RecA | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||
Identificadores | |||||||||
Símbolo | RecA | ||||||||
Pfam | PF00154 | ||||||||
Pfam clan | CL0023 | ||||||||
InterPro | IPR013765 | ||||||||
PROSITE | PDOC00131 | ||||||||
SCOPe | 2reb /SUPFAM | ||||||||
|
ARecA é unhaproteína de 38quilodaltons esencial para areparación e mantemento doADN, que se encontra enbacterias e ten homólogos eneucariotas earqueas.[2] Unhomólogo estrutural e funcional de RecA foi atopado en todas as especies nas que foi seriamente buscado, polo que serve como arquetipo desa clase de proteínas homólogas de reparación do ADN. As proteínas homólogas chámanseRAD51 en eucariotas eRadA en arqueas.
A RecA ten moitas actividades, todas relacionadas coa reparación do ADN. Naresposta SOS bacteriana ten unha función coprotease[3] na clivaxeautocatalítica dosrepresoresLexA eλ.[4]
A asociación de RecA coADN está baseada no seu papel central narecombinación homóloga. A proteína RecA únese firmemente e en grandes grupos ao ADN de febra simple para formar un filamento nucleoproteico. A proteína ten máis dunsitio de unión ao ADN, e así pode manter xuntas unha febra simple e as febras dobres do ADN. Esta característica fai posible que catalice unha reacción de sinapse do ADN entre adobre hélice do ADN e unha rexión complementaria de ADN de febra simple. O filamentoRecA-ADN de febra simple fai unha busca por similitude de secuencia ao longo do ADN de febra dobre.O proceso de busca destas secuencias induce o estiramento do dúplex de ADN, o cal mellora o recoñecemento de secuencias (un mecanismo denominadocorrección de probas conformacional[5][6]). A reacción inicia o intercambio de febras entre dúas dobres hélices de ADN en recombinación. Despois do evento dasinapse, na rexión heterodúplex empeza un proceso chamadomigración da rama. Na migración da rama unha rexión non apareada dunha das febras simples despraza unha rexión apareada da outra febra simple, movendo o punto de ramificación sen cambiar o número total de pares de bases. A migración da rama espontánea pode producirse, pero como xeralmente esta avanza igualmente en ambas as direccións é improbable que complete a recombinación eficientemente. A proteína RecA cataliza a migración da rama unidireccional e ao facelo pode completar arecombinación, producindo unha rexión do ADN heterodúplex que ten unha lonxitude de miles de pares de bases.
Como a RecA é unhaATPase dependente do ADN, contén un sitio adicional para a unión ehidrólise do ATP. A RecA asóciase máis estreitamente co ADN cando está unida aoATP que cando está unida aoADP.
As cepas deE. coli deficientes en RecA son útiles para os procesos declonación en laboratorios debioloxía molecular. As cepas deE. coli son con frecuencia modificadas xeneticamente para conter unalelorecA mutante e, por tanto, asegura a estabilidade de segmentosextracromosómicos do ADN, chamadosplásmidos. Nun proceso chamadotransformación, o ADN dos plásmidos é captado polas bacterias baixo diversas condicións. As bacterias que conteñen plásmidos exóxenos chámanse "transformantes". Os transformantes reteñen o plásmido nas células fillas ao realizarendivisións celulares, polo que este pode ser recuperado e utilizado noutras aplicacións. Sen unha proteína RecA funcional, o ADN do plásmido exóxeno queda inalterado nas bacterias. Apurificación deste plásmido de cultivos bacterianos pode despois permitir unha amplificación porPCR de alta fidelidade da secuencia do plásmido orixinal.
Wigle e Singleton naUniversidade de Carolina do Norte observaron que as pequenas moléclas que interfiren coa función de RecA na célula pode ser útil na creación de novosantibióticos.[7] Como moitos antibióticos orixinan danos no ADN, e todas as bacterias depende de RecA para reparar os danos, os inhibidores de RecA poderían ser utilizados para potenciar a toxicidade de antibióticos. Adicionalmente, as actividades de RecA son sinónimas de desenvolvemento deresistencia a antibióticos, e os inhibidores de RecA poden tamén servir para atrasar ou previr a aparición de resistencia bacteriana aos fármacos.
Baseándose na análise das propiedades moleculares do sistema de RecA, o científico M. Cox[8] concluíu que os datos “proporcionan evidencias contundentes de que a misión primaria da proteína RecA é areparación do ADN.” Nun ensaio posterior sobre a función da proteína RecA, Cox[9] resumiu os datos demostrando que a “proteína RecA evolucionou como un compoñente central do sistema de reparación do ADN recombinacional, coa xeración dediversidade xenética como un subproduto ás veces útil.”
Atransformación bacteriana natural implica a transferencia deADN desde unha bacteria a outra (normalmente da mesma especie) e a integración do ADN doante nocromosoma receptor porrecombinación homóloga, un proceso mediado pola proteína RecA (verTransformación xenética). A transformación, na cal a RecA xoga un papel central, depende da expresión de numerosos produtos xénicos adicionais (por exemplo, uns 40 produtos xénicos enBacillus subtilis), que interaccionan especificamente para levar a cabo este proceso indicando que é unhaadaptación queevolucionou para a transferencia de ADN. EnB. subtilis a lonxitude do ADN transferido pode ser desde o tamaño dun terzo de cromosoma ata un cromosoma completo.[10][11] Para que unha bacteria se una, capte e recombine ADN exóxeno no seu cromosoma, debe primeiro entrar nun estado fisiolóxico especial chamado “competencia” (competencia natural). A transformación é algo común no mundo procariota, e ata agora coñécense 67 especies que son competentes para a transformación.[12]
Un dos sistemas de transformación mellor estudados é o deB. subtilis. Nesta bacteria, a proteína RecA interacciona co ADN monocatenario entrante para formar estruturas filamentosas de notable tamaño.[13] Estes filamentos RecA/ADN monocatenario emanan do polo da célula contendo a maquinaria da competencia e estendéndose nocitosol. As febras filamentosas de RecA/ADN monocatenario considérase que son nucleofilamentos dinámicos que escanean o cromosoma residente para procurar rexións de homoloxía. Este proceso leva o ADN entrante ao sitio correspondente no cromosoma deB. subtilis, onde ocorre o intercambio de información.
Michod et al.[14] revisaron as probas de que a transformación mediada por RecA é unha adaptación para a reparación dos danos no ADN porrecombinación homóloga enB. subtilis, e tamén noutras especies de bacterias (é dicir,Neisseria gonorrhoeae,Haemophilus influenzae,Streptococcus pneumoniae,Streptococcus mutans eHelicobacter pylori). Neste caso das especies patóxenas que infectan a humanos, propúxose que a reparación de danos no ADN mediada por RecA pode supoñer un beneficio substancial cando estas bacterias son atacadas polas defensas oxidativas dohóspede.