Ez a szócikk vagy szakaszlektorálásra, tartalmi javításokra szorul.A felmerült kifogásokata szócikk vitalapja részletezi (vagy extrém esetben a szócikk szövegében elhelyezett, kikommentelt szövegrészek).Ha nincs indoklás a vitalapon (vagy szerkesztési módban a szövegközben), bátran távolítsd el a sablont! Csak akkor tedd a lap tetejére ezt a sablont, ha az egész cikk megszövegezése hibás. Ha nem, az adott szakaszba tedd, így segítve a lektorok munkáját!
A berkeley-i tudóscsoport javasolt aseaborgium (Sg) nevet,Glenn T. Seaborg amerikai kémikus, a csoport tagjának tiszteletére, aki számos más aktinoida felfedezésében is közreműködött. A csoport által választott név viták tárgyává vált. AIUPAC ideiglenesen az unnilhexium szisztematikus nevet fogadta el. 1994-ben a IUPAC egyik bizottsága a 106-os elem nevére arutherfordium-ot javasolta, és elfogadta azt a szabályt, hogy élő személyről nem lehet elemet elnevezni.[2] Ezt a szabályt azAmerican Chemical Society hevesen támadta. Kritikájukban rámutattak, hogy azeinsteiniumAlbert Einstein életében történő elnevezésével már precedenst teremtettek, és egy tanulmány szerint a kémikusokat nem zavarta, hogy Seaborg még életben volt. 1997-ben a 104–108-as elemekhez kapcsolódó kompromisszum részeként a 106-os elemseaborgium nevét nemzetközileg elismerték.[3]
A 106-os elem az előrejelzések szerint a 6d átmenetifém sorozat harmadik tagja és a periódusos rendszer 6. csoportjának legnehezebb tagja, akróm,molibdén ésvolfrám alatt helyezkedik el. A csoport mindegyik tagja könnyen felveszi a +6-os oxidációs számot, mely a csoportban lefelé haladva egyre stabilabbá válik. A sziborgium esetén a +6-os oxidációs állapotot stabilnak tételezik fel. A csoportban nehezebb elemeinél a stabil +5 és +4 oxidációs szám is jól ismert, míg +3-as oxidációs állapotban a króm(III) kivételével redukálnak.
A sziborgium kémiai viselkedését nagyrészt a felette található molibdén és volfrám tulajdonságainak extrapolálásával jósolják meg. A molibdén és volfrám könnyen képez stabil MO3 trioxidot, így a sziborgiumból várhatóan SgO3 keletkezik. Az MO3 oxidokoxoanionok képződése közben oldódnak lúgokban, így a sziborgiumból SgO42− sziborgátion kell keletkezzen. Ezen kívül a WO3 savakkal is reagál, ami az SgO3 hasonló amfoter sajátságára enged következtetni. Az MoO3 oxid nedvességgel is reagál MoO2(OH)2 hidroxid képződése közben, ezért az SgO2(OH)2 is létezhet.A nehezebb homológok konnyen képeznek illékony, reakcióképes MX6 hexahalogenideket (X=Cl,F), de csak a volfrám instabil hexabromidja (WBr6) ismert. Ezek alapján megjósolták az SgF6 és SgCl6 vegyületek létezését, és az „eka-volfrám jellemvonás” megmutatkozhat az SgBr6 hexabromid nagyobb stabilitásában. Ezek a halogenidek oxigénnel és nedvességgel szemben nem stabilak, belőlük illékony MOX4 és MO2X2 oxohalogenidek keletkeznek. Ily módon létezhet az SgOX4 (X=F,Cl) és az SgO2X2 (X=F,Cl) is. Vizes oldatban fluoridionnal számos anionos oxofluoro komplex keletkezik, például MOF5− és MO3F33−. A sziborgiummal is hasonló komplexek várhatók.
A sziborgium kémiájának megismerésére végzett első kísérletek egy illékony oxoklorid gáz termokromatográfiás vizsgálatára irányult. A sziborgium atomokat a248Cm(22Ne,4n)266Sg reakciókban hozták létre, termalizálták őket, majd O2/HCl elegyével reagáltatták. Megmérték a keletkezett oxoklorid adszorpciós tulajdonságait, és összehasonlították a molibdén- és volfrámvegyületekével. Az eredmények azt mutatták, hogy a sziborgium a 6-os csoport elemeihez hasonló illékony oxokloridot képez:
Sg +O2 + 2 HCl →SgO2Cl2 +H2
2001-ben egy tudóscsoport folytatta a sziborgium gázfázisú kémiájának vizsgálatát, sziborgiumot reagáltattak O2-vel H2O-s környezetben. Az oxoklorid képződéséhez hasonlóan a kísérleti eredmények sziborgium-oxid-hidroxid képződését jelezték, ami a könnyebb 6-os csoportbeli elemek jól ismert reakciója.[4]
A sziborgium vizes oldatbeli kémiájában igazolták, hogy – könnyebb homológjaihoz, a molibdénhez és volfrámhoz hasonlóan – +6-os oxidációs állapota stabil. A sziborgium kationcserélő gyantáról HNO3/HF oldattal lemosódik, valószínűleg mint semleges SgO2F2 vagy [SgO2F3]− anionos komplex formájában. Ugyanakkor 0,1 M HNO3-mal – a molibdéntől és volfrámtól eltérően – nem eluálódik, ami azt jelzi, hogy a [Sg(H2O)6]6+ hidrolízise csak a [Sg(OH)5(H2O)]+ kationos komplexig megy végbe.
A vizsgált vegyületek és komplex ionok összefoglalása
Ez a rész a sziborgium nuklidok úgynevezett „hideg” fúziós előállítási reakcióval foglalkozik. Ezek olyan folyamatok, amelyekben a keletkező nuklid kevéssé gerjesztett (~10-20 MeV, innen a „hideg”), így hasadással szemben nagyobb valószínűséggel marad stabil. A gerjesztett mag ezután mindössze egy-két neutron kibocsátásával alapállapotba bomlik.
A 106-os elem hideg fúziós reakcióval történő előállítását először 1974 szeptemberében kísérelte meg egyG. N. Flerov által vezetett szovjet tudóscsoport a dubnai Egyesített Atomkutató Intézetben. A csoport 0,48 másodperces spontán hasadásos aktivitásról számolt be, melyet a259106 izotóphoz rendeltek. Későbbi bizonyítékok alapján azt feltételezik, hogy a csoport valószínűleg a260Sg és leánymagjának, a256Rf-nek a bomlását mérte. A TWG (transzfermium munkacsoport) megállapította, hogy – abban az időben – az eredmények nem voltak elég meggyőzőek.[5]
A dubnai csoport 1983-84-ben ismét megvizsgálta a problémát, és kimutattak egy – közvetlenül a260Sg-nak tulajdonított – 5 ms-os spontán hasadásos aktivitást[5]
A GSI csoportja ezt a reakciót először 1985-ben vizsgálta, a genetikus szülő-leány bomlások korreláció továbbfejlesztett módszerének felhasználásával. Kimutatták a261Sg (x=1) és260Sg izotópokat, és megmérték a részleges 1n neutron párolgás gerjesztési függvényt.[6]
2000 decemberében a franciaországi GANIL egyik csoportja tanulmányozta a reakciót, és újabb eredményként kimutattak 10 atom261Sg-et és 2 atom260Sg-at.
A sziborgiumnak 11 ismert izotópja létezik (a metastabil és K-spin izomereket nem számítva). A leghosszabb élettartamú a271Sg, melyalfa-bomlással ésspontán hasadással bomlik. Felezési ideje 1,9 perc. A legrövidebb életű izotóp a258Sg, ez szintén alfa-bomlásra és spontán hasadásra képes. Felezési ideje 2,9 ms.
Az első vizsgálatok 8,63 MeV-os alfa-sugárzást azonosítottak kb. 21 másodperc felezési idővel, amit a266Sg alapállapotának tekintettek. Később azonosítottak kb. 21 másodperc felezési idejű 8,52 MeV és 8,77 MeV energiájú alfa-sugárzó nuklidokat is, ami páros-páros nuklidok esetén szokatlan. A270Hs előállítása során végzett újabb vizsgálatok szerint a266Sg-ot spontán hasad 360 ms felezési idővel.A277112 és269Hs tanulmányozása során végzett újabb munkák új információkat szolgáltattak a265Sg és261Rf bomlásáról. Ezek alapján az eredeti 8,77 MeV-os sugárzást a265Sg-höz kell rendelni. A jelenlegi adatok szerint így az alapállapot a spontán hasadás, a 8,52 MeV-os sugárzás pedig egy nagy spinű K-izomer. Ezen hozzárendelések megerősítéséhez további vizsgálatok szükségesek.Az adatok átértékelése alapján a 8,52 MeV-os sugárzást a265Sg-hoz kell rendelni, a266Sg pedig csak hasadást szenved.
A265Sg újabb keletű közvetlen szintézise során négy alfa-energiát mértek 7,4 másodperc felezési idővel: 8,94, 8,84, 8,76 és 8,69 MeV. A277112 és269Hs bomlásából származó265Sg bomlásának megfigyelése során úgy találták, hogy a 8,69 MeV-os sugárzást egy izomer szinttel lehet azonosítani, melynek felezési ideje kb. 20 másodperc. Ez a szint valószínűleg okoz némi zavart az adatok266Sg-hoz és265Sg-höz rendelésében, mivel mindkét mag hasadó radzerfordium izotópokká bomolhat.
Az adatok újkeletű átértékelése szerint tényleg két izomer létezik, az egyik fő bomlási energiája 8,85 Mev, felezési ideje 8,9 másodperc, a másik izomer bomlási energiája 8,70 MeV, felezési ideje pedig 16,2 mp.
Az alábbi táblázat a közvetlenül sziborgium izotópot szolgáltató hideg fúziós reakciók hatáskeresztmetszeteit és gerjesztési energiáit tartalmazza. A félkövér adatok a gerjesztési függvények méréseinek maximumát jelölik. A megfigyelt kilépési csatornákat + jelöli.
Az alábbi táblázat a közvetlenül sziborgium izotópot szolgáltató forró fúziós reakciók hatáskeresztmetszeteit és gerjesztési energiáit tartalmazza. A félkövér adatok a gerjesztési függvények méréseinek maximumát jelölik. A megfigyelt kilépési csatornákat + jelöli.
↑abBarber, R. C. (1993). „Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879-886, 1991)”.Pure and Applied Chemistry65, 1757. o.DOI:10.1351/pac199365081757.
↑Münzenberg, G. (1985). „The isotopes259106,260106, and261106”.Zeitschrift für Physik a Atoms and Nuclei322, 227. o.DOI:10.1007/BF01411887.
Ez a szócikk részben vagy egészben aSeaborgium című angol Wikipédia-szócikkezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.