Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval

License

NotificationsYou must be signed in to change notification settings

xlang-ai/BRIGHT

Repository files navigation

BRIGHT

WebsitePaperData(42k downloads)


Overview of BRIGHT benchmark

📢 Updates

💾 Installation

In your local machine, we recommend to first create a virtual environment:

conda create -n bright python=3.10conda activate brightgit clone https://github.com/xlang-ai/BRIGHTcd BRIGHTconda install -n bright -c conda-forge openjdk=22sudo dpkg -ipip install -r requirements.txt

That will create the environment bright with all the required packages installed.

🤗 Data

BRIGHT comprises 12 diverse datasets, spanning biology, economics, robotics, math, code and more.The queries can be long StackExchange posts, math or code question.The documents can be blogs, news, articles, reports, etc.SeeHuggingface page for more details.

📊 Evaluation

We evaluate 13 representative retrieval models of diverse sizes and architectures. Run the following command to get results:

python run.py --task {task} --model {model}
  • --task: the task/dataset to evaluate. It can take one ofbiology,earth_science,economics,psychology,robotics,stackoverflow,sustainable_living,leetcode,pony,aops,theoremqa,
  • --model: the model to evaluate. Current implementation supportsbm25,cohere,e5,google,grit,inst-l,inst-xl,openai,qwen,sbert,sf,voyage andbge.
    Optional:
  • --long_context: whether to evaluate on the long-context setting, default toFalse
  • --query_max_length: the maximum length for the query
  • --doc_max_length: the maximum length for the document
  • --encode_batch_size: the encoding batch size
  • --output_dir: the directory to output results
  • --cache_dir: the directory to cache document embeddings
  • --config_dir: the directory of instruction configurations
  • -checkpoint: the specific checkpoint to use
  • --key: key for proprietary models
  • --debug: whether to turn on the debug mode and load only a few documents

🔍 Add custom model?

It is very easy to add evaluate custom models on BRIGHT. Just implement the following function inretrievers.py and add it to the mappingRETRIEVAL_FUNCS:

defretrieval_model_function_name(queries,query_ids,documents,doc_ids,excluded_ids,**kwargs):    ...returnscores

wherescores is in the format:

{"query_id_1": {"doc_id_1": score_1,"doc_id_2": score_2,    ..."doc_id_n": socre_n  },  ..."query_id_m": {"doc_id_1": score_1,"doc_id_2": score_2,    ..."doc_id_n": socre_n  }}

❓Bugs or questions?

If you have any question related to the code or the paper, feel free to email Hongjin (hjsu@cs.hku.hk), Howard (hyen@cs.princeton.edu) or Mengzhou (mengzhou@cs.princeton.edu). Please try to specify the problem with details so we can help you better and quicker.

Citation

If you find our work helpful, please cite us:

@misc{BRIGHT,  title={BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval},  author={Su, Hongjin and Yen, Howard and Xia, Mengzhou and Shi, Weijia and Muennighoff, Niklas and Wang, Han-yu and Liu, Haisu and Shi, Quan and Siegel, Zachary S and Tang, Michael and Sun, Ruoxi and Yoon, Jinsung and Arik, Sercan O and Chen, Danqi and Yu, Tao},  url={https://arxiv.org/abs/2407.12883},  year={2024},}

About

BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors5


[8]ページ先頭

©2009-2025 Movatter.jp