הממוצע החשבוני, המסומן ב-, של קבוצת מספרים מוגדר כסכומםחלקי מספרם, כלומר:
כלומר, הממוצע החשבוני הוא מספר שאם יהיה אותו במקום כל המספרים, הסכום הכללי לא ישתנה. כך למשל, אם חשבון החשמל הממוצע של בניין הוא 1000 שקלים למשפחה, אז אם לכל המשפחות היה חשבון של 1000 שקל, החשבון הכללי של הבניין היה נותר זהה.
הממוצע הוא מעין "מרכז" של המספרים בזכות תכונתו שסכום ההפרשים בינו למספרים האחרים הוא אפס, כלומר. כמו כן סכום ריבועי ההפרשים הוא מינימלי, כלומר הגודל קטן יותר מכל גודל שהיה יוצא לו היינו מחליפים את במספר אחר.
הממוצע החשבוני עלול שלא לשקף נאמנה את הנתונים, משום שהוא אינו נותן שום מידע על ההתפלגות של המספרים (כלומר אופן ה"פיזור" שלהם). הבעיה בולטת במיוחד אם מספר קטן של איברים רחוק מאוד מהאחרים. לדוגמה, במפעל בו 95 עובדים משתכרים 5,000 שקלים בחודש ו-5 מנהלים משתכרים 100,000 שקלים בחודש, השכר הממוצע לחודש הוא 9,750 שקלים. במקרה זה, הממוצע רחוק מלייצג את גובהה של "משכורת אופיינית" במפעל שכן, אף עובד לא משתכר שכר קרוב לשכר הממוצע. 95% משתכרים כמחצית מסכום זה, ו-5% משתכרים יותר מפי עשרה מהממוצע.
כדי לקבל מידע גם על פיזור המספרים, משתמשים בסטיית תקן. סטיית תקן היאשורש ממוצע ריבועי המרחקים, כלומר. בדיקה גסה יותר אך מועילה לעיתים היא בדיקת ההפרש בין הממוצע לחציון. אם איברי הקבוצה מפולגים באופן סימטרי סביב הממוצע, הממוצע יהיה קרוב לחציון, אולם, אם ההתפלגות אינה סימטרית כמו בדוגמה למעלה, המרחק בין החציון לבין הממוצע עשוי לגדול. כדי לקבל תמונה טובה על קבוצת משתנים משתמשים בנוסף לממוצע בסטיית התקן ובחציון ולעיתים קרובות מוסיפים את השכיח.
בממוצע חשבוני נותנים לכל מספר אותו משקל. אך לעיתים יש צורך בנתינת משקל שונה לכל מספר, למשל לצורך חישובמהירות ממוצעת של מספר מהירויות שהיו לאורך זמנים שונים. במקרה כזה משתמשים בממוצע משוקלל, המחושב בצורה הבאה:
כאשר לכל מספר xi מותאם משקל wi. הממוצע המשוקלל מהווההכללה של הממוצע החשבוני משום שאם כל המשקלים שווים ל-1, מתקבל ממוצע חשבוני רגיל. כמו כן, אם משקל wi הואטבעי, ניתן להחליף בחישוב את המספר xi ב-wi מספרים השווים ל-xi מבלי לשנות את הממוצע.
אם מרחב המספרים הוא רציף, ניתן לחשב את הממוצע לפי הנוסחה הבאה:
כאשר f היא פונקציית המשתנים ו [a,b] הוא הקטע שבו מחשבים את הממוצע.
זוהי הכללה של הממוצע החשבוני משום שהוא מתקבל כגבול של תהליך שבו מחשבים את ממוצע ערכי הפונקציה בקטע ומוסיפים עוד ועוד ערכים. באופן אינטואיטיבי, מחלקים את האינטגרל (שמהווה הכללה לסכום) באורך הקטע (שניתן להסתכל עליו כ"מספר הערכים שהפונקציה מקבלת").