AKruskal–Wallis-próba vagyKruskal–Wallis H-próba[1] (nevétWilliam Kruskalról ésW. Allen Wallisról kapta) egy hipotézis tesztelésen alapuló nemparametrikusstatisztikai eljárás, amellyel tesztelhető, hogy egyes minták vajon származtathatóak-e egyazon eloszlásból.[2][3][4] Kettőnél több független minta egy változó mentén történő összehasonlítására használják, amelyek rendelkezhetnek azonos, de akár különböző elemszámmal is. A próba parametrikus megfelelője az egyszempontos varianciaanalízis (ANOVA). A szignifikáns Kruskal–Wallis-próba azt mutatja meg, hogy legalább az egyik minta sztochasztikus dominanciával rendelkezik egy másik minta fölött (azaz, ha két csoportból kiveszünk véletlenszerűen egy-egy elemet, 50-50%-tól jelentősen eltér az esélye, hogy melyik csoport kivett elemének értéke nagyobb.) A próba önmagában nem mutatja meg, honnan ered a sztochasztikus dominancia, vagy hogy ez hány különböző csoportpárnál jelenik meg. Ezeknek a feltárására például a Dunn-teszt[5] alkalmazható.
Mivel a Kruskal–Wallis-próba nemparametrikus, ezért nem feltétele a minták normál eloszlása, szemben például az analóg egyszempontos varianciaanalízissel. Normál eloszlások esetén az utóbbi a jobb választás, mivel érzékenyebb, de ha sérül a normalitás, érdemes a Kruskal–Wallis-próbát alkalmazni. A próba nullhipotézise az, hogy a vizsgált csoportok mediánja megegyezik (azaz nincs köztük sztochasztikus dominancia), alternatív hipotézisként tehát az tesztelhető, van-e különbség egyes összehasonlított csoportokhoz tartozó populációk mediánjai közt.
- Rangsoroljuk minden csoport adatait együttesen; azaz, rangsoroljuk őket 1-től N-ig (ahol N a teljes elemszám), attól függetlenül, hogy melyik csoporthoz tartoznak. A megegyező értékek azon sorszámok átlagát kapják, amelyet az azonos értékek átlagosan kaptak volna, ha azok nem egyeznének (pl. a 3; 5; 5; 7 számok esetén a rangsor 1; 2,5; 2,5; 4, mivel a feltételezett nem egyezés során a két 5-ös érték a 2-es és a 3-as sorszámot kapták volna, aminek az átlaga 2,5).
- A teszt-statisztika a következő:
ahol:
- Ha az adatok közt nincsenek egyező értékek, akkor a
nevezője pontosan
és
. Ebből következik,
- Az utóbbi egyenlet, csak a rangátlagok négyzetét tartalmazza.
- Azonos rangok esetén korrigálható az előző pontban bemutatott egyenlet, ha elosztjuk
-t
-vel, ahol G az előforduló azonos rangok értékeinek a száma,ti azon egyező értékek összesített száma, amelyek i csoportban bármely egyező értékhez tartoznak. Ez a korrekció általában nem okoz jelentős eltérést H értékében, hacsak nincs nagyszámú egyező érték. - Végül a p-érték a következő módon kerül kiszámításra:
. Ha néhány
érték alacsony (pl. kevesebb mint 5), akkor H valószínűségi eloszlása nagyban különbözhet ettől a khi-négyzetes eloszlástól. Ha rendelkezésre áll a khi-négyzetes valószínűségi eloszlás táblázata, a khi négyzetes kritikus értéke,
-nak, megtalálható a táblázatban g – 1 szabadságfoknál a kiválasztott szignifikancia vagy alfa értéknél. - Ha a statisztika nem szignifikáns, akkor nem bizonyíthatunk sztochasztikus dominanciát egyetlen lehetséges mintapár közt sem. Ugyanakkor, ha a teszt szignifikáns, akkor tudjuk, hogy legalább egy minta sztochasztikus dominanciával rendelkezik egy másik felett. A kutató ezt követően egyenként összehasonlíthatja az összes lehetséges mintapárt, vagy használhatpost hoc teszteket (pl. Dunn teszt), amely (1) pontosan azonos rangokat használ, mint az adott Kruskal-Wallis teszt, és (2) egyesített szórása megegyezik a Kruskal-Wallis próbánál feltételezett nullhipotézisével, hogy megállapíthassa melyik mintapárok között található szignifikáns különbség. Amikor többszörös összehasonlítást hajtunk végre, növekszik azelsőfajú hiba esélye, ami kétségbe vonja a többszörös összehasonlítások megbízhatóságát, ezért ilyenkor még alacsonyabb kritériumszintet, korrekciókat használunk.
Óriási számítási kapacitásra van szükség, hogy a Kruskal-Wallis teszt pontos valószínűségeit kiszámítsuk. A jelenleg létező szoftverek közül pillanatnyilag maximum 30 fős mintákon számítható ez ki. Ugyanezen programok ennél nagyobb mintákra, csak aszimptotikus becslést tudnak adni. A nagyobb mintákhoz tartozó konkrét valószínűségi változók ugyanakkor elérhetőek. Spurrier (2003) publikálta az egzakt valószínűségi táblázatokat egészen 45 fős minta nagyságig.[6] Később Meyer és Seaman (2006) publikálta az egzakt valószínűségi eloszlásokat egészen 105 fős mintákig.[7]
A próba alkalmazhatóságának bemutatása egy konkrét példán[8]
[szerkesztés]Tegyük fel, hogy ötödikes, kilencedikes és tizenkettedikes diákokat szeretnénk összehasonlítani, abban, hogy mennyire szeretik az irodalomórát. A hipotézisünk lehet tetszőleges, de tartalmaznia kell azt, hogy valamilyen eltérést várunk a csoportok között. Két lehetséges (statisztikai) hipotézis kombinációja: A kilencedikesek irodalomóra attitűd értékének mediánja nagyobb, mint a tizenkettedikeseké, de az ötödikesek attitűd értékének mediánja még a kilencedikeseknél is nagyobb (Ebben az esetben a szakmai hipotézisünk, hogy a három csoportból az ötödikesek szeretik a legjobban a matekot, míg a tizenkettedikesek a legkevésbé).
A próba kiválasztásánál elsősorban két szempontot kell figyelembe vennünk, a mintánkat alkotó csoportjaink számát és típusát, valamint a függő változónk típusát. Az irodalom iránti attitűdre, mint ordinális változó tekinthetünk, ha pl. egy 1-5-ig tartóLikert-skálán mértük (hiszen az egyes pontok, közti különbség szubjektív, nem szükségszerűen azonos mértékű), és ezt a változót 3 egymástól független csoporton vizsgáljuk, így jelen esetben a Kruskal-Wallis a legalkalmasabb próba hipotézistesztelésre.
A próba ezután rangsorolja csoportoktól függetlenül az összes diák összes válaszát, majd megállapítja az egyes csoportok rangátlagát. Ezt követően pedig megmondja, hogy a mintánk mérete és a rangátlagokban mért különbségek alapján cáfolható-e (ill. milyen valószínűség mellett cáfolható) anullhipotézis, azaz hogy a rangátlagok megegyeznek.
Ha szignifikáns eredményt kapunk az még nem mondja meg, hogy pontosan melyik osztályok közt van eltérés, csak azt, hogy valamely osztályok közt van. A konkrét csoportok közti különbséget a már korábban is említett post-hoc tesztekkel (pl. Dunn teszt[5]) vizsgálhatjuk meg.
Egyszempontos varianciaanalízis
Mann-Whitney U teszt
Dunn teszt
Jonckheere trendvizsgálata
- ↑Kruskal-Wallis H Test using SPSS Statistics, Laerd Statistics
- ↑Kruskal; Wallis (1952). "Use of ranks in one-criterion variance analysis".Journal of the American Statistical Association doi:10.1080/01621459.1952.10483441
- ↑Corder, Gregory W.; Foreman, Dale I. (2009). Nonparametric Statistics for Non-Statisticians. Hoboken; John Wiley & Sons. pp 99-105.ISBN 9780470454619
- ↑Siegel; Castellan (1988) Nonparametric Statistics for the Behavioral Sciences (Second ed.). New York: McGraw–Hill.ISBN 0070573573.
- ↑abDunn, Olive Jean (1964). "Multiple comparisons using rank sums". Technometrics 6 (3): 241–252. doi:10.2307/1266041
- ↑Spurrier, J. D. (2003). "On the null distribution of the Kruskal–Wallis statistic". Journal of Nonparametric Statistics 15 (6): 685–691. doi:10.1080/10485250310001634719
- ↑Meyer; Seaman (April 2006). "Expanded tables of critical values for the Kruskal-Wallis H statistic". Paper presented at the annual meeting of the American Educational Research Association, San Francisco. Critical value tables and exact probabilities from Meyer and Seaman are available for download at http://faculty.virginia.edu/kruskal-wallis/. A munkát leíró cikk is megtalálható itt.
- ↑Janacsek, K. (2009). Kruskal-Wallis próba. Letöltve: 2015. December 11-énhttp://kognitiv.elte.hu/statisztika/index.php/Kruskal-Wallis_próbaArchiválva2020. február 21-i dátummal aWayback Machine-ben
Daniel, Wayne W. (1990)."Kruskal–Wallis one-way analysis of variance by ranks".Applied Nonparametric Statistics (2nd ed.). Boston: PWS-Kent. pp. 226–234. ISBN0-534-91976-6.