Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

用 MATLAB 实现深度学习网络中的 stacked auto-encoder:使用AE variant(de-noising / sparse / contractive AE)进行预训练,用BP算法进行微调

NotificationsYou must be signed in to change notification settings

zheng-yuwei/Stacked_Autoencoder

Repository files navigation

version 1.0 基本完整版run_SAE_once(sparse + de-noising + 各种activation function )这个是基本版,都是别人的工作。接下来版本应该是自己改进main()|---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for train|---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for test|       |---load_MNIST_images(images_file, preprocess, is_show_images, varargin )|       |       |---whitening(data)|       |---load_MNIST_labels(labels_file)||---get_SAE_option(preOption_SAE, varargin)||---get_AE_option(preOption_AE)||---get_BP_option(preOption_BP)|---get_BPNN_option(preOption_BPNN)||---run_SAE_once(images_train, labels_train, images_test, labels_test, architecture, option_SAE, option_BPNN, is_disp_network, is_disp_info )|       |---train_SAE(input, output, architecture, preOption_SAE) // SAE|       |       |---init_parameters(architecture_AE) <----------------------------------------------------------------------+|       ||---train_AE(input, theta_AE, architecture_AE, option_AE)                              ||       |||---denoising_switch(input, count_AE, option_AE)                                    ||       |||---minFunc(fun, theta_AE, options)                                               ||       ||||---calc_AE_batch(input, theta_AE, architecture_AE, option_AE, (input_corrupted,) ~)|||||---predict_NN(input, architecture_AE(1:2), theta_AE(W1,b1), option_AE)||||||||------------------------------------- until train all stacked AE ------------------------------------------+||||       ||---init_parameters(architecture_BP, last_active_is_softmax, varargin)|       ||---train_BPNN(input, output, theta_BP, architecture_BP, option_BP)|       |||---fun = @(x) calcBPBatch(input, output, x, architecture, option_BP)|       |||---minFunc(fun, theta_BP, options)||||---display_network(W)|||       |---predict_NN(input, architecture, theta_SAE, preOption_BPNN)|       |---get_accuracy(predicted_labels, labels)|       ||       |---train_BPNN(input, output, theta_SAE, architecture, preOption_BPNN) // fine-tune|       ||       |---predict_NN(input, architecture, theta_SAE, preOption_BPNN)|       |---get_accuracy(predicted_labels, labels)||end[784 400 200 10] + ReLu + sparse(rho = 0.1, beta = 0.3) + de-noising( mode = 'On_Off', rate = 0.15 ): 98+%, 1900s ;by 郑煜伟 Ewing 2016-04

About

用 MATLAB 实现深度学习网络中的 stacked auto-encoder:使用AE variant(de-noising / sparse / contractive AE)进行预训练,用BP算法进行微调

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp