- Notifications
You must be signed in to change notification settings - Fork17
FFTW bindings for the xtensor C++14 multi-dimensional array library
License
xtensor-stack/xtensor-fftw
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
FFTW bindings for thextensor C++ multi-dimensional array library.
xtensor-fftw enables easy access to Fast Fourier Transforms (FFTs) from theFFTW library for use onxarray numerical arrays from thextensor library.
Syntax and functionality are inspired bynumpy.fft, the FFT module in the Python array programming libraryNumPy.
Usingmamba (or conda):
mamba install xtensor-fftw -c conda-forge
This automatically installs dependencies as well (seelist of dependencies below).
Installing from source into$PREFIX (for instance$CONDA_PREFIX when in a conda environment, or$HOME/.local) after manually installing thedependencies:
git clone https://github.com/xtensor-stack/xtensor-fftwcd xtensor-fftwmkdir buildcd buildcmake .. -DCMAKE_INSTALL_PREFIX=$PREFIXmake install
xtensor-fftw | xtensor | xtl | fftw |
|---|---|---|---|
| master | >=0.20.9,<0.22 | ^0.6.9 | ^3.3.8 |
| 0.2.6 | >=0.20.9,<0.22 | ^0.6.9 | ^3.3.8 |
xtensor-fftw is a header-only library.To use, include one of the header files in theinclude directory, e.g.xtensor-fftw/basic.hpp, in your c++ code.To compile, one should also include the paths to the FFTW header and libraries and link to the appropriate FFTW library.
FFTW allows three modes of calculus :float,double andlong double.
The impact of the precision type can be see below in the benchmark results.
Use the following matrix to include, compile and link the right target:
#include | precision types | xtensor-fftw compile options | FFTW compile options |
|---|---|---|---|
| xtensor-fftw/basic_float.hpp | float | -DXTENSOR_FFTW_USE_FLOAT=ON | -DENABLE_FLOAT=ON |
| xtensor-fftw/basic_double.hpp | double | -DXTENSOR_FFTW_USE_DOUBLE=ON | -DENABLE_DOUBLE=ON |
| xtensor-fftw/basic_long_double.hpp | long double | -DXTENSOR_FFTW_USE_LONG_DOUBLE=ON | -DENABLE_LONGDOUBLE=ON |
| xtensor-fftw/basic_option.hpp | depends by compile options | subset of above options | subset of above options |
| xtensor-fftw/basic.hpp | all types | no option | all above options |
Specify only the required precision type to reduce the dependencies size of your application (for example for a Mobile App it matters), in fact FFTW needs to compile a specific library for each precision thus creating:
libfftw3ffor float precisionlibfftw3for double precisionlibfftw3lfor long double precision
Notes: FFTW allow SIMD instructions (SSE,SSE2,AVX,AVX2), OpenMP and Threads optimizations. Take a look to the availables options before compile it.
The functions inxtensor-fftw/basic.hpp mimic the behavior ofnumpy.fft as much as possible.In most cases transforms on identical input data should produce identical results within reasonable machine precision error bounds.However, there are a few differences that one should keep in mind:
Since FFTW expects row-major ordered arrays,xtensor-fftw functions currently only accept
xarrays with row-major layout.By default,xtensor containers use row-major layout, but take care when manually overriding this default.The inverse real FFT functions in FFTW destroy the input arrays during the calculation, i.e. the
irfftfamily of functions inxtensor-fftw.(In fact, this does not always happen, depending on which algorithm FFTW decides is most efficient in your particular situation. Don't count on it, though.)xtensor-fftw on Windows does not support
long doubleprecision.Thelong doubleprecision version of the FFTW library requires thatsizeof(long double) == 12.In recent versions of Visual Studio,long doubleis an alias ofdoubleand has size 8.
Calculate the derivative of a (discretized) field in Fourier space, e.g. a sine shaped fieldsin:
#include<xtensor-fftw/basic.hpp>// rfft, irfft#include<xtensor-fftw/helper.hpp>// rfftscale#include<xtensor/xarray.hpp>#include<xtensor/xbuilder.hpp>// xt::arange#include<xtensor/xmath.hpp>// xt::sin, cos#include<complex>#include<xtensor/xio.hpp>// generate a sinusoid fielddouble dx = M_PI /100;xt::xarray<double> x = xt::arange(0.,2 * M_PI, dx);xt::xarray<double> sin = xt::sin(x);// transform to Fourier spaceauto sin_fs = xt::fftw::rfft(sin);// multiply by i*kstd::complex<double> i {0,1};auto k = xt::fftw::rfftscale<double>(sin.shape()[0], dx);xt::xarray<std::complex<double>> sin_derivative_fs = xt::eval(i * k * sin_fs);// transform back to normal spaceauto sin_derivative = xt::fftw::irfft(sin_derivative_fs);std::cout <<"x:" << x << std::endl;std::cout <<"sin:" << sin << std::endl;std::cout <<"cos:" << xt::cos(x) << std::endl;std::cout <<"sin_derivative:" << sin_derivative << std::endl;
Which outputs (full output truncated):
x: { 0. , 0.031416, 0.062832, 0.094248, ..., 6.251769}sin: { 0.000000e+00, 3.141076e-02, 6.279052e-02, 9.410831e-02, ..., -3.141076e-02}cos: { 1.000000e+00, 9.995066e-01, 9.980267e-01, 9.955620e-01, ..., 9.995066e-01}sin_derivative: { 1.000000e+00, 9.995066e-01, 9.980267e-01, 9.955620e-01, ..., 9.995066e-01}See thenotebooks folder for interactive Jupyter notebook examples using the C++14xeus-cling kernel. These can also be run from Binder,e.g. this one.
What follows are instructions for compiling and running thextensor-fftw tests.These also serve as an example of how to do build your own code usingxtensor-fftw (excluding the GoogleTest specific parts).
The main dependency is a version of FFTW 3.To enable all the precision types, FFTW must be compiled with the related flags:cmake -DENABLE_FLOAT:BOOL=ON -DENABLE_LONGDOUBLE:BOOL=ON /path/of/fftw3-src
CMake andxtensor must also be installed in order to compile thextensor-fftw tests.Both can either be installed through Conda or built/installed manually.When using a non-Condaxtensor-install, make sure that the CMakefind_package command can findxtensor, e.g. by passing something like-DCMAKE_MODULE_PATH="path_to_xtensorConfig.cmake" to CMake.Ifxtensor was installed in a default location, CMake should be able to find it without any command line options.
Optionally, a GoogleTest installation can be used.However, it is recommended to use the built-in option to download GoogleTest automatically (see below).
Inside thextensor-fftw source directory, create a build directory andcd into it:
mkdir buildcd buildIfpkg-config is present on your system and your FFTW installation can be found by it, then CMake can configure your build with command:
cmake .. -DBUILD_TESTS=ON -DDOWNLOAD_GTEST=ON
If you do not usepkg-config, the FFTW prefix, i.e. the base directory under which FFTW is installed, must be passed to CMake.Either set theFFTWDIR environment variable to the prefix path, or use theFFTW_ROOT CMake option variable.For instance, if FFTW was installed using./configure --prefix=/home/username/.local; make; make install, then either set the an environment variable in your shell before running CMake:
export FFTWDIR=/home/username/.localcmake .. -DBUILD_TESTS=ON -DDOWNLOAD_GTEST=ON [other options]or pass the path to CMake directly as such:
cmake .. -DFFTW_ROOT=/home/username/.local -DBUILD_TESTS=ON -DDOWNLOAD_GTEST=ON [other options]
After successful CMake configuration, run inside the build directory:
make
From the build directory, change to the test directory and run the tests:
cdtest./test_xtensor-fftw
This section shows how to configurecmake in order to exploit advanced settings.
After a standard installation of FFTW library without specify a particular options, this command allow to run Test and Benchmarks using onlydouble precision:
cmake -DBUILD_BENCHMARK=ON -DDOWNLOAD_GBENCH=ON -DBUILD_TESTS=ON -DDOWNLOAD_GTEST=ON -DFFTW_USE_FLOAT=OFF -DFFTW_USE_LONG_DOUBLE=OFF -DFFTW_USE_DOUBLE=ON -DCMAKE_BUILD_TYPE=Release ..
Let's see what./bench/benchmark_xtensor-fftw produce:
Run on (16 X 2300 MHz CPU s)-------------------------------------------------------------------------------Benchmark Time CPU Iterations-------------------------------------------------------------------------------rfft1Dxarray_double/TransformAndInvert 66375 ns 66354 ns 10149rfft1Dxarray_double/TransformAndInvert_nD 70856 ns 70829 ns 10128rfft2Dxarray_double/TransformAndInvert 61264 ns 61256 ns 11456rfft2Dxarray_double/TransformAndInvert_nD 62297 ns 62269 ns 10851This can be very useful: in this case FFTW is not required to be installed, just compiled.
The following command produce the same results as before:
cmake -DBUILD_BENCHMARK=ON -DDOWNLOAD_GBENCH=ON -DBUILD_TESTS=ON -DDOWNLOAD_GTEST=ON -DFFTW_USE_FLOAT=OFF -DFFTW_USE_LONG_DOUBLE=OFF -DFFTW_USE_DOUBLE=ON -DFFTW_INCLUDE_CUSTOM_DIRS=/path/to/fftw3/api -DFFTW_LINK_FLAGS="-L/path/to/fftw3/build -lfftw3" ..
Since 2018 Intel has release a version of his famous MKL (Math Kernel Library) with a C++ and Fortran wrapper of FFTW.
Once MKL (or oneAPI MKL) installed on the system enter the following command with adjusted path to your system:
cmake -DBUILD_BENCHMARK=ON -DDOWNLOAD_GBENCH=ON -DBUILD_TESTS=ON -DDOWNLOAD_GTEST=ON -DFFTW_USE_FLOAT=OFF -DFFTW_USE_LONG_DOUBLE=OFF -DFFTW_USE_DOUBLE=ON -DFFTW_INCLUDE_CUSTOM_DIRS=/opt/intel/oneapi/mkl/2021.2.0/include/fftw -DFFTW_LINK_FLAGS="-L/opt/intel/oneapi/mkl/2021.2.0/lib -L/opt/intel/oneapi/compiler/2021.2.0/mac/compiler/lib -lmkl_core -lmkl_intel_thread -lmkl_intel_lp64 -liomp5" -DRUN_HAVE_STD_REGEX=0 -DCMAKE_BUILD_TYPE=Release ..
Let's see what./bench/benchmark_xtensor-fftw now produce:
Run on (16 X 2300 MHz CPU s)-------------------------------------------------------------------------------Benchmark Time CPU Iterations-------------------------------------------------------------------------------rfft1Dxarray_double/TransformAndInvert 9265 ns 9258 ns 58371rfft1Dxarray_double/TransformAndInvert_nD 9636 ns 9602 ns 73961rfft2Dxarray_double/TransformAndInvert 34428 ns 34427 ns 20216rfft2Dxarray_double/TransformAndInvert_nD 37401 ns 37393 ns 19480Note: Before running test or benchmark remember to export the intel library path, e.g. on OS X:
export DYLD_LIBRARY_PATH=/opt/intel/oneapi/mkl/2021.2.0/lib/:/opt/intel/oneapi/compiler/2021.2.0/mac/compiler/lib/
We use a shared copyright model that enables all contributors to maintain thecopyright on their contributions.
This software is licensed under the BSD-3-Clause license. See theLICENSE file for details.
About
FFTW bindings for the xtensor C++14 multi-dimensional array library
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors12
Uh oh!
There was an error while loading.Please reload this page.