| import os |
| import json |
| from argparseimport ArgumentParser |
| from globimport glob |
| from tqdmimport tqdm |
| |
| import torch |
| from safetensors.torchimport load_file, save_file |
| |
| from kernelimport weight_dequant |
| |
| defmain(fp8_path, bf16_path): |
| torch.set_default_dtype(torch.bfloat16) |
| os.makedirs(bf16_path, exist_ok=True) |
| model_index_file = os.path.join(fp8_path,"model.safetensors.index.json") |
| withopen(model_index_file,"r")as f: |
| model_index = json.load(f) |
| weight_map = model_index["weight_map"] |
| |
| # Cache for loaded safetensor files |
| loaded_files = {} |
| fp8_weight_names = [] |
| |
| # Helper function to get tensor from the correct file |
| defget_tensor(tensor_name): |
| file_name = weight_map[tensor_name] |
| if file_namenotin loaded_files: |
| file_path = os.path.join(fp8_path, file_name) |
| loaded_files[file_name] = load_file(file_path, device="cuda") |
| return loaded_files[file_name][tensor_name] |
| |
| safetensor_files =list(glob(os.path.join(fp8_path,"*.safetensors"))) |
| safetensor_files.sort() |
| for safetensor_filein tqdm(safetensor_files): |
| file_name = os.path.basename(safetensor_file) |
| current_state_dict = load_file(safetensor_file, device="cuda") |
| loaded_files[file_name] = current_state_dict |
| |
| new_state_dict = {} |
| for weight_name, weightin current_state_dict.items(): |
| if weight_name.endswith("_scale_inv"): |
| continue |
| elif weight.element_size() ==1:# FP8 weight |
| scale_inv_name =f"{weight_name}_scale_inv" |
| try: |
| # Get scale_inv from the correct file |
| scale_inv = get_tensor(scale_inv_name) |
| fp8_weight_names.append(weight_name) |
| new_state_dict[weight_name] = weight_dequant(weight, scale_inv) |
| except KeyError: |
| print(f"Warning: Missing scale_inv tensor for{weight_name}, skipping conversion") |
| new_state_dict[weight_name] = weight |
| else: |
| new_state_dict[weight_name] = weight |
| |
| new_safetensor_file = os.path.join(bf16_path, file_name) |
| save_file(new_state_dict, new_safetensor_file) |
| |
| # Memory management: keep only the 2 most recently used files |
| iflen(loaded_files) >2: |
| oldest_file =next(iter(loaded_files)) |
| del loaded_files[oldest_file] |
| torch.cuda.empty_cache() |
| |
| # Update model index |
| new_model_index_file = os.path.join(bf16_path,"model.safetensors.index.json") |
| for weight_namein fp8_weight_names: |
| scale_inv_name =f"{weight_name}_scale_inv" |
| if scale_inv_namein weight_map: |
| weight_map.pop(scale_inv_name) |
| withopen(new_model_index_file,"w")as f: |
| json.dump({"metadata": {},"weight_map": weight_map}, f, indent=2) |
| |
| |
| if __name__ =="__main__": |
| parser = ArgumentParser() |
| parser.add_argument("--input-fp8-hf-path",type=str, required=True) |
| parser.add_argument("--output-bf16-hf-path",type=str, required=True) |
| args = parser.parse_args() |
| main(args.input_fp8_hf_path, args.output_bf16_hf_path) |
| |
| |