Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

PyTorch code for our ICCV 2023 paper "Dual Aggregation Transformer for Image Super-Resolution"

License

NotificationsYou must be signed in to change notification settings

zhengchen1999/DAT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Zheng Chen,Yulun Zhang,Jinjin Gu,Linghe Kong,Xiaokang Yang, andFisher Yu, "Dual Aggregation Transformer for Image Super-Resolution", ICCV, 2023

[paper] [arXiv] [supplementary material] [visual results] [pretrained models]

🔥🔥🔥 News

  • 2023-09-17: ThechaiNNer and theneosr add DAT support. Additional trained DAT models are available inOpenMMLab (#11). ThankPhhofm!
  • 2023-07-16: This repo is released.
  • 2023-07-14: DAT is accepted at ICCV 2023. 🎉🎉🎉

Abstract:Transformer has recently gained considerable popularity in low-level vision tasks, including image super-resolution (SR). These networks utilize self-attention along different dimensions, spatial or channel, and achieve impressive performance. This inspires us to combine the two dimensions in Transformer for a more powerful representation capability. Based on the above idea, we propose a novel Transformer model, Dual Aggregation Transformer (DAT), for image SR. Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner. Specifically, we alternately apply spatial and channel self-attention in consecutive Transformer blocks. The alternate strategy enables DAT to capture the global context and realize inter-block feature aggregation. Furthermore, we propose the adaptive interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to achieve intra-block feature aggregation. AIM complements two self-attention mechanisms from corresponding dimensions. Meanwhile, SGFN introduces additional non-linear spatial information in the feed-forward network. Extensive experiments show that our DAT surpasses current methods.


HRLRSwinIRCATDAT (ours)

Dependencies

  • Python 3.8
  • PyTorch 1.8.0
  • NVIDIA GPU +CUDA
# Clone the github repo and go to the default directory 'DAT'.git clone https://github.com/zhengchen1999/DAT.gitconda create -n DAT python=3.8conda activate DATpip install -r requirements.txtpython setup.py develop

Contents

  1. Datasets
  2. Models
  3. Training
  4. Testing
  5. Results
  6. Citation
  7. Acknowledgements

Datasets

Used training and testing sets can be downloaded as follows:

Training SetTesting SetVisual Results
DIV2K (800 training images, 100 validation images) +Flickr2K (2650 images) [complete training dataset DF2K:Google Drive /Baidu Disk]Set5 + Set14 + BSD100 + Urban100 + Manga109 [complete testing dataset:Google Drive /Baidu Disk]Google Drive /Baidu Disk

Download training and testing datasets and put them into the corresponding folders ofdatasets/. Seedatasets for the detail of the directory structure.

Models

MethodParamsFLOPs (G)DatasetPSNR (dB)SSIMModel ZooVisual Results
DAT-S11.21M203.34Urban10027.680.8300Google Drive /Baidu DiskGoogle Drive /Baidu Disk
DAT14.80M275.75Urban10027.870.8343Google Drive /Baidu DiskGoogle Drive /Baidu Disk
DAT-211.21M216.93Urban10027.860.8341Google Drive /Baidu DiskGoogle Drive /Baidu Disk
DAT-light573K49.69Urban10026.640.8033Google Drive /Baidu DiskGoogle Drive /Baidu Disk

The performance is reported on Urban100 (x4). DAT-S, DAT, DAT-2: output size of FLOPs is 3×512×512. DAT-light: output size of FLOPs is 3×1280×720.

Training

  • Downloadtraining (DF2K, already processed) andtesting (Set5, Set14, BSD100, Urban100, Manga109, already processed) datasets, place them indatasets/.

  • Run the following scripts. The training configuration is inoptions/train/.

    # DAT-S, input=64x64, 4 GPUspython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_S_x2.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_S_x3.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_S_x4.yml --launcher pytorch# DAT, input=64x64, 4 GPUspython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_x2.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_x3.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_x4.yml --launcher pytorch# DAT-2, input=64x64, 4 GPUspython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_2_x2.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_2_x3.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_2_x4.yml --launcher pytorch# DAT-light, input=64x64, 4 GPUspython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_light_x2.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_light_x3.yml --launcher pytorchpython -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/Train/train_DAT_light_x4.yml --launcher pytorch
  • The training experiment is inexperiments/.

Testing

Test images with HR

  • Download the pre-trainedmodels and place them inexperiments/pretrained_models/.

    We provide pre-trained models for image SR: DAT-S, DAT, DAT-2, and DAT-light (x2, x3, x4).

  • Downloadtesting (Set5, Set14, BSD100, Urban100, Manga109) datasets, place them indatasets/.

  • Run the following scripts. The testing configuration is inoptions/test/ (e.g.,test_DAT_x2.yml).

    Note 1: You can setuse_chop: True (default: False) in YML to chop the image for testing.

    # No self-ensemble# DAT-S, reproduces results in Table 2 of the main paperpython basicsr/test.py -opt options/Test/test_DAT_S_x2.ymlpython basicsr/test.py -opt options/Test/test_DAT_S_x3.ymlpython basicsr/test.py -opt options/Test/test_DAT_S_x4.yml# DAT, reproduces results in Table 2 of the main paperpython basicsr/test.py -opt options/Test/test_DAT_x2.ymlpython basicsr/test.py -opt options/Test/test_DAT_x3.ymlpython basicsr/test.py -opt options/Test/test_DAT_x4.yml# DAT-2, reproduces results in Table 1 of the supplementary materialpython basicsr/test.py -opt options/Test/test_DAT_2_x2.ymlpython basicsr/test.py -opt options/Test/test_DAT_2_x3.ymlpython basicsr/test.py -opt options/Test/test_DAT_2_x4.yml# DAT-light, reproduces results in Table 2 of the supplementary materialpython basicsr/test.py -opt options/Test/test_DAT_light_x2.ymlpython basicsr/test.py -opt options/Test/test_DAT_light_x3.ymlpython basicsr/test.py -opt options/Test/test_DAT_light_x4.yml
  • The output is inresults/.

Test images without HR

  • Download the pre-trainedmodels and place them inexperiments/pretrained_models/.

    We provide pre-trained models for image SR: DAT-S, DAT, and DAT-2 (x2, x3, x4).

  • Put your dataset (single LR images) indatasets/single. Some test images are in this folder.

  • Run the following scripts. The testing configuration is inoptions/test/ (e.g.,test_single_x2.yml).

    Note 1: The default model is DAT. You can use other models like DAT-S by modifying the YML.

    Note 2: You can setuse_chop: True (default: False) in YML to chop the image for testing.

    # Test on your datasetpython basicsr/test.py -opt options/Test/test_single_x2.ymlpython basicsr/test.py -opt options/Test/test_single_x3.ymlpython basicsr/test.py -opt options/Test/test_single_x4.yml
  • The output is inresults/.

Results

We achieve state-of-the-art performance. Detailed results can be found in the paper. All visual results of DAT can be downloadedhere.

Click to expand
  • results in Table 2 of the main paper

  • results in Table 1 of the supplementary material

  • results in Table 2 of the supplementary material

  • visual comparison (x4) in the main paper

  • visual comparison (x4) in the supplementary material

Citation

If you find the code helpful in your research or work, please cite the following paper(s).

@inproceedings{chen2023dual,    title={Dual Aggregation Transformer for Image Super-Resolution},    author={Chen, Zheng and Zhang, Yulun and Gu, Jinjin and Kong, Linghe and Yang, Xiaokang and Yu, Fisher},    booktitle={ICCV},    year={2023}}

Acknowledgements

This code is built onBasicSR.

About

PyTorch code for our ICCV 2023 paper "Dual Aggregation Transformer for Image Super-Resolution"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp