_report: bool = Trueprint_report_every: int = 60)

Parameters

  • repo_id (str) —The repository to which the file will be uploaded.E.g."HuggingFaceTB/smollm-corpus".
  • folder_path (str orPath) —Path to the folder to upload on the local file system.
  • repo_type (str) —Type of the repository. Must be one of"model","dataset" or"space".Unlike in all otherHfApi methods,repo_type is explicitly required here. This is to avoidany mistake when uploading a large folder to the Hub, and therefore prevent from having to re-uploadeverything.
  • revision (str,optional) —The branch to commit to. If not provided, themain branch will be used.
  • private (bool,optional) —Whether the repository should be private.IfNone (default), the repo will be public unless the organization’s default is private.
  • allow_patterns (list[str] orstr,optional) —If provided, only files matching at least one pattern are uploaded.
  • ignore_patterns (list[str] orstr,optional) —If provided, files matching any of the patterns are not uploaded.
  • num_workers (int,optional) —Number of workers to start. Defaults to half of CPU cores (minimum 1).A higher number of workers may speed up the process if your machine allows it. However, on machines with aslower connection, it is recommended to keep the number of workers low to ensure better resumability.Indeed, partially uploaded files will have to be completely re-uploaded if the process is interrupted.
  • print_report (bool,optional) —Whether to print a report of the upload progress. Defaults to True.Report is printed tosys.stdout every X seconds (60 by defaults) and overwrites the previous report.
  • print_report_every (int,optional) —Frequency at which the report is printed. Defaults to 60 seconds.

Upload a large folder to the Hub in the most resilient way possible.

Several workers are started to upload files in an optimized way. Before being committed to a repo, files must behashed and be pre-uploaded if they are LFS files. Workers will perform these tasks for each file in the folder.At each step, some metadata information about the upload process is saved in the folder under.cache/.huggingface/to be able to resume the process if interrupted. The whole process might result in several commits.

A few things to keep in mind:

  • Repository limits still apply:https://huggingface.co/docs/hub/repositories-recommendations
  • Do not start several processes in parallel.
  • You can interrupt and resume the process at any time.
  • Do not upload the same folder to several repositories. If you need to do so, you must delete the local.cache/.huggingface/ folder first.

While being much more robust to upload large folders,upload_large_folder is more limited thanupload_folder() feature-wise. In practice:

  • you cannot set a custompath_in_repo. If you want to upload to a subfolder, you need to set the proper structure locally.
  • you cannot set a customcommit_message andcommit_description since multiple commits are created.
  • you cannot delete from the repo while uploading. Please make a separate commit first.
  • you cannot create a PR directly. Please create a PR first (from the UI or usingcreate_pull_request()) and then commit to it by passingrevision.

Technical details:

upload_large_folder process is as follow:

  1. (Check parameters and setup.)
  2. Create repo if missing.
  3. List local files to upload.
  4. Run validation checks and display warnings if repository limits might be exceeded:
    • Warns if the total number of files exceeds 100k (recommended limit).
    • Warns if any folder contains more than 10k files (recommended limit).
    • Warns about files larger than 20GB (recommended) or 50GB (hard limit).
  5. Start workers. Workers can perform the following tasks:
    • Hash a file.
    • Get upload mode (regular or LFS) for a list of files.
    • Pre-upload an LFS file.
    • Commit a bunch of files.Once a worker finishes a task, it will move on to the next task based on the priority list (see below) untilall files are uploaded and committed.
  6. While workers are up, regularly print a report to sys.stdout.

Order of priority:

  1. Commit if more than 5 minutes since last commit attempt (and at least 1 file).
  2. Commit if at least 150 files are ready to commit.
  3. Get upload mode if at least 10 files have been hashed.
  4. Pre-upload LFS file if at least 1 file and no worker is pre-uploading.
  5. Hash file if at least 1 file and no worker is hashing.
  6. Get upload mode if at least 1 file and no worker is getting upload mode.
  7. Pre-upload LFS file if at least 1 file.
  8. Hash file if at least 1 file to hash.
  9. Get upload mode if at least 1 file to get upload mode.
  10. Commit if at least 1 file to commit and at least 1 min since last commit attempt.
  11. Commit if at least 1 file to commit and all other queues are empty.

Special rules:

  • Only one worker can commit at a time.
  • If no tasks are available, the worker waits for 10 seconds before checking again.

verify_repo_checksums

<source>

(repo_id: strrepo_type: Optional[str] = Nonerevision: Optional[str] = Nonelocal_dir: Optional[Union[str, Path]] = Nonecache_dir: Optional[Union[str, Path]] = Nonetoken: Union[str, bool, None] = None)FolderVerification

Parameters

  • repo_id (str) —A namespace (user or an organization) and a repo name separated by a/.
  • repo_type (str,optional) —The type of the repository from which to get the tree ("model","dataset" or"space".Defaults to"model".
  • revision (str,optional) —The revision of the repository from which to get the tree. Defaults to"main" branch.
  • local_dir (str orPath,optional) —The local directory to verify.
  • cache_dir (str orPath,optional) —The cache directory to verify.
  • token (Union[bool, str, None], optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.

Returns

FolderVerification

a structured result containing the verification details.

Verify local files for a repo against Hub checksums.

whoami

<source>

(token: Union[bool, str, None] = Nonecache: bool = False)

Parameters

  • token (bool orstr,optional) —A valid user access token (string). Defaults to the locally savedtoken, which is the recommended method for authentication (seehttps://huggingface.co/docs/huggingface_hub/quick-start#authentication).To disable authentication, passFalse.
  • cache (bool,optional) —Whether to cache the result of thewhoami call for subsequent calls.If an error occurs during the first call, it won’t be cached.Defaults toFalse.

Call HF API to know “whoami”.

If passingcache=True, the result will be cached for subsequent calls for the duration of the Python process. This is useful if you plan to callwhoami multiple times as this endpoint is heavily rate-limited for security reasons.

API Dataclasses

AccessRequest

classhuggingface_hub.hf_api.AccessRequest

<source>

(username: strfullname: stremail: Optional[str]timestamp: datetimestatus: Literal['pending', 'accepted', 'rejected']fields: Optional[dict[str, Any]] = None)

Parameters

  • username (str) —Username of the user who requested access.
  • fullname (str) —Fullname of the user who requested access.
  • email (Optional[str]) —Email of the user who requested access.Can only beNone in the /accepted list if the user was granted access manually.
  • timestamp (datetime) —Timestamp of the request.
  • status (Literal["pending", "accepted", "rejected"]) —Status of the request. Can be one of["pending", "accepted", "rejected"].
  • fields (dict[str, Any],optional) —Additional fields filled by the user in the gate form.

Data structure containing information about a user access request.

CommitInfo

classhuggingface_hub.CommitInfo

<source>

(*argscommit_url: str**kwargs)

Parameters

  • commit_url (str) —Url where to find the commit.
  • commit_message (str) —The summary (first line) of the commit that has been created.
  • commit_description (str) —Description of the commit that has been created. Can be empty.
  • oid (str) —Commit hash id. Example:"91c54ad1727ee830252e457677f467be0bfd8a57".
  • pr_url (str,optional) —Url to the PR that has been created, if any. Populated whencreate_pr=Trueis passed.
  • pr_revision (str,optional) —Revision of the PR that has been created, if any. Populated whencreate_pr=True is passed. Example:"refs/pr/1".
  • pr_num (int,optional) —Number of the PR discussion that has been created, if any. Populated whencreate_pr=True is passed. Can be passed asdiscussion_num inget_discussion_details(). Example:1.
  • repo_url (RepoUrl) —Repo URL of the commit containing info like repo_id, repo_type, etc.

Data structure containing information about a newly created commit.

Returned by any method that creates a commit on the Hub:create_commit(),upload_file(),upload_folder(),delete_file(),delete_folder(). It inherits fromstr for backward compatibility but using methods specifictostr is deprecated.

DatasetInfo

classhuggingface_hub.DatasetInfo

<source>

(**kwargs)

Parameters

  • id (str) —ID of dataset.
  • author (str) —Author of the dataset.
  • sha (str) —Repo SHA at this particular revision.
  • created_at (datetime,optional) —Date of creation of the repo on the Hub. Note that the lowest value is2022-03-02T23:29:04.000Z,corresponding to the date when we began to store creation dates.
  • last_modified (datetime,optional) —Date of last commit to the repo.
  • private (bool) —Is the repo private.
  • disabled (bool,optional) —Is the repo disabled.
  • gated (Literal["auto", "manual", False],optional) —Is the repo gated.If so, whether there is manual or automatic approval.
  • downloads (int) —Number of downloads of the dataset over the last 30 days.
  • downloads_all_time (int) —Cumulated number of downloads of the model since its creation.
  • likes (int) —Number of likes of the dataset.
  • tags (list[str]) —List of tags of the dataset.
  • card_data (DatasetCardData,optional) —Model Card Metadata as ahuggingface_hub.repocard_data.DatasetCardData object.
  • siblings (list[RepoSibling]) —List ofhuggingface_hub.hf_api.RepoSibling objects that constitute the dataset.
  • paperswithcode_id (str,optional) —Papers with code ID of the dataset.
  • trending_score (int,optional) —Trending score of the dataset.

Contains information about a dataset on the Hub. This object is returned bydataset_info() andlist_datasets().

Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made.In general, the more specific the query, the more information is returned. On the contrary, when listing datasetsusinglist_datasets() only a subset of the attributes are returned.

DryRunFileInfo

classhuggingface_hub.DryRunFileInfo

<source>

(commit_hash: strfile_size: intfilename: strlocal_path: stris_cached: boolwill_download: bool)

Parameters

  • commit_hash (str) —The commit_hash related to the file.
  • file_size (int) —Size of the file. In case of an LFS file, contains the size of the actual LFS file, not the pointer.
  • filename (str) —Name of the file in the repo.
  • is_cached (bool) —Whether the file is already cached locally.
  • will_download (bool) —Whether the file will be downloaded ifhf_hub_download is called withdry_run=False.In practice, will_download isTrue if the file is not cached or ifforce_download=True.

Information returned when performing a dry run of a file download.

Returned byhf_hub_download() whendry_run=True.

GitRefInfo

classhuggingface_hub.GitRefInfo

<source>

(name: strref: strtarget_commit: str)

Parameters

  • name (str) —Name of the reference (e.g. tag name or branch name).
  • ref (str) —Full git ref on the Hub (e.g."refs/heads/main" or"refs/tags/v1.0").
  • target_commit (str) —OID of the target commit for the ref (e.g."e7da7f221d5bf496a48136c0cd264e630fe9fcc8")

Contains information about a git reference for a repo on the Hub.

GitCommitInfo

classhuggingface_hub.GitCommitInfo

<source>

(commit_id: strauthors: list[str]created_at: datetimetitle: strmessage: strformatted_title: Optional[str]formatted_message: Optional[str])

Parameters

  • commit_id (str) —OID of the commit (e.g."e7da7f221d5bf496a48136c0cd264e630fe9fcc8")
  • authors (list[str]) —List of authors of the commit.
  • created_at (datetime) —Datetime when the commit was created.
  • title (str) —Title of the commit. This is a free-text value entered by the authors.
  • message (str) —Description of the commit. This is a free-text value entered by the authors.
  • formatted_title (str) —Title of the commit formatted as HTML. Only returned ifformatted=True is set.
  • formatted_message (str) —Description of the commit formatted as HTML. Only returned ifformatted=True is set.

Contains information about a git commit for a repo on the Hub. Check outlist_repo_commits() for more details.

GitRefs

classhuggingface_hub.GitRefs

<source>

(branches: list[GitRefInfo]converts: list[GitRefInfo]tags: list[GitRefInfo]pull_requests: Optional[list[GitRefInfo]] = None)

Parameters

  • branches (list[GitRefInfo]) —A list ofGitRefInfo containing information about branches on the repo.
  • converts (list[GitRefInfo]) —A list ofGitRefInfo containing information about “convert” refs on the repo.Converts are refs used (internally) to push preprocessed data in Dataset repos.
  • tags (list[GitRefInfo]) —A list ofGitRefInfo containing information about tags on the repo.
  • pull_requests (list[GitRefInfo],optional) —A list ofGitRefInfo containing information about pull requests on the repo.Only returned ifinclude_prs=True is set.

Contains information about all git references for a repo on the Hub.

Object is returned bylist_repo_refs().

InferenceProviderMapping

classhuggingface_hub.hf_api.InferenceProviderMapping

<source>

(**kwargs)

LFSFileInfo

classhuggingface_hub.hf_api.LFSFileInfo

<source>

(**kwargs)

Parameters

  • file_oid (str) —SHA-256 object ID of the file. This is the identifier to pass when permanently deleting the file.
  • filename (str) —Possible filename for the LFS object. See the note above for more information.
  • oid (str) —OID of the LFS object.
  • pushed_at (datetime) —Date the LFS object was pushed to the repo.
  • ref (str,optional) —Ref where the LFS object has been pushed (if any).
  • size (int) —Size of the LFS object.

Contains information about a file stored as LFS on a repo on the Hub.

Used in the context of listing and permanently deleting LFS files from a repo to free-up space.Seelist_lfs_files() andpermanently_delete_lfs_files() for more details.

Git LFS files are tracked using SHA-256 object IDs, rather than file paths, to optimize performanceThis approach is necessary because a single object can be referenced by multiple paths across different commits,making it impractical to search and resolve these connections. Check outour documentationto learn how to know which filename(s) is(are) associated with each SHA.

Example:

>>>from huggingface_hubimport HfApi>>>api = HfApi()>>>lfs_files = api.list_lfs_files("username/my-cool-repo")# Filter files files to delete based on a combination of `filename`, `pushed_at`, `ref` or `size`.# e.g. select only LFS files in the "checkpoints" folder>>>lfs_files_to_delete = (lfs_filefor lfs_filein lfs_filesif lfs_file.filename.startswith("checkpoints/"))# Permanently delete LFS files>>>api.permanently_delete_lfs_files("username/my-cool-repo", lfs_files_to_delete)

ModelInfo

classhuggingface_hub.ModelInfo

<source>

(**kwargs)

Parameters

  • id (str) —ID of model.
  • author (str,optional) —Author of the model.
  • sha (str,optional) —Repo SHA at this particular revision.
  • created_at (datetime,optional) —Date of creation of the repo on the Hub. Note that the lowest value is2022-03-02T23:29:04.000Z,corresponding to the date when we began to store creation dates.
  • last_modified (datetime,optional) —Date of last commit to the repo.
  • private (bool) —Is the repo private.
  • disabled (bool,optional) —Is the repo disabled.
  • downloads (int) —Number of downloads of the model over the last 30 days.
  • downloads_all_time (int) —Cumulated number of downloads of the model since its creation.
  • gated (Literal["auto", "manual", False],optional) —Is the repo gated.If so, whether there is manual or automatic approval.
  • gguf (dict,optional) —GGUF information of the model.
  • inference (Literal["warm"],optional) —Status of the model on Inference Providers. Warm if the model is served by at least one provider.
  • inference_provider_mapping (list[InferenceProviderMapping],optional) —A list ofInferenceProviderMapping ordered after the user’s provider order.
  • likes (int) —Number of likes of the model.
  • library_name (str,optional) —Library associated with the model.
  • tags (list[str]) —List of tags of the model. Compared tocard_data.tags, contains extra tags computed by the Hub(e.g. supported libraries, model’s arXiv).
  • pipeline_tag (str,optional) —Pipeline tag associated with the model.
  • mask_token (str,optional) —Mask token used by the model.
  • widget_data (Any,optional) —Widget data associated with the model.
  • model_index (dict,optional) —Model index for evaluation.
  • config (dict,optional) —Model configuration.
  • transformers_info (TransformersInfo,optional) —Transformers-specific info (auto class, processor, etc.) associated with the model.
  • trending_score (int,optional) —Trending score of the model.
  • card_data (ModelCardData,optional) —Model Card Metadata as ahuggingface_hub.repocard_data.ModelCardData object.
  • siblings (list[RepoSibling]) —List ofhuggingface_hub.hf_api.RepoSibling objects that constitute the model.
  • spaces (list[str],optional) —List of spaces using the model.
  • safetensors (SafeTensorsInfo,optional) —Model’s safetensors information.
  • security_repo_status (dict,optional) —Model’s security scan status.
  • eval_results (list[EvalResultEntry],optional) —Model’s evaluation results.

Contains information about a model on the Hub. This object is returned bymodel_info() andlist_models().

Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made.In general, the more specific the query, the more information is returned. On the contrary, when listing modelsusinglist_models() only a subset of the attributes are returned.

RepoSibling

classhuggingface_hub.hf_api.RepoSibling

<source>

(rfilename: strsize: Optional[int] = Noneblob_id: Optional[str] = Nonelfs: Optional[BlobLfsInfo] = None)

Parameters

  • rfilename (str) —file name, relative to the repo root.
  • size (int,optional) —The file’s size, in bytes. This attribute is defined whenfiles_metadata argument ofrepo_info() is settoTrue. It’sNone otherwise.
  • blob_id (str,optional) —The file’s git OID. This attribute is defined whenfiles_metadata argument ofrepo_info() is set toTrue. It’sNone otherwise.
  • lfs (BlobLfsInfo,optional) —The file’s LFS metadata. This attribute is defined whenfiles_metadata argument ofrepo_info() is set toTrue and the file is stored with Git LFS. It’sNone otherwise.

Contains basic information about a repo file inside a repo on the Hub.

All attributes of this class are optional exceptrfilename. This is because only the file names are returned whenlisting repositories on the Hub (withlist_models(),list_datasets() orlist_spaces()). If you need moreinformation like file size, blob id or lfs details, you must request them specifically from one repo at a time(usingmodel_info(),dataset_info() orspace_info()) as it adds more constraints on the backend server toretrieve these.

RepoFile

classhuggingface_hub.RepoFile

<source>

(**kwargs)

Parameters

  • path (str) —file path relative to the repo root.
  • size (int) —The file’s size, in bytes.
  • blob_id (str) —The file’s git OID.
  • lfs (BlobLfsInfo,optional) —The file’s LFS metadata.
  • last_commit (LastCommitInfo,optional) —The file’s last commit metadata. Only defined iflist_repo_tree() andget_paths_info()are called withexpand=True.
  • security (BlobSecurityInfo,optional) —The file’s security scan metadata. Only defined iflist_repo_tree() andget_paths_info()are called withexpand=True.

Contains information about a file on the Hub.

RepoUrl

classhuggingface_hub.RepoUrl

<source>

(url: Anyendpoint: Optional[str] = None)

Parameters

  • url (Any) —String value of the repo url.
  • endpoint (str,optional) —Endpoint of the Hub. Defaults tohttps://huggingface.co.

Raises

ValueError

Subclass ofstr describing a repo URL on the Hub.

RepoUrl is returned byHfApi.create_repo. It inherits fromstr for backwardcompatibility. At initialization, the URL is parsed to populate properties:

  • endpoint (str)
  • namespace (Optional[str])
  • repo_name (str)
  • repo_id (str)
  • repo_type (Literal["model", "dataset", "space"])
  • url (str)

Example:

>>>RepoUrl('https://huggingface.co/gpt2')RepoUrl('https://huggingface.co/gpt2', endpoint='https://huggingface.co', repo_type='model', repo_id='gpt2')>>>RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co')RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co', repo_type='dataset', repo_id='dummy_user/dummy_dataset')>>>RepoUrl('hf://datasets/my-user/my-dataset')RepoUrl('hf://datasets/my-user/my-dataset', endpoint='https://huggingface.co', repo_type='dataset', repo_id='user/dataset')>>>HfApi.create_repo("dummy_model")RepoUrl('https://huggingface.co/Wauplin/dummy_model', endpoint='https://huggingface.co', repo_type='model', repo_id='Wauplin/dummy_model')

SafetensorsRepoMetadata

classhuggingface_hub.utils.SafetensorsRepoMetadata

<source>

(metadata: typing.Optional[dict]sharded: boolweight_map: dictfiles_metadata: dict)

Parameters

  • metadata (dict,optional) —The metadata contained in the ‘model.safetensors.index.json’ file, if it exists. Only populated for shardedmodels.
  • sharded (bool) —Whether the repo contains a sharded model or not.
  • weight_map (dict[str, str]) —A map of all weights. Keys are tensor names and values are filenames of the files containing the tensors.
  • files_metadata (dict[str, SafetensorsFileMetadata]) —A map of all files metadata. Keys are filenames and values are the metadata of the corresponding file, asaSafetensorsFileMetadata object.
  • parameter_count (dict[str, int]) —A map of the number of parameters per data type. Keys are data types and values are the number of parametersof that data type.

Metadata for a Safetensors repo.

A repo is considered to be a Safetensors repo if it contains either a ‘model.safetensors’ weight file (non-sharedmodel) or a ‘model.safetensors.index.json’ index file (sharded model) at its root.

This class is returned byget_safetensors_metadata().

For more details regarding the safetensors format, check outhttps://huggingface.co/docs/safetensors/index#format.

SafetensorsFileMetadata

classhuggingface_hub.utils.SafetensorsFileMetadata

<source>

(metadata: dicttensors: dict)

Parameters

  • metadata (dict) —The metadata contained in the file.
  • tensors (dict[str, TensorInfo]) —A map of all tensors. Keys are tensor names and values are information about the corresponding tensor, as aTensorInfo object.
  • parameter_count (dict[str, int]) —A map of the number of parameters per data type. Keys are data types and values are the number of parametersof that data type.

Metadata for a Safetensors file hosted on the Hub.

This class is returned byparse_safetensors_file_metadata().

For more details regarding the safetensors format, check outhttps://huggingface.co/docs/safetensors/index#format.

SpaceInfo

classhuggingface_hub.SpaceInfo

<source>

(**kwargs)

Parameters

  • id (str) —ID of the Space.
  • author (str,optional) —Author of the Space.
  • sha (str,optional) —Repo SHA at this particular revision.
  • created_at (datetime,optional) —Date of creation of the repo on the Hub. Note that the lowest value is2022-03-02T23:29:04.000Z,corresponding to the date when we began to store creation dates.
  • last_modified (datetime,optional) —Date of last commit to the repo.
  • private (bool) —Is the repo private.
  • gated (Literal["auto", "manual", False],optional) —Is the repo gated.If so, whether there is manual or automatic approval.
  • disabled (bool,optional) —Is the Space disabled.
  • host (str,optional) —Host URL of the Space.
  • subdomain (str,optional) —Subdomain of the Space.
  • likes (int) —Number of likes of the Space.
  • tags (list[str]) —List of tags of the Space.
  • siblings (list[RepoSibling]) —List ofhuggingface_hub.hf_api.RepoSibling objects that constitute the Space.
  • card_data (SpaceCardData,optional) —Space Card Metadata as ahuggingface_hub.repocard_data.SpaceCardData object.
  • runtime (SpaceRuntime,optional) —Space runtime information as ahuggingface_hub.hf_api.SpaceRuntime object.
  • sdk (str,optional) —SDK used by the Space.
  • models (list[str],optional) —List of models used by the Space.
  • datasets (list[str],optional) —List of datasets used by the Space.
  • trending_score (int,optional) —Trending score of the Space.

Contains information about a Space on the Hub. This object is returned byspace_info() andlist_spaces().

Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made.In general, the more specific the query, the more information is returned. On the contrary, when listing spacesusinglist_spaces() only a subset of the attributes are returned.

TensorInfo

classhuggingface_hub.utils.TensorInfo

<source>

(dtype: typing.Literal['F64', 'F32', 'F16', 'BF16', 'I64', 'I32', 'I16', 'I8', 'U8', 'BOOL']shape: listdata_offsets: tuple)

Parameters

  • dtype (str) —The data type of the tensor (“F64”, “F32”, “F16”, “BF16”, “I64”, “I32”, “I16”, “I8”, “U8”, “BOOL”).
  • shape (list[int]) —The shape of the tensor.
  • data_offsets (tuple[int, int]) —The offsets of the data in the file as a tuple[BEGIN, END].
  • parameter_count (int) —The number of parameters in the tensor.

Information about a tensor.

For more details regarding the safetensors format, check outhttps://huggingface.co/docs/safetensors/index#format.

User

classhuggingface_hub.User

<source>

(**kwargs)

Parameters

  • username (str) —Name of the user on the Hub (unique).
  • fullname (str) —User’s full name.
  • avatar_url (str) —URL of the user’s avatar.
  • details (str,optional) —User’s details.
  • is_following (bool,optional) —Whether the authenticated user is following this user.
  • is_pro (bool,optional) —Whether the user is a pro user.
  • num_models (int,optional) —Number of models created by the user.
  • num_datasets (int,optional) —Number of datasets created by the user.
  • num_spaces (int,optional) —Number of spaces created by the user.
  • num_discussions (int,optional) —Number of discussions initiated by the user.
  • num_papers (int,optional) —Number of papers authored by the user.
  • num_upvotes (int,optional) —Number of upvotes received by the user.
  • num_likes (int,optional) —Number of likes given by the user.
  • num_following (int,optional) —Number of users this user is following.
  • num_followers (int,optional) —Number of users following this user.
  • orgs (list ofOrganization) —List of organizations the user is part of.

Contains information about a user on the Hub.

UserLikes

classhuggingface_hub.UserLikes

<source>

(user: strtotal: intdatasets: list[str]models: list[str]spaces: list[str])

Parameters

  • user (str) —Name of the user for which we fetched the likes.
  • total (int) —Total number of likes.
  • datasets (list[str]) —List of datasets liked by the user (as repo_ids).
  • models (list[str]) —List of models liked by the user (as repo_ids).
  • spaces (list[str]) —List of spaces liked by the user (as repo_ids).

Contains information about a user likes on the Hub.

WebhookInfo

classhuggingface_hub.WebhookInfo

<source>

(id: strurl: Optional[str]job: Optional[JobSpec]watched: list[WebhookWatchedItem]domains: list[constants.WEBHOOK_DOMAIN_T]secret: Optional[str]disabled: bool)

Parameters

  • id (str) —ID of the webhook.
  • url (str,optional) —URL of the webhook.
  • job (JobSpec,optional) —Specifications of the Job to trigger.
  • watched (list[WebhookWatchedItem]) —List of items watched by the webhook, seeWebhookWatchedItem.
  • domains (list[WEBHOOK_DOMAIN_T]) —List of domains the webhook is watching. Can be one of["repo", "discussions"].
  • secret (str,optional) —Secret of the webhook.
  • disabled (bool) —Whether the webhook is disabled or not.

Data structure containing information about a webhook.

One ofurl orjob is specified, but not both.

WebhookWatchedItem

classhuggingface_hub.WebhookWatchedItem

<source>

(type: Literal['dataset', 'model', 'org', 'space', 'user']name: str)

Parameters

  • type (Literal["dataset", "model", "org", "space", "user"]) —Type of the item to be watched. Can be one of["dataset", "model", "org", "space", "user"].
  • name (str) —Name of the item to be watched. Can be the username, organization name, model name, dataset name or space name.

Data structure containing information about the items watched by a webhook.

CommitOperation

Below are the supported values forCommitOperation():

classhuggingface_hub.CommitOperationAdd

<source>

(path_in_repo: strpath_or_fileobj: typing.Union[str, pathlib.Path, bytes, typing.BinaryIO])

Parameters

  • path_in_repo (str) —Relative filepath in the repo, for example:"checkpoints/1fec34a/weights.bin"
  • path_or_fileobj (str,Path,bytes, orBinaryIO) —Either:
    • a path to a local file (asstr orpathlib.Path) to upload
    • a buffer of bytes (bytes) holding the content of the file to upload
    • a “file object” (subclass ofio.BufferedIOBase), typically obtainedwithopen(path, "rb"). It must supportseek() andtell() methods.

Raises

ValueError

  • ValueError —Ifpath_or_fileobj is not one ofstr,Path,bytes orio.BufferedIOBase.
  • ValueError —Ifpath_or_fileobj is astr orPath but not a path to an existing file.
  • ValueError —Ifpath_or_fileobj is aio.BufferedIOBase but it doesn’t support bothseek() andtell().

Data structure holding necessary info to upload a file to a repository on the Hub.

as_file

<source>

(with_tqdm: bool = False)

Parameters

  • with_tqdm (bool,optional, defaults toFalse) —If True, iterating over the file object will display a progress bar. Onlyworks if the file-like object is a path to a file. Pure bytes and buffersare not supported.

A context manager that yields a file-like object allowing to read the underlyingdata behindpath_or_fileobj.

Example:

>>>operation = CommitOperationAdd(...       path_in_repo="remote/dir/weights.h5",...       path_or_fileobj="./local/weights.h5",...)CommitOperationAdd(path_in_repo='remote/dir/weights.h5', path_or_fileobj='./local/weights.h5')>>>with operation.as_file()as file:...    content = file.read()>>>with operation.as_file(with_tqdm=True)as file:...whileTrue:...        data = file.read(1024)...ifnot data:...breakconfig.json:100%|█████████████████████████|8.19k/8.19k [00:02<00:00,3.72kB/s]>>>with operation.as_file(with_tqdm=True)as file:...    httpx.put(..., data=file)config.json:100%|█████████████████████████|8.19k/8.19k [00:02<00:00,3.72kB/s]

b64content

<source>

()

The base64-encoded content ofpath_or_fileobj

Returns:bytes

classhuggingface_hub.CommitOperationDelete

<source>

(path_in_repo: stris_folder: typing.Union[bool, typing.Literal['auto']] = 'auto')

Parameters

  • path_in_repo (str) —Relative filepath in the repo, for example:"checkpoints/1fec34a/weights.bin"for a file or"checkpoints/1fec34a/" for a folder.
  • is_folder (bool orLiteral["auto"],optional) —Whether the Delete Operation applies to a folder or not. If “auto”, the pathtype (file or folder) is guessed automatically by looking if path ends witha ”/” (folder) or not (file). To explicitly set the path type, you can setis_folder=True oris_folder=False.

Data structure holding necessary info to delete a file or a folder from a repositoryon the Hub.

classhuggingface_hub.CommitOperationCopy

<source>

(src_path_in_repo: strpath_in_repo: strsrc_revision: typing.Optional[str] = None_src_oid: typing.Optional[str] = None_dest_oid: typing.Optional[str] = None)

Parameters

  • src_path_in_repo (str) —Relative filepath in the repo of the file to be copied, e.g."checkpoints/1fec34a/weights.bin".
  • path_in_repo (str) —Relative filepath in the repo where to copy the file, e.g."checkpoints/1fec34a/weights_copy.bin".
  • src_revision (str,optional) —The git revision of the file to be copied. Can be any valid git revision.Default to the target commit revision.

Data structure holding necessary info to copy a file in a repository on the Hub.

Limitations:

  • Only LFS files can be copied. To copy a regular file, you need to download it locally and re-upload it
  • Cross-repository copies are not supported.

Note: you can combine aCommitOperationCopy and aCommitOperationDelete to rename an LFS file on the Hub.

CommitScheduler

classhuggingface_hub.CommitScheduler

<source>

(repo_id: strfolder_path: typing.Union[str, pathlib.Path]every: typing.Union[int, float] = 5path_in_repo: typing.Optional[str] = Nonerepo_type: typing.Optional[str] = Nonerevision: typing.Optional[str] = Noneprivate: typing.Optional[bool] = Nonetoken: typing.Optional[str] = Noneallow_patterns: typing.Union[list[str], str, NoneType] = Noneignore_patterns: typing.Union[list[str], str, NoneType] = Nonesquash_history: bool = Falsehf_api: typing.Optional[ForwardRef('HfApi')] = None)

Parameters

  • repo_id (str) —The id of the repo to commit to.
  • folder_path (str orPath) —Path to the local folder to upload regularly.
  • every (int orfloat,optional) —The number of minutes between each commit. Defaults to 5 minutes.
  • path_in_repo (str,optional) —Relative path of the directory in the repo, for example:"checkpoints/". Defaults to the root folderof the repository.
  • repo_type (str,optional) —The type of the repo to commit to. Defaults tomodel.
  • revision (str,optional) —The revision of the repo to commit to. Defaults tomain.
  • private (bool,optional) —Whether to make the repo private. IfNone (default), the repo will be public unless the organization’s default is private. This value is ignored if the repo already exists.
  • token (str,optional) —The token to use to commit to the repo. Defaults to the token saved on the machine.
  • allow_patterns (list[str] orstr,optional) —If provided, only files matching at least one pattern are uploaded.
  • ignore_patterns (list[str] orstr,optional) —If provided, files matching any of the patterns are not uploaded.
  • squash_history (bool,optional) —Whether to squash the history of the repo after each commit. Defaults toFalse. Squashing commits isuseful to avoid degraded performances on the repo when it grows too large.
  • hf_api (HfApi,optional) —TheHfApi client to use to commit to the Hub. Can be set with custom settings (user agent, token,…).

Scheduler to upload a local folder to the Hub at regular intervals (e.g. push to hub every 5 minutes).

The recommended way to use the scheduler is to use it as a context manager. This ensures that the scheduler isproperly stopped and the last commit is triggered when the script ends. The scheduler can also be stopped manuallywith thestop method. Checkout theupload guideto learn more about how to use it.

Example:

>>>from pathlibimport Path>>>from huggingface_hubimport CommitScheduler# Scheduler uploads every 10 minutes>>>csv_path = Path("watched_folder/data.csv")>>>CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path=csv_path.parent, every=10)>>>with csv_path.open("a")as f:...    f.write("first line")# Some time later (...)>>>with csv_path.open("a")as f:...    f.write("second line")

Example using a context manager:

>>>from pathlibimport Path>>>from huggingface_hubimport CommitScheduler>>>with CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path="watched_folder", every=10)as scheduler:...    csv_path = Path("watched_folder/data.csv")...with csv_path.open("a")as f:...        f.write("first line")...    (...)...with csv_path.open("a")as f:...        f.write("second line")# Scheduler is now stopped and last commit have been triggered

push_to_hub

<source>

()

Push folder to the Hub and return the commit info.

This method is not meant to be called directly. It is run in the background by the scheduler, respecting aqueue mechanism to avoid concurrent commits. Making a direct call to the method might lead to concurrencyissues.

The default behavior ofpush_to_hub is to assume an append-only folder. It lists all files in the folder anduploads only changed files. If no changes are found, the method returns without committing anything. If you wantto change this behavior, you can inherit fromCommitScheduler and override this method. This can be usefulfor example to compress data together in a single file before committing. For more details and examples, checkout ourintegration guide.

stop

<source>

()

Stop the scheduler.

A stopped scheduler cannot be restarted. Mostly for tests purposes.

trigger

<source>

()

Trigger apush_to_hub and return a future.

This method is automatically called everyevery minutes. You can also call it manually to trigger a commitimmediately, without waiting for the next scheduled commit.

Update on GitHub


[8]ページ先頭

©2009-2026 Movatter.jp