- Notifications
You must be signed in to change notification settings - Fork14
zheng-yuwei/Stacked_Autoencoder
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
version 1.0 基本完整版run_SAE_once(sparse + de-noising + 各种activation function )这个是基本版,都是别人的工作。接下来版本应该是自己改进main()|---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for train|---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for test| |---load_MNIST_images(images_file, preprocess, is_show_images, varargin )| | |---whitening(data)| |---load_MNIST_labels(labels_file)||---get_SAE_option(preOption_SAE, varargin)||---get_AE_option(preOption_AE)||---get_BP_option(preOption_BP)|---get_BPNN_option(preOption_BPNN)||---run_SAE_once(images_train, labels_train, images_test, labels_test, architecture, option_SAE, option_BPNN, is_disp_network, is_disp_info )| |---train_SAE(input, output, architecture, preOption_SAE) // SAE| | |---init_parameters(architecture_AE) <----------------------------------------------------------------------+| ||---train_AE(input, theta_AE, architecture_AE, option_AE) || |||---denoising_switch(input, count_AE, option_AE) || |||---minFunc(fun, theta_AE, options) || ||||---calc_AE_batch(input, theta_AE, architecture_AE, option_AE, (input_corrupted,) ~)|||||---predict_NN(input, architecture_AE(1:2), theta_AE(W1,b1), option_AE)||||||||------------------------------------- until train all stacked AE ------------------------------------------+|||| ||---init_parameters(architecture_BP, last_active_is_softmax, varargin)| ||---train_BPNN(input, output, theta_BP, architecture_BP, option_BP)| |||---fun = @(x) calcBPBatch(input, output, x, architecture, option_BP)| |||---minFunc(fun, theta_BP, options)||||---display_network(W)||| |---predict_NN(input, architecture, theta_SAE, preOption_BPNN)| |---get_accuracy(predicted_labels, labels)| || |---train_BPNN(input, output, theta_SAE, architecture, preOption_BPNN) // fine-tune| || |---predict_NN(input, architecture, theta_SAE, preOption_BPNN)| |---get_accuracy(predicted_labels, labels)||end[784 400 200 10] + ReLu + sparse(rho = 0.1, beta = 0.3) + de-noising( mode = 'On_Off', rate = 0.15 ): 98+%, 1900s ;by 郑煜伟 Ewing 2016-04
About
用 MATLAB 实现深度学习网络中的 stacked auto-encoder:使用AE variant(de-noising / sparse / contractive AE)进行预训练,用BP算法进行微调
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.