Ez a lap egy ellenőrzött változata
APMOS vagypMOS logika (p-csatornásfém–oxid–félvezető) p-csatornás, javító módúMOSFET-eken alapulódigitális áramkörök családja. Az 1960-as évek végén és az 1970-es évek elején a PMOS logika volt a legfőbb félvezető-technológia az LSI-k terén, mielőtt azNMOS és aCMOS felváltotta.
Mohamed Atalla ésDawon Kahng hozták létre az első működő MOSFET-et aBell Labsnél 1959-ben.[1] PMOS- és NMOS-eszközöket is létrehoztak, de csak a PMOS-eszközök működtek.[2] Több mint egy évtizeddel később sikerült csak a gyártási folyamat során bekerülő szennyeződések (különösen a nátrium) gyakorlatban használható NMOS-eszközökhöz megfelelő kezelése.
Abipoláris kapcsolásos tranzisztorhoz képest az egyetlen ekkor az integrált áramkörben elérhető eszköz, a MOSFET számos előnnyel rendelkezik:
Hátrányai ezek voltak a bipoláris integrált áramkörhöz képest:
AGeneral Microelectronics az első kereskedelmi PMOS áramkört 1964-ben mutatta be, mely 20 bites eltolásos regiszter volt 120 MOSFET-tel, mely ekkor nagy fokú integráltság volt.[5] Az 1965-ös kísérlet 23 külön integrált áramkör létrehozására a Victor Comptometer számára[5] azonban nem sikerült, és ez végül a General Microelectronics végét okozta.[6] Más számítógépek tovább készítettek PMOS áramköröket, például eltolásos regisztereket (General Instrument)[7] vagy az analóg 3705-ös multiplexert (Fairchild Semiconductor),[8] ami lehetetlen volt a bipoláris technológiákkal.
Jelentős javítás volt apoliszilícium önelrendezettkapu-technológia (1968).[9] Tom Klein ésFederico Faggin, a Fairchild Semiconductor dolgozói a folyamatot javították, hogy kereskedelemben is megfelelhessen, lehetővé téve az analóg 3708-as multiplexer, az első szilíciumkapus integrált áramkör megjelenését.[9] A folyamat lehetővé tett kisebb gyártási hibahatárokat, így kisebb MOSFET-ek és kisebb állandó kapukapacitásokat. Például a kor PMOS memóriái 3-5-ször akkora sebességet értek el feleakkora területen.[9] A poliszilícium kapuanyag nemcsak az önelrendezett kaput tette lehetővé, hanem kisebb küszöbfeszültséget, így kisebb minimális áramforrás-feszültséget (például -16 V),[10]:1–13 csökkentve az energiaigényt. Az alacsonyabb feszültség miatt a szilíciumkapus PMOS logikát gyakran alacsony feszültségű PMOS-nak nevezik a régebbi, fémkapussal szemben, melyet magas feszültségűnek neveznek.[3]:89
Bizonyos okokból a Fairchild Semiconductor nem haladt tovább a PMOS integrált áramkörök fejlesztésével a menedzserek kéréseinek megfelelően.[11]:1302 Kettejük,Gordon Moore ésRobert Noyce, 1968-ban kivált és létrehozta saját cégüket, azIntelt. Kevéssel később további Fairchild-mérnökök csatlakoztak hozzájuk, például Federico Faggin ésLes Vadasz. Az Intel az első, 256 bites kapacitású PMOSstatikus RAM-ot, az Intel 1101-et 1969-ben mutatta be.[11]:1303 Az 1024 bitesdinamikus RAM, azIntel 1103 követte ezt 1970-ben.[12] Az 1103 sikeres volt, és gyorsan kezdte aferritgyűrűs memória felváltását.[12] Az Intel első PMOSmikroprocesszora, azIntel 4004 1971-ben jelent meg. Számos társaság követte az Intelt. A legtöbb korai mikroprocesszor PMOS technológiával készült: ilyen volt még az Inteltől a4040 és8008, azIMP-16, aNational Semiconductortól aPACE és azSC/MP, aTexas Instrumentstől aTMS1000, aRockwell Internationaltől aPPS-4[13] és a PPS-8[14] processzora. Számos első van ezek közt: az első 4 bite (4004), illetve 8 bites mikroprocesszor (8008), az első egychipes 16 bites mikroprocesszor (PACE) és az első egychipes 4 bites mikrokontroller (TMS1000, ahol a RAM és aROM egy chipen van a processzorral).
1972-re az NMOS technológiája annyira fejlődött, hogy kereskedelemben kapható termékekben is használható lett. Mind az Intel (a 2102-vel),[15] mind azIBM[12] bevezetett 1 kbites memóriákat. Mivel azelektronok az NMOS MOSFET-ekben nagyjából háromszor olyan könnyen mozgékonyak, mint az elektronhiányok a PMOS MOSFET-ek p-csatornájában, az NMOS-logika nagyobb váltósebességet tesz lehetővé, ezért az NMOS-logika elkezdte felváltani a PMOS-t. Az 1970-es évek végére az NMOS processzorok felváltották a PMOS-t.[16] A PMOS egy ideig használatban maradt alacsony költsége és magas integráltsága miatt egyszerű órákban és számológépekben. ACMOS energiaigénye sokkal alacsonyabb mind a PMOS-nál, mind az NMOS-nál. Bár a CMOS áramkört már 1963-ban javasoltaFrank Wanlass,[17] és a kereskedelemben kapható4000 sorozat CMOS integrált áramköreit 1968-tól kezdték gyártani, a CMOS gyártása bonyolult maradt, és se a PMOS vagy NMOS integrációs fokát, se az NMOS sebességét nem tudta elérni. Az 1980-as évekig tartott, hogy a CMOS felváltsa az NMOS-t a fő mikroprocesszor-technológiaként.
A PMOS áramkörök számos hátránnyal rendelkeznek az NMOS-hoz és a CMOS-hoz képest, amilyenek a számos eltérő áramforrási feszültség igénye, nagy áramveszteség a vezetői állapotban, a nagy felületi igények és az alacsonyabb váltási sebesség.
A PMOSp-csatornás (+)fém-oxid-félvezető mezőhatás-tranzisztorokat (MOSFET) használ a logikai kapukhoz és más digitális áramkörökhöz. A PMOS tranzisztorok n-típusú tranzisztorteste inverziós réteggel rendelkezik. Ez a p-csatorna, mely elektronlyukakat képes vezetni a p-típusú forrás és cél közt.
A p-csatorna negatív feszültség (gyakran -25 V)[18] harmadik terminálhoz (kapu) való csatlakoztatásával jön létre. Más MOSFET-ekhez hasonlóan a PMOS tranzisztorok négyféleképp működhetnek: küszöb alatti, trióda, feltöltött (más néven aktív) és gyorsan feltöltött.
Míg a PMOS-logika könnyen tervezhető és készíthető (egy MOSFET működhet ellenállásként, így egy teljes áramkör létrehozható PMOS FET-ekkel), számos hátránya van, példáulegyenáram áthaladása aktív PUN mellett, vagyis ha a kimenet 1, ami statikus elektromossággal jár tétlen áramkör esetén is.
Ezenkívül a PMOS áramkörökben az 1–0 átmenet lassú: 0-ról 1-re való átmenetkor a tranzisztorok ellenállása alacsony, és a töltés a kimeneten hamar összegyűlik (hasonlóan egy kondenzátor alacsony ellenállású töltéséhez). Azonban a kimenet és a negatív forrás közti ellenállás sokkal nagyobb, így az 1-ről 0-ra való átmenet hosszabb (hasonlóan a kondenzátor magas ellenállás melletti lemerítéséhez). through a high resistance). Egy alacsonyabb értékű ellenállás gyorsítja a folyamatot, de növeli a statikus elektromosságvesztést.
Ezenkívül az aszimmetrikus bemeneti logikai szintek a PMOS áramköröket érzékennyé teszi a zajra.[19]
A legtöbb PMOS integrált áramkörnek 17-24 V-os egyenáramú forrás kell.[20] Az Intel 4004 PMOS mikroprocesszor azonban poliszilícium kapus PMOS-logikát használ, nemfémkapusat, lehetővé téve kisebb feszültségkülönbséget. ATTL-jelekkel való kompatibilitáshoz a 4004 pozitív áramforrásának, a negatívnak a feszültsége.[21]
A p-típusú MOSFET-ek „ellenállásnövelő hálózatban” (angol rövidítés: PUN) vannak elrendezve a logikai kapu kimenete és a pozitív áramforrási feszültség közt, és egy ellenállás van a kimenet és a negatív forrás feszültsége közt. Az áramkörben ha a kívánt kimenet 1, a PUN aktív, létrehozva az áramnak egy utat az áramforrás és a kimenet közt.
A PMOS-kapuk elrendezése az NMOS-kapukéhoz hasonló, ellenkező feszültségekkel.[22] Így aktív 1-es logika esetén aDe Morgan-törvények szerint a PMOS NOR-kapu ugyanolyan szerkezetű, mint az NMOS NAND-kapu és fordítva.
![]() | ![]() | ![]() |
Ez a szócikk részben vagy egészben aPMOS logic című angol Wikipédia-szócikkezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.Ez a szócikk részben vagy egészben aPMOS című angol Wikipédia-szócikkezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.