On Cayley's factorization of 4D rotations and applications
Fitxers
Projectes de recerca
Unitats organitzatives
Número de la revista
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
Llicència
Assignatures relacionades
Assignatures relacionades
Publicacions relacionades
Datasets relacionats
Datasets relacionats
Projecte CCD
Abstract
A 4D rotation can be decomposed into a left- and a right-isoclinic rotation. This decomposition, known as Cayley’s factorization of 4D rotations, can be performed using the Elfrinkhof–Rosen method. In this paper, we present a more straightforward alternative approach using the corresponding orthogonal subspaces, for which orthogonal bases can be defined. This yields easy formulations, both in the space of 4×44×4 real orthogonal matrices representing 4D rotations and in the Clifford algebra C4,0,0C4,0,0. Cayley’s factorization has many important applications. It can be used to easily transform rotations represented using matrix algebra to different Clifford algebras. As a practical application of the proposed method, it is shown how Cayley’s factorization can be used to efficiently compute the screw parameters of 3D rigid-body transformations.
Descripció
The final publication is available atlink.springer.com



